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ABSTRACT

We determine the distribution of 3—(q + 1,k,A) designs, with k& € {4,5},
among the orbits of k—element subsets under the action of PSL(2,q), for
¢ = 3 (mod 4), on the projective line. As a consequence, we give necessary
and sufficient conditions for the existence of a uniformly-PSL(2,q) large set

of 3—(q + 1, k,A) designs, with k£ € {4,5} and ¢ = 3 (mod 4).

1. INTRODUCTION

A 3—(v,k,\) design is a pair (X, B) in which X is a v—element set of points and B is a
collection of k—element subsets of X called blocks, such that every 3—element subset of
X is contained in precisely A blocks. It is simple if no two blocks are identical. All of the
3-designs in this paper will be simple. A 3—(v,4,\) design is also said to be a quadruple
system of index A and order v. If every k—element subset of X is chosen to be in B, then
(X,B) is a 3—(v, k, (Z:g)) design; and, in this, case it is said to be the complete design.
A large set of 3—(v, k, \) designs denoted by LS[N](3, k,v), is a partition, [(X, B;)]X,, of
the complete design system into N disjoint 3—(v, k, (Z:g) /N) designs. A subgroup G of
Sym(X) (the full symmetric group on X) acts on the subsets of X in a natural way: If
g € Gand S C X, then ¢g(5) = {g(z) : « € S}. The subgroup G is an automorphism
group of the 3—design (X, B) if for all ¢ € G and S € B, g(5) € B. If S C X, the orbit
of S'is G(S) = {g¢(S) : g € G}, and the stabilizer of S'is Gg = {g € G : g(5) = S}. It is
well known that |G(S)] - |Gs| = |G]. It follows that G is an automorphism group of the
3—design (X, B) if and only if B is a union of orbits of k—element subsets of X under G. If
every 3—(v, k, \) design in the large set [( X, ;)]\, has the group & as an automorphism
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group, we say that it is a uniformly-G LS[N](3,k,v) or a G—uniform LS[N](3, k,v). For
example a uniformly—cyclic LS[5](3,4,13) can be found in [4].
For the entirety of this paper, p is a prime and ¢ = p® is a prime power congruent to

3 (mod 4). Also we set X = GF(¢) U {oc}. Then a function of the form

ar + b

xl_)c;v—l—d’

where a,b,¢,d € GF(q)

and in which we define 1/0 = 0o, /oo =0, 1l —00 = co — 1 = oo, and oo /oo = 1, is called
a linear fractional transformation. The determinant of f is det f = ad — be. The set of
all linear fractional transformations whose determinant is a nonzero square is a group ¢
of order (¢® — ¢)/2 which is 3-homogeneous on X. It is called the linear fractional group
and is isomorphic to PSL(2,q). The fact that GG is 3-homogeneous implies:

(i) G({0,1,00}) = (¥). Hence |Go1,003] = |G|/ |(5)] =3 and thus

Gty ={r—z, 2 (z—1)/z,2— —1/(z —1)}.

(i)  Every orbit of k—element subsets of X is a 3—(¢ 4 1, k, A) design for some A.

The subgroup structure of PSL(2,g) is known [3] and in particular the permutation
character y for this action of G on X is given in Table I, where ¢(z) denotes Euler’s
totient.

Table I. The permutation character x of PSL(2,q) on GF(q) U {oc},
where ¢ = 3 (mod 4).

order of g 1 p 2 d|=t d|L, d #2
order of the centralizerof ¢ (¢*—¢)/2 ¢ q¢+1 (¢—1)/2 (¢g+1)/2
number of conjugacy classes 1 2 1 é(d)/2 é(d)/2
number of fixed points x(g) g+1 1 0 2 0

2. BLOCK SIZE 4

In this section we study 3-designs from PSL(2,¢) with block size 4. If O is an orbit of
4—element subsets of X under G, then O = G({0, 1, 00, a}) for some a € X — {0,1, 00}.
Furthermore, O is a 3—(¢+1,4, ) design where A = |A(«)| and A(a) = {5 :{0,1,00,5} €
O}.

Proposition 1. Let O be an orbit of j—element subsets of X under GG, and set
Ala) ={8:{0,1,00,8} € O}. Then,

Ala) = Gio1,003(c) if —a and — (1 — «a) are both squares;
L T Gop,eer (@) UGon,e1(E)  otherwise.



