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ABSTRACT

Kreher and Rees [3] proved that if & is the size of a hole in an incomplete t-wise
balanced design of order v and index A having minimum block size k£ >t + 1,
then
v+ k-t)(t—-2)—1
< .
s k—t+1

They showed that when ¢t = 2 or 3, this bound is sharp infinitely often in
that for each h >t and each k > t+ 1, (¢, h,k) # (3,3,4), there exists an [tBD
meeting the bound. In this paper, we show that this bound is sharp infinitely
often for every t, viz: for each t > 4 there exists a constant C; > 0 such that
whenever (h—t)(k—t—1) > C; there exists an ItBD meeting the bound for some
A = A(t, h,k). We then describe an algorithm by which it appears that one can
obtain a reasonable upper bound on C; for any given value of t&. © 2001 John
Wiley & Sons, Inc.

1. INTRODUCTION

A t-wise balanced design (tBD) of type t—(v,K, ) is a pair (X, B) where X is a
v—element set of points and B is a collection of subsets of X called blocks, with
the property that the size of every block is in K and every t—element subset of X

© 2001 John Wiley & Sons, Inc. CCC 1063-8539/94/030117-13
Journal of Combinatorial Designs Vol. ?, No. ?, (2001)

1



2 ADAMCZAK, KREHER, LING, REES

is contained in exactly A blocks. If K is a set of positive integers strictly between ¢
and v, then we say the tBD is proper.

An incomplete t—wise balanced design (ItBD) of type t—(v, h,K, ) is a triple
(X, H,B) where X is a v—element set of points, H is an h—element subset H C X
(called the hole), and B is a collection of subsets of X called blocks, such that every
t—element subset of points is either contained in the hole or in exactly A blocks,
but not both. Thus, an ItBD of type t—(v, h, K, A) is equivalent to a tBD of type
t—(v, K U {h}, A) having a block of size h which is repeated A times. In particular,
when A =1, a tBD of type t—(v, K, 1) is a ItBD of type t—(v, h, K, 1) for any h € K,
provided of course that the tBD actually has a block of size h.

In a recent article [3], the authors gave an upper bound on the size of a hole in
an ItBD with specified minimum block size k > ¢+ 1. In what follows, an a-parallel
class of blocks in a tBD (X, B) is a subset B’ C B with the property that each point
z € X is contained in exactly a of the blocks in B’.

Theorem 1.1. [3, Theorem 2.1] If (X, H, B) is a proper ItBD of type t—(v, h, IC, \)
with h >t>2 and minKC =k > ¢+ 1, then

VD=2 -1
= k—t+1

Proof. Let S be a fixed (t — 2)—element subset of H and let
H=8SU{z1,%2,%3,...,Tp t42}-

Consider the derived design with respect to S U {z;}, where i is a fixed element of
{1,2,...,h—t+2}. Now because H is a hole in the original ItBD, the blocks in
the derived design form a A—parallel class of blocks, each of size at least k — ¢ + 1
on the v — h points of X \ H; call this set of blocks B;. Then again, because H is a
hole in the original ItBD; we have B;NB; =@ forall 1 <i < j < h—t+2. (It may
well be that as sets there is a block B; € B; and a block B; € B; that are equal;
however, they will have arisen from distinct blocks in (X, H, B) and so as blocks are
distinct.) Thus, as 4 ranges over {1,2,...,h —t+ 2}, we obtain h —t + 2 A-parallel
classes of blocks, each of size at least kK — ¢ + 1, on the v — h points of X \ H. Now
because k > t+1, we have k—t+1 > 2, so let v,v' € X \ H, v # v'. The pair v, v’
cannot occur together in more than A blocks in Bg = By U By U --- U Bp_¢42, for
otherwise the t—element set {v,v'} U .S would have occurred in more than A blocks
in (X, H,B). Thus, by considering the blocks in Bg which contain the fixed point
v € X\ H, we have

Ak =t)(h—t+2) < Aw—h—1)

from which we have

v+ (k—t)t—2)-1
h< k—t+1
O
Moreover, it was shown in [3] that this bound is sharp when ¢t = 2 or 3 in that
for each h >t and each k >t + 1, (¢, h, k) # (3,3,4), there exists an ItBD meeting
the bound for some A\ = A(¢, h, k).
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In this article, we examine the effectiveness of the above bound for ¢ > 4. An
ItBD meeting this bound will be called tight. We first make the following observa-
tion regarding tight designs.

Lemma 1.2. If (X, H,B) is a tight ItBD of type t-(v,h,K,)\) and S C H with
|S| = s where 1 < s <t — 2, then the derived design with respect to S is a tight
I(t — s)BD of type (t — s)-(v — s,h — s, K — 5, A).

Proof. We have
v+ (k—t)(t—2)—1

h= k—t+1 ’
which we rewrite as
v—h—-1= (h—t+2)(k—1). (1)
Then
(v—8)—(h—s)—1 =wv—-h-1

= (h—t+2)(k—1)

= ((h—s)—(t—s)+2)((k—s)—(t—3)),
i.e.

=)t (=) = (=) (=) =)~ 1
(k—s5)— (t—s) + 1 ’

thus the derived design is also tight. O
In Section 2., we will examine the cases t = 4, 5 and 6 in some detail and
use the analysis to describe a general algorithm by which it appears that one can
derive sufficient conditions for the existence of tight ¢-designs for any value of ¢ (the
analysis also tells us how to construct them). We obtain the following results.

Theorem 1.3. (Theorem 2.2) Lett = 4 or 5. Then, for every h, k with (h —
t)(k—t—1) > 6, there exists a tight ItBD of type t-(v, h, k, \) for some A = X(t, h, k).

Theorem 1.4. (Lemma 2.3) Lett = 6. Then, for every h,k with (h—t)(k —t —
1) > 9, there exists a tight ItBD of type t-(v, h, k, ) for some A = A(t, h, k).

We obtain analogous results for 7 < ¢ < 9. (See Theorem 2.5.)
In Section 3., we prove the following general asymptotic result that confirms that
the upper bound of Theorem 1.1 is eventually sharp for every value of #:

Theorem 1.5. For each t > 4 there exists a constant Cy > 0 such that whenever
(h—=1t)(k —t —1) > C; there exists a tight tBD of type t-(v, h,k,\) for some
A=A, h, k).

