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On the maximum size of a hole in an
incomplete t-wise balanced design with
specified minimum block size
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Abstract. We derive a general upper bound on the size of a hole in an
incomplete t-wise balanced design of order v and index A, given that its
minimum block size is k > t + 1: if h is the size of the hole, then h <
(v+ (k—t)(t—2)—1)/(k—t+1). We then show that this bound is sharp
infinitely often when ¢ = 2 or 3, in that for each h > ¢ and each &k >t + 1,
(t,h, k) # (3,3,4), there exists an [tBD meeting the bound.
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1. Introduction

A t-wise balanced design (¢BD) of type t—(v, K, A) is a pair (X, B) where X is
a v—element set of points and B is a collection of subsets of X called blocks,
with the property that the size of every block is in K and every t—element
subset of X is contained in exactly A blocks. If K is a set of positive integers
strictly between ¢t and v, then we say the ¢tBD is proper.

An incomplete t—wise balanced design (ItBD) of type t—(v, h, K, A) is a triple
(X,H,B) where X is a v—element set of points, H is an h—element subset
H C X (called the hole), and B is a collection of subsets of X called blocks,
such that every t—element subset of points is either contained in the hole or in
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exactly A blocks, but not both. Thus, a ItBD of type t—(v, h, K, \) is equivalent
to a tBD of type t—(v, KU {h}, A) having a block of size h which is repeated A
times. In particular, when A = 1, a tBD of type t—(v,K,\) is a ItBD of type
t—(v,h,K,1) for any h € K, provided of course that the ¢{BD actually has a
block of size h.

In a recent article [KR] , the authors prove the following result:

Theorem 1.1. [KR, Theorem 1.2] Let (X, H,B) be a proper ItBD with
t>2. If h=|H| >t is the size of the hole in (X, H,B), then h < (v —1)/2
when t is even, while h < v/2 when t is odd.

Setting A = 1, we verify Kramer’s conjecture for all ¢t > 2:

Corollary 1.2. [KR, Corollary 1.3] In any proper tBD (X,B) of type
t—(v,K,1) , we have k < (v — 1)/2 when t is even, while k < v/2 when t is
odd, where k is the size of any block in (X, B).

Moreover, in [KR, Theorem 3.3,3.5,3.8] it was shown that for every
t > 2 and every h > t + 1, there exists an ItBD (with A as a function of h
and t) meeting the bounds of Theorem 1.1, and that any ItBD meeting this
bound must have k = ¢ + 1 as its minimum block size. This of course raises
the question regarding what happens if we prescribe the minimum block size
in the ItBD to be something larger than ¢ 4+ 1. In this article we derive the
following upper bound:

If (X, H,B) is a proper tBD of type t—(v, h,K,\) with h >
t>2andmin C =k >t+1, then

LUt (E=t)(t=2) -1
= k—t+1

We will show that this bound is sharp when t = 2 or 3 in that for each
h>tandeach k >t+1, (¢, h, k) # (3,3,4), there exists an ItBD (with X a
function of h and k) meeting this bound.

2. The upper bound

In this section we prove (Theorem 2.1) the bound mentioned in Section 1.
This is in fact a generalization of Lemma 1.6 in [KR] and we generalize the
technique used therein to prove our result here. We will require the following
terminology: if (X, B) is a tBD, then an a-parallel class of blocks in (X, B)
is a subset B’ C B with the property that each point x € X is contained in
exactly a of the blocks in B'.
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Theorem 2.1. If (X, H,B) is a proper ItBD of type t—(v,h,K,\) with h >
t>2andmin =k >t + 1, then