Proof.  Let 8 € Aa), then {0,1,00,8} € G({0,1,00,a}) and thus there is a ¢ €
G such that ¢({0,1,00,a}) = {0,1,00,3}. Let A, B,C € {0,1,00,a}, be such that
9g({A,B,C})={0,1,00}. Define

h(z) = hapolz) = (i

Then h({A,B,C}) = %({A,B,C}) = {0,1,00} and deth = —det% = (A-C)B -

1
C)(B—A), since —1 is not a square in GF(¢). Thus either h € G or 7 € (. Consequently

1
g € Go1,001h if det b is a square and g € G{O,l,oo}% otherwise. Observe that:

Groeothasc = {h, ha, hs} and G{O’l’m}%A,B,C = {hil’ h%’ h%};
where
o) = oy
ho(z) = Ez — i))((g:g;’ and
o - G

Thus for each arrangement A, B,C, D of 0,1, 00, a, either h;(D) € A(a) for ¢ = 1,2,3
1

if det h is a square, or z(D) € Ala) for ¢ = 1,2,3 if det h is a non-square. We also

observe that cyclically pe;’muting A, B, and C, in effect permutes cyclically hy, hy, and

hs. Hence only eight of the twenty-four possible arrangements need be examined. They
are given in Table II. Moreover,

a—1 1
Goey(@) = {a, — m} and
1 1 a
- = {—-1- .
G{Ovlvoo}(a) {057 a? a — 1}

We conclude that A(a) = Goi,00)() if —a and —(1 — «) are both squares, and that



Ala) = Goj,00) () U G{O,l,oo}(é) otherwise. O

Table II.

A B C D h(D) haD) hs(D) deth=(A-C)B-C)B-A)
0 1 oo « « 0‘7_1 ﬁ 1

1 oo a 0 é l—a = l -«

00 o 1 o O‘T_l ﬁ —«

a 0 1 o 1 l—a %5 —a(l —a)

0 0 a l-a % i —1

o 1 a0 = o (- a)

a oo 0 1 l-a == i @
R (i - o)

Proposition 2. Let a € X — {0,1,00}. Then
1

Glo1,003(@) = G{o,l,oo}(;) & Goae(a) = {2,271, —1}.

—-or 1l —a and so a = 2

Proof. If Gy1,00(a) = G{OJW}(%), then o = é, T , 271
or —1 respectively. On the other hand Gyg1001(2) = Go1,00}(27") = Go1,003(—1) =
(2,271, 1}, 0

Proposition 3. Let a € X —{0,1,00}. Then
(i) |G oaemi(@)] = Gloamm (2] = 1 or3.

¢ =3 (mod12) and o = —1

(i1) |G{0717m}(a)| =1 if and only if { or
14++v/-3

q="T(mod 12) andazf

Proof. The map z — % shows that |Go1,001(a)] = |G{0717m}(§)|. Also |Go1,00}] = 3
50 |Groneop(a)] =1 or 3. If |Gioq,001()] = 1, then o = (o — 1)/a = 1/(1 — «). Hence
a’—a+1=0andso a =27!(1£+/-3). Consequently, either —3 is a non-zero square in
GF(q) or ¢ = 3". The latter case gives a = —1 and so G 1 }(a) = G{0717OO}(§) ={-1}.
Furthermore, ¢ = 0 (mod 3) and ¢ = 3 (mod 4) yield ¢ = 3 (mod 12). If —3 is a non—zero
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square in GF(gq), where ¢ = p° for some odd prime p, then we claim that p =1 (mod 3).

If p =2 (mod 3), then the Legendre symbol (_73) = (_LS) (—1)132;1# = —1. Therefore,
—3 is a not a square modulo p and so z* + 3 is irreducible over Z,. Thus GF(q), where
q = p® has a subfield F' isomorphic to Z,[z]/(2? + 3). Therefore e must be even and thus
g = 1 (mod 4), contrary to the assumption that ¢ = 3 (mod 4). If p = 1 (mod 3), then

g =1 (mod 3). Hence ¢ = 7 (mod 12), since ¢ = 3 (mod 4). a

Proposition 4. Let a € X —{0,1,00}. Then |A(a)| = 1,3, or6.

Proof. Propositions 1, 2, and 3 imply that |[A(a)| = 1, 2, 3 or 6. Hence, we need only
eliminate the possibility that |A(a)| = 2.