Note that by Theorems 1.3 and 1.4 we have C4 < 6, C5 < 6 and Cg < 9.
The subsequent results in Section 2. give us analogous upper bounds for C; where
7<t<0.
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Incomplete block designs have been extensively studied for ¢ = 2 and have a wide
variety of applications to, e.g. the construction of pairwise balanced designs with
subdesigns, optimum pair-packings and coverings and the construction of a wide
variety of other combinatorial objects using Wilson-type constructions, to name
only a few. In [2] Kreher and Rees gave the first general upper bound on the size
of a hole in an incomplete t-wise balanced design, viz:

Theorem 1.6.  [2, Theorem 1.2] In any proper ItBD of type t-(v,h, K, ) with
h>1t>2, we have h < (v —1)/2 when t is even, while h < v/2 when t is odd.

Setting A = 1 in Theorem 1.6 the authors in [2] settled a long-standing conjecture
posed by E. Kramer in [1]:

Theorem 1.7. [2, Corollary 1.3] In any proper tBD of type t-(v,K,1), we have
k < (v—1)/2 when t is even, while k < v/2 when t is odd, where k is the size of
any block in the tBD.

Moreover it was shown in [2] that for every ¢ > 2 and every h > t+1 there exists
an ItBD meeting the bound of Theorem 1.6 for some A = A(h,t) and that any ItBD
meeting this bound must have ¥ = ¢t + 1 as its minimum block size. This latter
condition naturally raises the problem of determining an effective upper bound on
h in the case where we prescribe the minimum block size to be something larger
than ¢ 4+ 1. It is this that motivated the development of such a bound in [3] and
the current investigation of the general effectiveness of this bound.

We will use the notation Sym(Y’) to denote the symmetric group on the set Y,
the notation

gn(z)=z(z—1)(z—2)---(z—n+1):n!<z>,

where go(z) = 1, to denote the empty product, and the notation J; to denote the ¢
by 1 vector of all 1s.

2. CONSTRUCTING TIGHT DESIGNS FOR SOME SMALL
VALUES OF ¢

We will follow the technique used in [3, Section 3] to construct our designs. We
begin by constructing a tight I5BD (X, H, B) of type 5-(v, h, k, A) having Sym (H) x
Sym(X \ H) as an automorphism group. There are five orbits Ag, Ay,..., Ay of
5-element subsets that need to be covered, where A; is the set of all 5—element
subsets that intersect the hole in exactly ¢ points. Similarly, there are five orbits
To,T1,...,T4 of blocks (k-element subsets) that are available, where I'; is the set
of all k—element subsets that intersect the hole in exactly j points. Thus,

- ()60



MAXIMUM SIZE OF A HOLE IN AN INCOMPLETE TBD 5

Now consider the 5 by 5 matrix M5 whose [i, j]-entry is

h—4\(v—h—-5+i
Msli, 5] = {Bel;: T CB}| =
sli,j] = {BeT;:T C B} (j—i) (k—5—j+i>’

where T is any fixed representative of A;. Then, the design under consideration
exists if and only if there is a non-negative rational vector @ such that

M5'II = J5,
where Js = [1,1,1,1,1]7. The matrix Mj; is given by

[0 O G G OO T
0 (o (TR (I (DY
Ms=| 0 0 (o I (o | G I (o [ Gty
0 0 0 (W50 (D))
L0 0 0 0 (oY
where () = 0 whenever n < 0. Taking @ = [uo, u1,u2,us3, us]”, we get the following
solution:

_ v—h-—1 _1_
“E\ k-5 )
v—h—2 o h—3\/v—h—-2 -1
B\ k-5 1 E—6 )

_ (v—-h=-2\" (h-3) (k-5 _
us = (k—s ) {1_ vh-1 J 0
by Equation (1);
v—h—3 N h—2\/v—h-3 N h—2\(v—h-3\ _,
2\ k_s 1 k-6 Y\ 9 k-7 )"
Therefore,
v—h—3\" h—2\(v—h—3\[v—h—1\ "'
Uy = 1-—
k—5 2 k—17 k-5

- (5) -t

- (050 {58

Therefore,
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by Equation (1);
v—h—4 4 h—1\/v—h—-4
Y k-5 “2 k-6
N h—1\ fv—h—-4 4 h—1\(v—h—4 _q
A k-7 i 3 k-8 ) &
Therefore,

v—h— -1 — v—h— v—h— -1
w =y s e ey
v—h— v—h—3\ "1 (h— -
_(h_l)( kE64)( 1:53) % }

:( )—1{ _ (h=1)(h—2)(h— 3)(k 5)(k—6)(k—"7)
k—5 6(v—h—1)(v—h—2)(v—h—3)

_ (=D (k=5)(h—4)(k—4)
2(v—h—3)(v—h—2)

_ fv—h—4\~1 [ (h—4)(k—4)(hk—5k—6h+24)
_( k—5 ) 3(v—h—2)(v—h—3)

by Equation (1);
v—h-—25 n A\ fv—h-5 n h\ fv—h-5
Y k-5 Y1)\ k-6 Y o)\ k-7
N h\ fv—h-=5 n A fv—h-=5 1
“H3)\ k-8 Y )\ k-9 )T
Therefore,

_(v—h-5\"" L (P (v B =) (v—h=1)T
Y= ko5 4)\ k-9 k-5
v—h— v—h— -1 — —
- (g)( kﬁ75)( kﬁ53) %

v—h—5\ (v—h—4\ 1 (h—4)(k—4)(hk—5k—6h+24
- () i |

_ (v—h—5) -1 { 1_ h(h—1)(h—2)(h—3)(k—5)(k—6)(k—T7)(k—8)
—\ k-5 24(v—h—1)(v—h—2)(v—h—3)(v—h—4)

h(h—1)(k—5)(k—6)(h—4)(k—4)
4(v—h—2)(v—h—3)(v—h—4)

h(k—5)(h—4)(k—4)(hk—5k—6h+24) }
3(v—h—2)(v—h—3)(v—h—4)

e =1
= (vkﬁsr))

(h—4)(k—4)(3h% k> —25hk® 454k —31h%k+245hk—486k+82h> —598h+1092 }

8(v—h—2)(v—h—3)(v—h—4)

by Equation (1).
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Now recall that we want conditions under which all u; > 0. Let us make the
following substitutions:
x=h—t (=h-5) and y=k—-t—1 (=k-—6), (2)
whereupon by Equation (1) we have
v—h-1= (z+2)(y+1). (3)
Then we can see that