v+(k-t)(t—2)—1
k—t+1
Proof. Let S be a fixed (t — 2)—element subset of H and let

h<

H=SuU {1'1,1'2,.’173, R ;mh7t+2}-

Consider the derived design with respect to SU{z;}, where i is a fixed element
of {1,2,... ,h —t+ 2}. Now because H is a hole in the original ItBD, the
blocks in the derived design form a A—parallel class of blocks, each of size at
least k —t + 1 on the v — h points of X \ H; call this set of blocks B;. Then
again, because H is a hole in the original ItBD; we have B; N B; = 0 for all
1<i<j<h—t+2. (It may well be that as sets there is a block B; € B; and
a block B; € B; that are equal; however, they will have arisen from distinct
blocks in (X, H,B) and so as blocks are distinct.) Thus, as ¢ ranges over
{1,2,...,h —t+ 2}, we obtain h — ¢t + 2 A-parallel classes of blocks, each of
size at least k — ¢t + 1, on the v — h points of X \ H. Now because k >t + 1,
we have k—t+1 > 2,s0let v,0' € X \ H, v # v'. The pair v,v' cannot occur
together in more than A blocks in Bg = By UBa U --- U Bp_¢42, for otherwise
the t—element set {v,v'} U S would have occurred in more than A blocks in
(X, H,B). Thus, by considering the blocks in Bg which contain the fixed point
v € X \ H, we have

Ak —t)(h—t+2) < Aw—h—1)

from which we have

p vt (E-t)(t-2) -1
= E—t+1
O

Remark 2.2. Note that since S was a fixed but arbitrary (¢ — 2)-element
subset of H, we have equality in Theorem 2.1 if and only if every block that
intersects the hole in exactly ¢ — 1 points has size k£ and that among these
blocks each pair of elements from X \ H is covered exactly )\(tf2)/ t-1)
times. This completely characterizes the case for ¢t = 2:

Corollary 2.3. In any incomplete 2—(v, h,KC,\) design with 2 < h < v and
min £ =k > 3, we have
v—1
h< ——
— k _ 17
with equality occurring if and only if every block has size k and intersects the
hole (in exzactly one point).
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Corollary 2.4. In any incomplete 3—(v, h,KC,\) design with 3 < h < v and
min K = k > 4, we have
v+k—4
h<< —————
i k _ 2 7
with equality occurring only if every block that intersects the hole does so in
exactly two points and has size k.

Proof. From Theorem 2.1 and Remark 2.2 we need only show that when h =
(v+k —4)/(k — 2) no block intersects the hole in exactly one point. Suppose,
to the contrary, that such a block B exists, and let z be the unique point in
the intersection of B with the hole. Then taking the derived design through
z yields an incomplete 2-(v — 1,h — 1,K — 1, A) design with 2 < h—-1<wv—1
and min(K — 1) =k — 1 > 2, with

v+k—4

—1=-T"""_
f k-2
v—2
k-2
v—1)-1
ie. h—1= ——F—.
e k—1) -1
But in this derived design there is a block B\ {z} that does not intersect the
hole, contradicting Corollary 2.3. O

Remark 2.5. With regards to Corollary 2.4, it is not necessary that every
block intersects the hole in order for equality to occur. For example, let X =
{a7 b7 C} U {17 27 37 47 5}7 H = {a7 b7 C}J a‘nd

B ={{1,2,3,4,5},{1,2,3,4,5},{1,2,3,4,5}}
U{{z,y,i,j,k} :z,y € H and 4,5,k € X \ H}.

This is an incomplete 3—(8,3,{5},6) design (meeting the bound of Corol-
lary 2.4) with the three copies of {1,2,3,4,5} disjoint from the hole H =

{a,b,c}.

We conclude this section by observing that the argument used in the proof
of Corollary 2.4 can be easily generalized to show that in any incomplete ¢—
(v,h, K, X) design meeting the bound of Theorem 2.1 the number of blocks
which intersect the hole in exactly ¢ — 2 points is zero.

3. Meeting the bounds for t =2 and t =3
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In this section, we will show that the bound of Theorem 2.1 is sharp infinitely
often when ¢t = 2 or 3. We begin with ¢ = 3, using the technique in [KR,
Section 3] to construct our designs. If ¥ C X, let Sym(Y) denote the
Ssymmetric group on Y.