Suppose |[A(a)] = 2. Then —a or —(1 — «) is a non-square, ¢ = 7 (mod 12) and
a = (1 4+ +/=3)/2. Without loss, @ = (1 +/=3)/2 and 1 — a = (1 — \/=3)/2. Observe
that —a = (=1 — v/=3)/2 is a cube root of 1, so a® = —1. Thus if —« is a non-square
so a = u? for some u. Consequently the multiplicative order of u is 12. Thus 12|(¢ — 1),
hence ¢ = 1 (mod 12) — a contradiction. A contradiction is similarly obtained if —(1 —«)
is a non—zero square. O

Theorem 1.  The number of orbits of j—element subset of X under the action of G
when ¢ =3 (mod 4) is

5q2; T % if ¢=3 (mod24);
5q2; ! % if q=7T (mod24);

5q2; T q=11 (mod 21);
5q2; T % if q=19 (mod 24); and
5q2; ! % if q=23 (mod24);

Proof. The group (G as noted earlier is isomorphic to PSL(2,g), ¢ = 3 (mod 4). Each
element g € G consists of y(g) fixed points and (¢ + 1 — x(g))/d cycles of length d = |g]|.
Let Fix(g) be the number of 4—element subsets of X fixed by ¢ € G. Then by the
Cauchy—Frobenius Theorem, the number of orbits of 4—element subsets of X under the
action of G is:

= |1§| > Fix(g).

g€eG

N

But only elements of orders 1, 2, 3, or 4 in GG can fix a 4-element subset, since x(g) < 2

for all ¢ € G. Thus,
1 [fa+1 (¢+1)/2) |G|
N=— —
||[(4)+< 2 Jgrr ™
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where

1
m = @Z{Fix(g) :g € G and |g| =3 or 4}.

Simplifying, we get:

5q — 7
N = .
o
From Table I we see that G has elements of order 3 if and only if 3 divides ¢, % or %,

that is ¢ = 0,1,3,5 (mod 6). Also, since ¢ = 3 (mod 4), 4 does not divide (¢ — 1)/2 so
that (G has elements of order 4 if and only if 4 divides (¢ + 1)/2, that is ¢ = —1 (mod 8).

The value of m is now easily calculated.

(i) If ¢ = 0 (mod 3), elements of order three fix one point, and thus they fix ¢/3
four—element subsets. They therefore contribute

1 [2|G|q 2
—|—5 ] =stom
GI\ ¢ 3) 3

(ii) If ¢ =1 (mod 6), G has 2|G|/(¢ — 1) elements of order 3. Each fixes 2 points and
has (¢ — 1)/3 3—cycles. Thus, they contribute

121G 2(g 1)) 4
IGI((q—1) 3 )_3

to m.

(iii) If ¢ = —1 (mod 6), elements of order 3 have no fixed points and thus fix no 4-
element subsets.

(iv) If ¢ = —1 (mod 8), G has 2|G|/(q + 1) elements of order 4. Each has (¢ + 1)/4
4-cycles and no fixed points. They contribute

L(26 @Dy _ L,
|G|(<q+1> 1 )‘ tom.

2

if ¢=3(mod 24);

if ¢=7T(mod 24);

if ¢g=11(mod 24);

if ¢=19 (mod 24); and
if ¢ =23 (mod 24).

Hence, m =

Rk Wi O oD whw

a

Let N; be the number of orbits G({0, 1, 00, a}) with A(«) = 7. Then by Proposition 3,
N; =0 unless : = 1, 3, or 6. Then, counting the number of 4—element subsets of X that
contain {0, 1,00} ( or any given 4—element set), we see that

N1—|—3N3—|—6N6:q—2



Furthermore, by Theorem 1 we have:

%—I—% if ¢ =3 (mod 24);

5q-7 - _ o).
2l 4+ 2 if g =T (mod 24);

Ny + N3+ Ng = % if ¢=11 (mod 24);

5q-7 - _ o1\
2L+ 2 if ¢=19 (mod 24); and

%4—% if ¢ =23 (mod 24).

Lastly, by Proposition 3 we know that

Ni=<¢ 1 if ¢=3(mod24); and

2 if ¢=7,19 (mod 24);
if ¢=11,23 (mod 24).

It is elementary to solve these equations and the following result is obtained:

Theorem 2. Let Ny be the number of orbits of 4—element subsets of X under the action
of G that are 3—(q + 1,4, X) designs. Then A =1, 3 or 6 and

1

H‘“T
Nleo
E=]
|
w
SN
-~
\

q =3 (mod 24);

if q¢=17(mod24);

f q=11(mod 24);

if ¢=19 (mod 24); and
q = 23 (mod 24).