_ (@+@+ D)\
u4 _( y+1 ) ’
us = 0

and for each m = 3,4,5,
o= (D Dol 1))‘1 (m = 2)(z + 1)(y + 2)Sn(z,9)
o y+1 (m = Dlgm—2((z+2)(y +1) = 1)’

where S3(z,y) = 1, S4(z,y) = zy — 6, and Ss(z,y) = 3z%y? + 5zy? + 4y> + 522y —
5zy + 12y + 422 + 122 4 80. Note that S,,(z,y) is a symmetric polynomial in z and
y of degree m — 3. Now, clearly

(4)

S3(z,y) > Oforall z >0,y > 0;
S4(z,y) > Oforall z >0,y > 0 with zy > 6,
while
Ss(z,y) = (3(zy)* — 5(zy) +80) + (z +y) (5(zy) + 12)
+(z® +y*)(@4) >0forallz >0,y > 0.
Hence, all S, (z,y) > 0 when zy > 6. Furthermore, the condition zy > 6 guarantees
that
— - 2 1)—14
<(w+2)(y+1) (m 1)) S ((w+ )y +1) > >0,

y+1 y+1
because (z + 1)(y + 1) — 4 > 0. We have therefore established the following.

Lemma 2.1. Let My be the matriz presented earlier in this section. Then for
every h,k with (h —t)(k —t—1) = (h— 5)(k — 6) > 6, there exists a non-negative
rational vector @ = d(h, k) such that

M517: = J5.

As a corollary to Lemma, 2.1 we obtain Theorem 2.2:

Theorem 2.2. (Theorem 1.8) Lett =4 or 5. Then for every h, k with (h—t)(k—
t — 1) > 6 there exists a tight ItBD of type t-(v, h, k, X) for some X\ = A(¢t, h, k).

Proof. For t =5, we apply Lemma 2.1, where X is any positive integer making \@
integral. Now suppose ¢t = 4, and let h, k be given with (h —4)(k — 5) > 6. Then
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((h+1)=5)((k+1) —6) > 6, so that from the foregoing and Equation (1) there
exists a tight I5BD of type 5-(v + 1,h + 1,k + 1, ), i.e. Equation (1) implies that
the number of points in this (tight) I5BD is v + 1. Now take the derived design
through any point in the hole and apply Lemma 1.2 to obtain a tight 14BD of type
4-(v, h, k, N). O

Now suppose that we had started this section by constructing a tight I4BD
(X',H',B") of type 4-(v', b, k', X) having Sym(H') x Sym(X' \ H') as an automor-
phism group. Let v =v'+1, h=h'+1 and k = k' + 1. Then it is easy to see that
the matrix M, that we would have constructed (analogously to M5) is precisely the
matrix My with the first row and column removed:

G GO v N (9 T Cowiiny BN (ST Cowiiinny
0 (v I e | G I (e Gy
M, =
0 0 (i IR (g | Gy
0 0 0 “a

Hence, the solution to

M4117 == J4
is @ = [wo, w1, w2, ws]’, where w; = w1, i = 0,1,2,3. Thus, (X', H',B') is the
derived design through a point in the hole in a tight I5BD (X, H,B) of type 5-
(v, by k, A) having Sym(H) x Sym(X \ H) as an automorphism group whenever this
latter design exists; that is, when ug > 0 and Aug is integral.
Example: We construct a (tight) I4BD of type 4-(27, 10,6, 1560). Here x = h—t =
6andy=k—t—1=1;notethat v—h—1=16 = (z+2)(y+1). By Equation (4),
the solution to My = Jy is @ = [wo, w1, w2, ws]T, where

w= (€201

w3 = =
8 y+1

= =
wy = 'LL3:O
W = uy— ((9ﬂ+2)(y+1)—2)1 @+ 1)y +2)Ss(@y) 1

=, and
y+1 201 +2)(y+1)—1) 130"

@+ +1) -3\ 2@+ )y +2)Su(z,y)
“’“‘“1‘( y+1 ) 6@+ +1) 1)

as Ss(z,y) =1 and S4(z,y) = 2y — 6 = 0. Thus,
1 1,
10 735°% 120/

—

Now Lcm(130,120) = 1560 and
1560 = [0,12,0,13]%.
So our I4BD (X', H', B') is constructed as follows. Let
X' = {x1,2a,...,710} U {1,2,...,17},
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HI = {$1,$27...,$10}

10\ /17 10\ /17
=2 (1) (5) +0(5) ()
blocks that are generated by the action of Sym(H') x Sym(X' \ H') on the multiset
that consists of 12 copies of {z1,1,2,3,4,5} and 13 copies of {z1,z2,23,1,2,3}.
Thus, the blocks are the 6-element subsets that intersect the hole in 1 point each
repeated 12 times, together with the 6-element subsets that intersect the hole in 3
points each repeated 13 times .

Now we construct a (tight) I5BD (X, H, B) of type 5-(28,11,7,)). Again z =
h—t=6,y=k—t—1=1landv—h—1=16 = (x+2)(y +1). Then the solution
to Ms@ = Js is @ = [uo, u1, Uz, u3, us)’ , where uy, u2, uz and u4 are as given above,
and where by Equation (4) ug is given by

@+ +1) -4\ 3@+ 1)(y+2)Ss(@,y) 5
uo_( y+1 ) 572

and take B’ to be the

2g5((z+2)((y+1)—-1) 572
Hence,

T
5 1 1
“_[572’0’ 130’0’120] ‘

Now 15604 is not integral. Instead Lem(572,120,130) = 17160 and
171604 = [150,0,132,0,143]%.

Thus, taking A = 17160 yields an I5BD of type 5-(28,11,7,17160), constructed in
analogous fashion to the foregoing 14BD. We take

X = {581,332,. .. ,113'10,.7311} @] {1,2,. ..,17},

H = {11717.’13'2, fen ,.CL'10,.’E11}
and take B to be the

11\ /17 11\ /17 11\ /17
b =150 132 143
(o) (7)+2(3) (5) () ()

blocks that are generated by the action of Sym(H) x Sym(X \ H) on the multiset
consisting of 150 copies of {1,2,3,4,5,6,7}, 132 copies of {z1,%11,1,2,3,4,5}, and
143 copies of {z1,z2,73,%11,1,2,3}. Note that the derived design of (X, H,B)
with respect to the point z1; is an 14BD of type 4-(27,10,6,17160), which is in fact

composed of 11 disjoint copies of (X', H', B').
More generally, suppose that M; is the ¢t by ¢t analogue of Ms, i.e.