Theorem 3.1. For each h > 3 and each k > 4, (h, k) # (3,4), there exists a
I3BD (X, H,B) of type 3—(v, h,{k},\) where v=(k —2)h — (k —4) and

v—3 v—h—1
= - 1)!
a= (1 a)e-o (),
having Sym(H) x Sym(X \ H) as an automorphism group.

Proof. There are three orbits Ag, Ay, Ay of 3—element subsets that need to
be covered, where A; is the set of 3—element subsets that intersect the hole
in exactly ¢ points. Similarly, there are three orbits I'g,I'1,I's of blocks (k-
element subsets) that are available, where I'; is the set of all k—element subsets
that intersect the hole in exactly j points. Thus,

()6

Now, consider the 3 by 3 matrix M whose [¢, j]-entry is
Mli,j]={B€Tl;:T C B},

where T is any fixed representative of A;. Then the design whose existence
is asserted by the statement of the theorem exists if and only if there is a
non—negative integer vector @ such that

Mi =\,

J =[1,1,1]T. We now proceed to show that such a vector 7 exists. The case
k =4 is handled in [KR, Theorem 3.3] , so we can henceforth assume that
k > 5. The matrix M is given explicitly by

(e I T Ctrsd I (T G

M= 0 (e (=1

0 0 ("5

Now observe that for ¢ = 0,1, 2, the sum along row ¢ of M is
v-3\ ’“f h—d\ (v—h—(3—1)
k-3 \ « k-3—a /)

a=3—1

Hence, we first solve
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see that
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which, by our choice of @, is the unique solution to
v—3
M@+ J) = J.
(T+J) ( b — 3)
Then setting
v—h-1
7 (k— 1) o
a=k-ni(" "7 )@+

we see that i is a non-negative integer vector for which

v—3 v—h-—1
i = — | =
T e T

as desired. The result follows. O

Remark 3.2. Note that in the solution vector @ in the proof of Theorem 3.1,
we have u; = 0. This means that in each design constructed by this result
the orbit T'; is never used. That is, there are no blocks which intersect the
hole in exactly one point, as must be the case by Corollary 2.4. With regards
to the parameters (h,k) = (3,4), it is easy to show that no I3BD of type
3—(6,3, {4}, \) exists, for any A > 0.

Designs meeting the bound of Theorem 2.1, for ¢ = 2, are now easily
obtained.

Theorem 3.3. For each h > 2 and each k > 3, (h, k) # (2,3), there exists an
12BD (X, H, B) of type 2—(v, h,{k}, ) where v=(k—1)h+ 1 and

v—2 v—h-1
= !
A (k_2>k.( !

Proof. From Theorem 3.1, there is a I3BD of type 3—(v+1,h+1,{k+ 1}, A),
where

1= ((k+1)=2)(h+1) = ((k+1)—4) = (k- 1)h +2

v+1-3 v+1—(h+1)—1
— —1)!
A (k+1—3>(k+1 1)'( k+1-1 )

Take the derived design through a point in the hole to get the desired I2BD. [

and

Remark 3.4. One can of course obtain infinite classes of 2—designs with A = 1
meeting the bound of Theorem 2.1 by starting with resolvable BIBDs with
A =1 (e.g. onefactorizations, Kirkman Triple Systems, etc.). With regard
to the parameters (h,k) = (2,3) in Theorem 3.3, it is a simple matter to
construct 12BDs of type 2—(5,2, {3}, A) for any even A > 0.
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4. Conclusion

It would be of great interest to determine the effectiveness of the bound of
Theorem 2.1 for ¢ > 4. Note that when k& = ¢ + 1, this bound reduces to
h < (v +1t—3)/2 (which, incidentally, is equivalent to Theorem 2.1 in [K] )
and so cannot be sharp in the case ¢ > 4 (see Theorem 1.1). That is, one must
restrict oneself to ItBDs with min K =k >t + 2.
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