=l
MO’!

(Nl, Ng, N6) -

2
|
-3

-2
+
[
E=T C= R (-]
|l ool |l o
w e =

—
[}

e e e
S N O N
—
[}
N e e e
<

=]
=+
| =
w
=]
||
R —
-~
\

This theorem has the following very interesting consequence.

Theorem 3. Let ¢ be a prime power congruent to 3 modulo 4 and let N > 1 be an
integer. There is a uniformly-PSL(2,q) LS[N](3,4,q+ 1) tf and only if ¢ = 2 (mod 3N),
g =11 or 23 (mod 24) and N < % or N =5 and q = 47.

Proof. Let [(X,B;)], be a uniformly-PSL(2,¢) LS[N](3,4,¢ + 1). Then each B; is a
3—(¢+1,4,)), where A = (¢—2)/N. Furthermore each B; is a union of A; orbits that are
3—(¢+1,4,3)’s, B; orbits that are 3—(¢+ 1,4,6)’s, and C; orbits that are 3—(¢+1,4,1)’s.
Thus, A = 3A; + 6B; + C; for all 7. If for some ¢, C; # 0, then from Theorem 2 and
N > 1 we see that A = 1 (mod 3) and N = 2. This is impossible since N divides ¢ — 2,
which is odd. Thus C; = 0 and A = 3m for some m. Consequently, N = % for some
m. This proves our assertion that ¢ = 2 (mod 3N). In particular, ¢ = 2 (mod 3), so we
must have ¢ = 11 or 23 (mod 24). Suppose N > %, then m = 1 or 3. If m = 1, then
A =3, and so B; = 0 for all 2. Theorem 2 shows that this is impossible. If m = 3, then
A =9, and so for all ¢, we must have either (A4;, B;) = (3,0) or (A;, B;) = (1,1). Thus
in particular we have Ng < Nj. In the case ¢ = 11 (mod 24), this says, by Theorem 2,
that % < %, which implies ¢ = 11. But when ¢ = 11, we have N3 = Ng = 1, and
consequently the desired large set does not exist. In the case ¢ = 23 (mmod 24), this says,



by Theorem 2, that % < %, which implies ¢ = 23 or ¢ = 47. When ¢ = 23, we have

N3 = 3, Ng = 2, and consequently the desired large set does not exist. If ¢ = 47, then
N3 = Ng =5, and an LS[5](3,4,48) is obtained.

Conversely, suppose ¢ = 2 (mod 3N), ¢ = 11 or 23 (mod 24), and N < % First
note that from Theorem 2 every orbit of 3-element subsets of PSL(2,¢) is either a 3—
(g+1,4,3) or a3—(g+1,4,6). Thus the designs in a uniformly-PSL(2, ¢) LS[N](3,4,¢+1)
are 3—(q + 1,4,3m) designs, where m = % We will construct an LS[N](3,4,¢+ 1) in
which the i-th design (X, B;) uses exactly A; orbits of PSL(2,q) that are 3—(¢ + 1,4,3)’s
and exactly B; orbits that are 3—(¢ 4+ 1,4,6)’s. Write Ng = N{ 4+ r, where 0 < r < N.

Set

Bi=By=--=B, = (+1]
B7’+1:B7’+2:"':BN — g’
-2
and define 4; = q— — 2B, for all z.
3N

N N

Then it is easy to see that ZBi = Ng, EAi = N3; and 3A4; + 6B; = % = 3m for all
=1 =1

t. Thus, if A; > 0 for all 2 =1,2,... N, we can arrange the orbits of 4-element subsets

under the action of PSL(2, ¢) into the desired large set. Observe that:

q—2 q—2

A= —— 2B, > —— -2 —2=m — 20 — 2. *

3N = 3N " ()

Furthermore, using Theorem 2 we see that:

5:[%J<{ﬁ 3mJ§[3_mJ§3_m

N 8 q-—2 8 8

Ifm >9, then ¢ < %, and the right hand side of () shows that A; > 1. Now suppose
m < 9. Then either m =5 or 7, since N < (¢ —2)/5, and ¢ — 2 is odd. If m = 5, then
(< L%J = 1, and (%) shows that A; > 1. If m =7, then ¢ < L%J = 2, and () shows

that A; > 1. Oa

The reader should observe that Theorem 3 does not settle any new parameter situa-
tions for LS[N](3,4,v)s since in [5] Teirlinck established Theorem 4 below. It does say
however when an LS[N](3,4,v) can exist with PSL(2,¢) as an automorphism group on
each of its designs. We will use Teirlinck theorem in the next section.