Miij) = {B€T;: T C B},

where T is any fixed representative of A;, 4 =0,1,...,t—1and j =0,1,...,¢t—1.

Then
i o= (2 (25 0)
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Let 1 <s<t—2andi,j>s. Then

Mti,' ’U,h,k
il h)—S)—(i—8)>((v—S)—(h—S)—((t—S)—(i—S)))
G=8)=(—8))\(k=5)=(t—5)=((—5)—(i—39)

=M 4[i —s,j—s](v—s,h—s,k—s).

In particular, for s = 1 we see that M; is of the form

o ap --- at—1

0
Mi(v,h, k) = : [ My _1(v—1,h—1,k—1) ] J (5)
0

h\ fv—h—t
P = ) =0,1,...,t—1.
aJ (J) (k_t_j>:.7 0; ’ ’

We will henceforth employ the substitutionsz =h—t,y =k—t—1andv—h—1=
(z +2)(y + 1) introduced in Equations (2) and (3). We then obtain

Ml = (7T (AW ED DT,

Then M; is defined recursively as in Equation (5), but now in the simpler form

where

ag ay -+ Gy
0

Mt('z';y) = [ Mt—l(x,y) ] ) (6)
0

where
= (m+t> ((x+2)(y+1)—(t—1)
! J y+1—yj
Consider the following example.

),j:O,l,...,t—l.

Lemma 2.3. (Theorem 1.4) Let t = 6. Then for every h,k with
(h—t)(k—t—1)>9
there exists a tight TtBD of type t-(v, h, k, X) for some X = A(t, h, k).

Proof. From the foregoing discussion we have

aO ap - a5

0
0

where Mjy is as given at the beginning of this section, i.e.

Ms[i,j] = (“’+5_i) <($+2)(y+1)—4+z’

. Do ,0<14,5<4
j—i y+1—(j—1) )
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and

o = (;v+6> ((x+2)(y+1)—5

. ) ,0<7 <5,
J y+1—3j )

Now, we have already established that the unique solution
= [Uo, U1, U2,U3, U4]T
to the matrix equation Myi = J5 has all u; > 0 whenever

(=D -C-)E-1)-(t-1)-1)=(h-t)(k—t—-1) =2y >6.

(See the discussion preceding Lemma 2.1.) Hence, the unique solution to Mgw = Jg
is given by the vector @ = [wo, w1, ws, w3, ws,ws]T where w; = u;_; for j =
1,2,3,4,5 and where wy is the solution to

5 5
E ajw; = agwg + E ajuj_1 = 1.
j=0 Jj=1

This yields (from Equation (4))

((m—I—ZL(gi—}i 1) _5>w0+(x+6)<(x+2)('12+ 1) —5)

_<<x+2)<y+1)—4>1 (z +1)(y +2)Ss(z,y)
y+1 8g3((z +2)(y+1)—1)

+(x—2|-6> ((:z:+2;(y_-g1)—5)

‘((:1: +2)(y+1) - 3) @+ 1)y +2)Sulz,y)
y+1 3g2((z +2)(y +1) — 1)

+<.’L’—;—6> ((m—l—ZL(y_—;l)—S)

_((ar +2)(y+1) - 2) @+ 1)(y +2)Ss(z,y)
y+1 201 ((z +2)(y+1) - 1)

+<m+6>Cm+2Xy+D—ﬁ>_0

4 y—3

+<$;6>Cm+2gzzn—ﬁ>(@+;¥z+n>1
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We get

_ ((a:+2)<y+1) —5)1 {1 _ @6+ D@+ 1y +2)Ss(2,y)
y+1 89s((x +2)(y+1)—1)

(x+6)(xz+5)(y+ Dy(xz+ 1) (y + 2)Ss(z,y)
69:((z +2)(y +1) - 1)

(z4+6)(xz+5)(z+4)(y+ Dyly — D(z+ 1)(y + 2)S3(z,y)
1204((z +2)(y + 1) = 1)

_(z+6)@+5)(z+4)(z+3)(z+2)(y+ Dy(y -1y —2)(y —3)
120(z + 2)(y + 1)ga((z + 2)(y + 1) — 1) ’

where S3(z,y) = 1, S4(z,y) = zy — 6, and Ss(z,y) = 322y + dzy? + 4y? + 522y —
5zy + 12y + 4x? + 12z + 80. This yields

((w +2)(y+1) - 5) (@ +1)(y +2)Se(,y)

wo = 41 30g4((z +2)(y + 1) = 1)’

(7)

where
Se(z,y) = 1123y + 2722y + 22xy® + 2723y? — 512°y* — 156zy>
—180y2 4 2223y — 1562%y — 106zy — 540y — 18022 — 5402 — 1800.

Here, Sg(z,y) is a symmetric polynomial in 2 and y of degree 3. So we write
Se(z,y) = (11(zy)® — 51(zy)? — 106(xy) — 1800)
+(z +9)(27(zy)? — 156(zy) — 540)
+(2* + ) (22(zy) — 180) + (2 +¢°) - 0,

from which it is easily deduced that Sg(z,y) > 0 for all z,y > 0 with zy > 9.
Furthermore, the condition xy > 9 guarantees that

((x+2?u(gi-:1)—5> -

because (z + 1)(y + 1) > 5. Hence, & is a non-negative rational vector when
zy = (h—t)(k—t—1) > 9. Taking X to be any positive integer making A integral
establishes the result. O

Remark 1. No multiple of the tight I4BD of type 4-(27, 10,6, 1560) that was
constructed following Theorem 2.2 can be extended to a tight I6BD (X, H,B) of
type 6-(29,12,8,A) for any A > 0 having Sym(H) x Sym(X \ H) as an automor-
phism group. This is because here x =h—t =6 and y =k —t—1 = 1, whereupon
Se(z,y) = —7200 < 0. Thus from Equation (7) wg < 0, i.e. no such I6BD exists.

Note that wge (in Equation (7)) has the same form as wug, u; and us (from
Equation (4)) where here m = 6. We make the following conjecture.

Conjecture 1. Lett >4, and let @ = [ug,u1,...,us_1]7 be the unique solution to
the matriz equation

Mt(xay)ﬁ = Ji,
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where My(z,y) is as defined in Equation (6), and where we assume
(A -en)
y+1
(i.e. (x+1)(y+1)>t—1). Then 4 is given by

((w +2)(y + 1)) *17

Ut =
-1 y+1

U2 = 0;
and for each each m = 3,4,...,t,

" =<($+2)(y+1)—(m—1)>1 (m—=2)(z+1)(y +2)Sm(z,y)
o y+1 (m = Dlgm-2(z+2)y+1)-1)’

where Sy (x,y) is a symmetric polynomial in x and y of degree m — 3 with integer
coefficients. O

Remark 2. Proving Conjecture 2. would be of considerable value, particularly
if we could at the same time determine the coefficients of Sy, (z,y). This is because
ug—m > 0 if and only if Sy, (z,y) > 0; now if Sy, (z,y) is symmetric there exists a
sequence of polynomials

Po,P1;---,Pm-3,
where p; is a polynomial of degree i in the single variable (zy), viz:

Sm(,y) = pm—s(@y) + (& + Y)pm—_a(zy) + (&° + y*)pm_s(zy)
ot @y pi(ry) + (@2 Y™ ) po(zy).

Moreover, the p; are uniquely determined. Now for our purposes z,y > 0 and so
determining conditions under which S, (z,y) > 0 can be simplified to determining
conditions under which each p;(xy) > 0. In particular, what we might seek is the
smallest non-negative integer P,,, such that whenever zy > P,, we have p;(zy) >0
for alli=0,1,...,m — 3, assuming of course that such an integer exists. (Thus for
example we have shown that P3 =0, P, =6, P = 0 and P; = 9.) In this event we
have Sp,(z,y) > 0 whenever zy > P,,. Then, taking

Py =max{P,, : 3 <m < t}, (8)

we see that the solution vector @ to Myi = Jy would be non-negative whenever
zy = (h—t)(k —t — 1) > P;. This yields a tight ItBD of type t-(v, h, k, A) where
v—h—1=(z+2)(y+1) and X is any positive integer making A integral. (Thus,
for example, Py =Ps =6 and Pg =9 .)

We can go part of the way towards proving Conjecture 2., as follows.

Theorem 2.4. Lett > 4. Then, under the hypothesis of Conjecture 2. we have

(2+2) (4+1)) -1

- _ T _ _ _
@ = [ug,u1,...,ut—1]", where us_q1 = ( S , ug—g = 0, and for each m =

3,4,...,t,

N ((96+2)(y+1)—(m—1)>1 (z+1)(y +2)Rm(z,y)
e y+1 (m—Dlgm—2(z+2)(y+1) - 1)’
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where Ry, (z,y) is o polynomial in x and y of degree m — 3 with integer coefficients.

Proof. We use induction on ¢, the case t = 4 already having been settled, where
Rs3(z,y) = 1 and Ry(z,y) = 2(xy — 6). Now we follow the method of Lemma 2.3.

Let t > 5; from Equation (6) we write

ay a1 -+ Gg—1
0
M, = :
! : M

0

where
t 2 1)—-(t—1
o = (:c—.k )((a:+ )y +1) = ( )>,j=0,1,...,t—1.
J y+1-=y

Let @ = [wo,w1,...,w; 2]7 be the solution to M; 1@ = J; 1. Then the solution
to My = Jy is given by the vector @ = [ug,u1,...,us—1])7, where u; = w;_1 for
j=1,2,...,t—1, and where ug is the solution to

t—1 t—1
E ajuj = agug + E ajwj_1 = 1.
j=0 j=1

By induction we have:

((x+2)(y+1)—(t—1)>uO+§ (wﬂ) ((:c+2)(y+1)—(t—1))

y+1 S\ y+1—y

,((w+2)(y+1)—(t—j—1))1 (z+1)(y + 2)Ri_;(x,9)
y+1 (=3 - Digiya(@+2)(y+1) - 1)

+<fjf) ((x +y2)+(y1t1(1: (lt)— 1)) ((:v +y2)+(y1+ 1)) I

This yields

(z+2)y+1)—(t-1)
( y+1 )%

(+1)(y+2) Z 9;(x +)g;(y + D Re_j(2,y)

+1
g+ 2+ 1)~ 1) & jE—j—1)!

+

gi1(z+1t)g1(y +1)
(t = 1Dlgi—1((xz +2)(y + 1))

gi—2(z +1)g:—2(y)
(t = Dlg—2((z+2)(y +1) - 1)

(= 1Dlge2((z+2)(y+1) = 1) — ge—2(x + )gs—2(y)
= Dlg2((z+2)(y+1) - 1) '
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Let

Gi(z,y) =t = Dlge2((z+2)(y + 1) = 1) — gi—2(z + 1) ge—2(y) 9)
Then G¢(z,y) is a polynomial in z and y of degree t — 2. Now note that
Gi(=1L,y) = (t = 1)!gt—2(y) — gt—2(t — 1)gt—2(y) =0
and
Gi(z,-2) = (t—1Dlgi o(~7 —3) — gt 2(z +t)gt 2(—2)
= (=12t = )lgpa(z + 1) — (—1) 2= Dlgia(z +4) =0,

Consequently (x + 1)(y + 2) is a factor of G¢(z,y). Thus the above equation for
uo becomes

(z+2)y+1)—(t—-1)
( y+1 )W

_ (z+1)y+2)
- Dlge2((z+2)(y+1)-1)

t—3

Gt.Z'y
(z+1)(y+2) ;( ; )gﬂx+t)9f(y+1)Rt i(z,y)

so that

- — ((wﬂ%)(zﬂrl)—(t—l))l (z + 1)(y + 2)Ry(z,y)
0 y+1 t—Dlga((z+2)(y+1)—1)

where
Ri(z,y) = Gty = 2528 (195 + g5y + DRij(z,y).  (10)

Now by induction each R;_;(z,y) is a polynomial in « and y of degree ¢t — j — 3 with
integer coefficients, and clearly G¢(z,y)/(z + 1)(y + 2) is a polynomial in z and y
of degree t — 3 with integer coefficients. Therefore R;(z,y), is a polynomial in z
and y of degree (at most) ¢t — 3 with integer coefficients. We will see in Section 3
(Equation (12)) that uo has the alternate formulation

[+ 2)y+1) = (t-1)\"
zm_( y+1 )

t—1

(=17 9i(x +1)g;(y + )
i g+ +1) - (-1 +j)

Il
<

J
from which it follows that the leading coefficient r; (i.e. that of 2t=3y*=3) in R;(z,y)
is given by

Ty = (t— 1)'