Theorem 4. (Teirlinck [5]) An LS[N](3,4,v) exists when v and N satisfy:
v =0 (mod 6) and v =3 (mod 3N); or
v =3 (mod 12) and v =3 (mod 12N); or

v =9 (mod 12) and v =3 (mod 6N).



3. BLOCK SIZE 5

In this section we will study 3-designs from PSL(2,¢) with block size 5. If O is an
orbit of 5-element subsets of X under GG, then O = G({0, 1,00, a, 3}) for some «, 3 €
X —{0,1,00}. Furthermore O is a 3—(¢+1,5, ) design where A = |A(a, #)] and A, B) =
{{7,6} :{0,1,00,~,6} € O}.

Let (A, B,C) be a fixed order of any of the ten 3-element subsets of {0, 1, 00, a, 5},
and let {D, E} be the remaining two elements. Define

(x —A)B-C)
(x —C)B—A)

hA,B,C(fC) =

Then hypc({A,B,C}) = hepa({A, B,C}) ={0,1,00}, and det hy g = —det he B 4.
Thus either hapc € G or hepa € G, since -1 is not a square in GF(q). So, either
G{O,l,oo}hA,B,C g G and G{O,l,oo}hA,B,C({D,E}) g A(Oé,ﬂ) or G{O,l,oo}hC,B,A g G and
G{O,l,oo}hC,B,A({DyE}) g A(Oé,ﬁ). Notice that G{O,l,oo}hA,B,C = {hA,B,CahB,C,A7hC,A,B}
and G{o,1,oo}hc,B,A = {hC,B,Aa hA,C,B, hB,A,C}-

Now, {v,6} € A(a,3) implies that there is a ¢ € G such that ¢{0,1,00,a,} =
{0,1,00,7,6}. In particular,

g{A,B,C} ={0,1,00} for some {A, B,C} € {0,1,00,a,3}.

So either g € Go1,001ha,B,c if hapc € G since th}B@ € Gyo1,00), or g € Go1,001h0,B A
it hep.a € G since ghalBA € G0,1,00}- These observations yield the following:

Proposition 5. A(a, 3) is the union of Go1,001ha,B,c{D, E} for some order (A, B,C)
of each of the ten 3-element subsets of {0,1,00,, B}, with {D, E} the remaining two
elements.

Proposition 6. FElements of order 2n in G cannot fix a 5-element set.

Proof. Let g € G be an element of order 2n. If ¢ fixes a 5-element set, then so must ¢”,
which has order 2, and thus x(¢") = 0. But it is impossible for an element of order 2 to
fix a 5-element set without fixing a point. a

Proposition 7. Let B C X, |B| =5, and let B be the 3 — (¢ + 1,5, ) design G(B),

_ 30
then \ = Cal"

Proof. First observe that |G(B)| =[G : G| = |G|/|Gs| = (¢ + 1)q(¢ — 1)/2|GB|. We
also know that B = G(B) is a 3 — (¢ + 1,5, \) design, so |G(B)| = (at1)a(g=1) \ Solving

543
these two equations for A, we get the desired result. a

Proposition 8. Let B C X, |B| =5, and let B be the 3 — (¢ + 1,5, ) design G(B),

9



then 2 divides \.

Proof.  Assume 2 does not divide A, then by Proposition 7, 2 divides |Gg|. But this
implies that there is an element of order 2 that fixes a 5-element set, contradicting
Proposition 6. o

Proposition 9. Let B C X, |B| =5, and let B be the 3 — (¢ + 1,5, ) design G(B),
then A = 6,10, or 30.

Proof. Proposition 7 implies that A = 1, 2, 3, 5, 6, 10, 15 or 30, but Proposition 8
reduces this list to A = 2, 6, 10, or 30. So we need only rule out A = 2. If A = 2, then
Proposition 7 implies that |Gg| = 15. The only group of order 15 is cyclic, which implies
that a permutation of order 15 fixes the 5-element set B. Permutations of this type have
either zero or two fixed points, so they can’t fix a 5-element set. Thus A # 2. O

Proposition 10. Let o, € X —{0,1,00}, a # 3. Then

and 3 = %__3

1 iff¢g=Tmod 12, = /2
‘G{O,l,oo}(avﬂ)‘ = { 3 ﬂq 2

M)
otherwise

Proof. Since |G{o1,00}| = 3, either |Go1,001(r, 3)] =1 or 3.
If |Go1,00}(cv, )| = 1, then

o a—18-1. 1 1
(o f) = ("= 5 = o )