Hence, Ri(z,y) is in fact of degree ¢ — 3. This completes the proof. O
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m Sn () P,
3 1 0
4 (zy—6)+(x+y)-0 6
5 (3(zy)” — 5(zy) +80) + (z + y)(5(zy) + 12) + (z° + y°) - 4 0
6  (11(zy)® — 51(zy)”> — 106(xy) — 1800) + (x + ) (27(zy)> — 156(zy) — 540) 9

+(x? + y?)(22(zy) —180) + (2> +¢%) - 0

7 (53(zy)* — 132(zy)® + 1805(my) + 11604(zy) + 60480) 0
+(z + y)(186(xy)3 - 978(my) + 7170(zy) + 26352)
+(x? + y?)(259(xy)* — 804(zy) + 9432)
+(2® + y®)(174(zy) + 432) + (z* +y*) - 72

8  (309(zy)® — 250(xy)* — 7035(xy)® — 131410(zy)? — 942296(xy) — 2822400) 11
+(z +y)(1390(zy)* — 11410(xy)® + 28210(zy)® — 472020(zy) — 1572480)
+(x? + y?)(2555(xy)® — 21830(zy)? + 10360(zy) — 614880)
+(2® + %) (2330(zy)? — 18300(xy) — 60480)
+(z* + y*)(976(xy) — 10080) + (z° +3°) - 0

9 (2119(zy)® + 4791 (xy)® — 166145(zy)* + 1179255(zy)> 0
+ 13574524(zy)? + 83964096 (xy) + 174182400)
+(z + y)(11655(xy)°® — 117525(xy)* + 664245 (xy)®
+ 215850 (xy)* + 40589040(xy) + 116052480)
+(2? + y?)(27115(zy)* — 302295(zy)® + 1809790(xy)? + 2701800(xy) + 49518720)
+(2® + ¥°)(33945(zy)® — 307050(zy)? + 1900920(xy) + 7300800)
+(z* + y*) (24406 (xy)> — 119016(xy) + 1281600)
+(z® + y5)(10200(zy) + 25920) + (z® + ¢5) - 2880

TABLE I. Sp(z,y) and Py for 3<m <9

Remark 3. From Theorem 2.4, Conjecture 2. is equivalent to the assertion
that for each m > 3 Ry, (z,y) is symmetric and all of its coefficients are multiples
of m — 2. Note that for the leading coefficient r,,, in R,,(z,y) we do in fact have

Pm = (=1)"2(m—=1)+(-1)""1 =0 (mod m - 2).

We used the algorithm in Theorem 2.4, generating each R,,(z,y) from its prede-
cessors by the recurrence relation given in Equation (10) (where G,,,(z,y) is given
by Equation (9), and of course R3(z,y) = 1), and so validated Conjecture 2. for
all 4 <t <9, in each case demonstrating the existence of P,, and so determining
P;. We used Mathematica to do the symbolic manipulations; we give our data in
Table 1.

The following summarizes the results of this section.

Theorem 2.5. Let 4 <t <9. Then for every h,k with (h —t)(k—t—1) > Py,
there exists a tight 1tBD (X, H,B) of type t-(v,h,k,\) for some X = A(t,h, k),
having Sym(H) x Sym(X \ H) as an automorphzsm group, where Py = P5 = 6,
Pe =P7 =9 and Pg = Py = 11.
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Proof. We need only note that (z+1)(y+1)=(h—t+1)(k—t) >P; >t—1, as
required. O
It is of interest to note that for each even m in Table I, S,,(z,y) < 0 when
2y = Py, — 1. Thus P, is in fact the smallest positive integer such that whenever
zy > P, we have Sp,(z,y) > 0. It is also of interest to note that for each odd m
in Table I we have S, (x,y) > 0 for all z,y > 0.
We conclude this section by posing the following companion to Conjecture 2..

Conjecture 2. The quantity P; given by Equation (8) is well defined for all t > 4.
Moreover, Py = Ps =6 and fort > 6,

D, — t+3 iftis even, and
ET Y t+2 if t s odd.

3. ASYMPTOTIC EXISTENCE

In this section we prove Theorem 1.5. We begin by determining an expression for ug
in the matrix equation M@ = J; alternative to that proposed by Conjecture 2.. To
do this we calculate the entries in the first row of M;'. We will need the following
preliminary result.

Lemma 3.1. Foranyy>0andj>1,
J
1
S ()20 o
= r j—r

Proof. We have

and

for any n > 1. Hence,

(1+2)+ = z(y“) ¢

and

(1420 = 3 (1) (y : ’“) o+

k=0
Therefore,

S (1) (U P = <

r=0
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and the result follows. O

Theorem 3.2. Let M; be the t by t matriz whose [i, j]-th entry is

My, j] = <x+t—i> <(m+2)(y+1) —(t—1)+i>

j—i y+1-(j—i)

for 0<i,j <t—1, where (x +1)(y +1) >t — 1. Then M is invertible and

M;Y0,4] = ((a: + 2)(yy++1)1_ (t— 1)) -1
e o0

forj=0,1,...,t—1.

Proof. We proceed by induction on j, the case j = 0 being obvious, i.e.

(o +2)(y+1) (- 1))‘1_

M, '[0,0] = ( yil

Now let 1 < j < t—1. Then the dot product of row 0 of M[l with column j of M,
is 0, i.e.

J
> M0, r]Myfr, 5] = 0.
r=0

(Note that M[r,j] = 0 when r > j.) Let a = ((z+2)(yﬁff(t71))_l. By induction
we have

aji(—l)r(aﬂ:—t) (yjr) ((m+2)(y+ 1:_ (t—1) +T) -1

)

an afTHt=g\ ((+2)y+1)=(E-1)+7) _
i [O’J]( i )( y+1-(j—Jj) )‘0'

Multiplying both sides of the above equation by

((m + 2);;,:11)_; (t — 1)) *17
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we get
S (e
_($+t—7‘)gr((x+2)(y+1)_(t_1)+r)
j-r grly+1-(G—1)
s, 22 (g;;(Lyl-)i-_l)(t 0+,
Now
- 5)0)
(
and

((:1:+2)(y+1)—(t—1)+r>_1gr((x+2)(y+1)—(t—1)+r)
T grly+1—-(—r)

:(y“?(j_r))_l’

and so we have

()5 O
(@ +2)(y+1) = (= 1) +))

e
+M. 10,3
o 10.] GG +D

=0.

Thus,

m+t> ((ac+2)(y+1)_(,f_l)ﬂ.)1

J J

(e ) )

Mo, 4] = —a<

gily+1)
g ((y+1)—=(G—r)

= gj_T(y + 1)5
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so that
. T T —(t— i —1 j— r T
M0, 4] = —a(7]") (@) =EDH) S () () (45))
=1 .
e IR RO I R T
w
_( 1)J(yj1)}
— (_1)ja(z;rt) (ijrj) ((z+2)(y+lj)—(t—1)+j) -1
- . z i =1 z o 1
= (=1)4( ;rt) (y;_rj)(( +2)(z/+1j) (t 1)+J) (( +2)(y;r+11) (t 1)) ’
by Lemma 3.1. O
From the recursive nature of M; (see Equation (6)), we have that
bo b1 --- b1
-1 0
mt = | [ Mot ] , (11)
0
where

b = (($+2)(y+ 1) — (t - 1))—1

y+1
(=1) <w+t) (y +J) ((m +2)+1) - (-1 +j> -1

J J J
for j =0,1,...,t — 1. Hence, if M@ = J;, where @ = [ug, u1,-..,u;—1]* we have
11 ; .
up = (<w+2>(y+ 1)~ (t - 1)) Z (Vg +0g;u+d) o
y+1 Jlgi((z+2)(y +1) — (¢ — 1) +)

=0
Remark 4. We note that by Equation (12), Conjecture 2. is equivalent to the
assertion that for each ¢ > 4,

Z (—giz+ gy +35) =2+ Dy +2)Si(z,y)

Jgi(@+2)y+ D) - (-1 +5) (E-Dig2((z+2)y+1)-1)’

where Si(z,y) is a symmetric polynomial in z and y of degree t — 3 with integer
coeflicients.

=0

We will want conditions under which uwg > 0, where ug is as given in Equa-
tion (12). Equivalently, we want to ensure that

t—1

(=1)g;(z +t)g;(y + )
2 G- -7 2

To this end, we will prove the following three results (Lemmas 3.3, 3.4 and 3.6).
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Lemma 3.3. Lett > 4. Then there exist positive integers N1 and No such that
whenever x > Ny and y > N2, ug > 0.

Proof. Note that each of g;(x +t)g;(y +j) and g;((x +2)(y +1) — (t — 1)+ j) is
a polynomial in 2 and y of degree j with leading coefficient 1, and so

t—1 t—1

. (=1)g;(x +t)g;(y + 4)
ﬁgkggﬂw«w+%@+i) G—1)+j)

M

l
7=0 ‘7'

as required. O

Lemma 3.4. Lett >4 and lety = c > 1. Then there exists N(y) > 0 such that
whenever x > N (y), ug > 0.

Proof. Here gj(x +t)g;(y + j) = gj(x +t)g;j(c + j) is a polynomial in z of degree
J with leading coefficient g;(c + j), while g;((z +2)(y +1) — (¢t — 1) +j) = g;((z +
2)(c+1) — (t — 1) + j) is a polynomial in z of degree j with leading coefficient
(c+1)7. Hence,

e Z (~1)g;(x +1)g;(y + )

a—oo = jlg;i((z +2)(y +1) — (¢t - 1) +7)

_t—l g]c+] § C+] —-1 J
- e+ 1)7 c+1

Jj= Jj=0

To see that this sum is positive for ¢ > 4, we consider the ratios of successive pairs
of terms, i.e. take the ratio of the j = 2a term with the absolute value of the
j=2a+1term, a =0,1,..., [%J (Note that if ¢ is odd this comparison does
not include the last (j = ¢t — 1) term, which is fine as this term is positive.) We get

2a
+2 1
(“5a”) (c—l—_l) _ galc+2a)  (2a+1)(c+ 1)%0t!
(c+2a41) ( 1 )2a+1 T Qa)l(e+1)2 gagqi(c+2a+1)
2a+1 c+1

2a+1)(c+1)

c+2a+1
- 14 2ac
- c+2a+1’
which equals 1 when a = 0 and because ¢ > 1, is greater than 1 when o > 1.
Hence the sum, and so the limit, is > 0 as required. O

Remark 5. Note that the proof of Lemma 3.4 does not work for y = ¢ = 0,
because in this case

§ c+j -1 j‘i(—l)j_ 0 when ¢ is even;
J c+1) | 1 when tis odd.

=0 j=0

This is consistent with the fact that for ¢ > 4 there does not exist a tight ItBD of
type t-(v, h,k,A) for any h, A when k=t +1 (i.e. y=k —t — 1 = 0); see [3].
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Before proceeding to our third limit result, we will require the following lemma.

Lemma 3.5. For each ¢ > 1 and each t > 3,

(c+1)t > (Zii) (’“gc>.

e+ 2\ (et 1 fett

" \e+1 c+2 t
1\ fe+1
c+1 c+2

D595 (5
() () () ()
()R ) ) ()

because e < 3 and t > 3,

<(c+1)

t—i 3
because % <c+1and % <c+1whenec, (t—1i)>1.
O

Lemma 3.6. Lett >4 and let x = ¢ > 1. Then there exists N(x) > 0 such that
whenever y > N(x), ug > 0.

Proof. 1In this case, g;(z +t)g;(y + j) = g;(c + t)g;(y + j) is a polynomial in y of
degree j with leading coefficient g;(c +t), while g;((z +2)(y +1) — (t — 1) +j) =
9;((¢+2)(y+1)—(t—1)+) is a polynomial in y of degree j with leading coefficient
(c+2)7. Hence,
t—1 ; -
lim 3 (=1)7g;(x +1t)g;(y + )
im S .
y=oo = jlgi((z +2)(y +1) — (¢ = 1) +)

-Gt ()
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(7)) -5 () () -5 (59 ()

Jj=0 j=0 Jj=t

(-m2) -2 (7))

j=t

Now

(by the binomial theorem)
- (53) ()G D E)
c+2 c c+2 c—1 c+2
- <t+c) ( 1 )t+cl_( 1 >t+c
1 c+2 c+2
(ﬁ%)m { (c+ 1)t+e — (1)t (t ! c) (c+2)°

e (t i C) (c+2)°!

c—1
— o (1)t (t 1‘ c) (c+2) — (—1)tte } . (13)

We consider two cases.

(i) t is odd.

Consider the ratios of successive pairs of terms in the sum

(ttc>(c+2)c_ (t+c>(c+2)c1+...

c—1

+(=1)c1 (t le C) (c+2) + (-1)°

- ,g(_l)k (2 i ]‘;) (c+2)°,

i.e. we take the ratio of the £ = 2« term with the absolute value of the

k=2a+1term, a=0,1,...,[%]. (Note that if ¢ is even this comparison
does not include the last (k = ¢) term, which is fine as this term is 1 > 0.)
We get

()e+2)772 g ot e) - (e+2)°7%(c—2a — 1)

( i+c )(c + 2)c—2a-1 (¢ — 20)!ge—2a—-1(t + ¢) - (¢ + 2)c—221

c—2a—1
_ (e+2)(t+2a+1)
- c— 2
> t+2a+1
> 1.

Hence the sum, and so the limit, is > 0 as required.
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(ii) t is even.

By Lemma 3.5 we have

(c+1)t > (Zif) (ttc)

because ¢ > 1 and ¢ > 4. Hence,

(c+1)e > (c+2)°(t+c),

c

which takes care of the first two terms of Equation (13). Now we consider
the ratios of successive pairs of terms of the sum

<t+c)(c+2)“— (zt;>(0+2)62+'“+

c—1
(=1)¢2 (t T c) (c+2)+ (=1t

- kzj{(_l)k_l (2 i Z) (c+2)°*

i.e. we take the ratio of the k¥ = 2a — 1 term with the absolute value of the
k= 2aterm, a = 1,2,...,|5]. (Note that if ¢ is odd this comparison does
not include the last (k = ¢) term, which is fine as this term is 1 > 0.) We get

(c—t;(;c—i-l) (C + 2)072(1_’_1 _ 9ec—2a+1 (t + C) ) (C + 2)0—2a+1 (C _ 20[)'

(H5) (c+2)e2e  (e=2a+1)lge—2a(t+c)- (c+2)c20
(c+2)(t + 2a)
T T c—2a+1
> t+ 2a
> 1.

Thus in this case as well, the sum, and hence the limit, is > 0.
This completes the proof. O

Remark 6. Note that the proof of Lemma 3.6 does not work for z = ¢ = 0,
because in this case

RIS <;-> ef

J J

J=0

1 t
- (3) - ( )

0 when t is even;

(% ~! When t is odd.
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Thus it remains an open problem to construct examples of tight I{BDs of type
t-(v, h,k,A) with h =t (i.e. = h—t =0) when ¢t > 4. Such designs do exist for
t = 2 and 3; see [3].

We are now ready to prove our asymptotic result (Theorem 1.5).

Theorem 3.7. For each t > 4 there exists a constant C; > 0 such that whenever
(h—t)(k —t — 1) > C; there exists a tight ItBD (X, H,B) of type t-(v,h,k,\) for
some A = A(t, h, k), having Sym(H) x Sym(X \ H) as an automorphism group.

Proof. We proceed by induction on ¢. Theorem 2.5 handles t = 4 with C; = 6.
Now let t > 5 and consider the matrix equation
Mtﬁ = Jt,

where M, is as given in Equation (6). By induction, there exists a constant C;_; > 0
such that whenever ((h —1) — (¢ —1))((k —1) — (t — 1) — 1) > C;—1 there is a non-

negative rational vector [u1,us,...,u;—1]7 satisfying
T
My_ifur,uz, -y uga]” = Jioa,
. T _ -1 = T.
ie. [ur,us,...,us—1]" = M; 1Ji—1. Now let @ = [ug,us,us,...,us—1]" ; then

taking x = h—t and y = k — ¢t — 1, we have ug as given by Equation (12). Now let
Ni, N3, N(y) and N(z) be as given by Lemmas 3.3, 3.4 and 3.6, and take

Ci=max({t —4,C;—1}U{zN(z) : 1 <z < N1} U{yN(y) : 1 <y < Na}).

Now suppose zy > C;. The conditions zy > C;—1; > 0 and zy > t — 4 guarantee
that u; > 0for i =1,2,...,t —1 and that (zx +1)(y +1) > ¢t — 1 (so that ag # 0 in
Equation (6)). Then we have one of three possibilities:

(i) = > Ny and y > N>. In this case we apply Lemma 3.3 to assert that ug > 0.

(ii)) 1<y < Ns. As zy > C; > yN(y), we have > N(y), whereupon we apply
Lemma, 3.4 to assert that ug > 0.

(iii) 1 <z < Ny. Aszy > C; > zN(z) we have y > N(x), whereupon we apply
Lemma 3.6 to assert that ug > 0.

Thus in all cases uo > 0, and so # is a non-negative rational vector. Taking A to be
any positive integer making A@ integral establishes the result. O

Theorem 1.5 now follows as a corollary to Theorem 3.7.

If we consider C; to be the smallest positive integer for which Theorem 1.5
holds, then Theorem 2.5 gives the following upper bounds on C; for 4 <t < 9:
Cy <(C5<6,Cs <C7 <9and Cg <y <11. Note that if Conjecture is true,
then we have the upper bounds

t+ 3 if t is even, and
th{tn if ¢ is odd

for every t > 6.

4. CONCLUSION AND OPEN PROBLEMS

The results in this article raise a number of interesting questions.
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1. Can one prove or disprove Conjecture ? Failing this, can we at least show
that P, is well defined and determine an upper bound for it?

2. The index A in the designs whose existence is asserted by Theorem 3.7 will
generally be very large (see the examples constructed following Theorem 2.2).
Can we construct tight designs with ‘small’ index? In particular, can we
construct tight Steiner designs (i.e. with A = 1)? ( To do this one will
almost certainly have to consider automorphism groups other than Sym(H) x
Sym(X \ H).)

3. Theorem 1.5 implies that for each fixed ¢ > 4 and k > t + 2 we can construct
a tight ItBD of type t-(v, h, k, \) whenever h is ‘large enough’. That this is
not the case for k = ¢t+1 has already been mentioned in the remark following
Lemma 3.4. On the other hand, Theorem 1.5 also implies that for each fixed
t and h >t + 1 we can construct a tight ItBD of type t-(v, h, k, \) whenever
k is ‘large enough’, but the theorem does not cover the case h = t. (See the
remark following Lemma 3.6.) This leaves open the question of whether or
not there exists tight ItBDs of type t-(v, h, k, \), when h =¢t, t > 4.

4. Related to Problem 2, can one construct classes of tight designs which are
simple (i.e. have no repeated blocks)? The examples constructed following
Theorem 2.2 are of course not simple, as in each case the starter blocks form
a multiset. Again, constructing simple tight designs would likely involve
considering automorphism groups other than Sym(H) x Sym(X \ H).

How hard can it be?
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