This implies that o* —a+1 =0 and 32— 3+1 =0, so that a = %,ﬁ = %__3, and
either —3 is a non—zero square in GF(g) or ¢ = 3". The latter case gives a« = § = —1, But
a # (3,50 ¢ # 3" If —3 is a non—zero square in GF(q), where ¢ = p° for some odd prime
p, then we claim that p = 1 (mod 3). If p = 2 (mod 3), then, by Gauss’ reciprocity, the
Legendre symbol

=3 (PR
(=BT =1

Therefore, —3 is not a square modulo p, and so z? + 3 is irreducible over Z,. Thus
GF(q) has a subfield F isomorphic to Z,[z]/(2z*+3), e must be even, and ¢ = 1 (mod 4),
contradicting our assumption that ¢ =3 (mod 4). If p =1 (mod 3), then ¢ = 1 (mod 3).
Thus ¢ = 3 (mod 4) implies that ¢ = 7 (mod 12). O

Corollary 1. Let {A,B,C, D, E} ={0,1,00,a,8}, a, 8 € X —{0,1,00}, a # . Then

1 iffg=Tmod12,D = hyly (L),
GonrhapclD, BY| = and E = h3l (T3

2

3  otherwise

10



Proof. By Proposition 10,

‘G{O,l,oo}hA,B,C{DaE}‘ = ‘G{O,l,oo} {(hA,B,O(D)7hA,B,O(E)}‘ =1

if and only if ¢ = 7 (mod 12), hapc(D) = 1£/73  and hapc(E)= % But the last

2 bl

two conditions happen if and only if D = hZ}BC(%__S) and £ = hZ}BC(%__S)

O

Let NV; be the number of orbits G({0, 1, 0o, o, #}) with |A(«, #)| = 2. Then by Propo-
sition 9, N; = 0 unless z = 6, 10 or 30.

Proposition 11.  The number of orbits of 5-element subsets of X under G that are
3—(q + 1,5,10) designs is

NmZ{ L ifqg="1T(mod 12)

0 otherwise

r00/. orollar 01.00 P AB.C = 11 and only 1 = mod 1:
Proof. By Corollary 1, |Go1,001hapo{D, E}| = 1 if and only if ¢ = 7 (mod 12),

D = h;Lpr(li\Q/__S) and £ = hZ}BC(%__S) In this case, we see by Proposition 5 that

A = |Ale, B)] = 1 + 3n, for some 0 < n < 10. Then by Proposition 9, A = 10. If
q # 7 (mod 12), then A = 3n for some 0 < n < 10, so, in particular, A # 10. a

Theorem 5. The number of orbits of 5—element subsets of X under the action of G
when g =3 (mod 4) is:

—2)(qg—3
% if ¢=3,23,27, or 47 (mod 60);

—N(g —: 2
erg if ¢=17, or43 (mod 60);

—N(g—3 4
er_ if q=11, or59 (mod 60);

60 b
%4_% if q=19, or 3l (mod 60);

Proof. Each element g € G consists of x(g) fixed points and (¢ + 1 — x(g))/d cycles
of length d = |g|. Let Fix(g) be the number of 5—element subsets of X fixed by ¢ € G.
Then by the Cauchy—Frobenius Theorem we have that the number of orbits of 5—element
subsets of X under the action of G is:

1 .
N=1a > Fix(g)

g€eG
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Only elements of orders 1, 3, or 5 in G can fix a 5—element subset since by Proposition 6
elements of order 2n do not fix 5-element sets. Thus

?

where
1
m = @Z{Fix(g) :g € G,|g| =3 or 5}.

From Table I we see that G has elements of order 3 if and only if 3 divides ¢, % or
%, that is ¢ = 0,1,3,5 (mod 6). Also, since ¢ = 3 (mod 4), 5 does not divide ¢ so
that G has elements of order 5 if and only if 5 divides (¢ — 1)/2 or (¢ + 1)/2, that is
g = 1,9 (mmod 10).

The value of m is now easily calculated:

(i) If ¢ = 0 (mod 3), an element of order 3 has one fixed point and thus fixes no
5—element subsets.

(ii) If ¢ = 5 (mod 6), an element of order 3 has no fixed points and thus fixes no
5—element subsets.

(iii) If ¢ = 1 (mod 6), elements of order 3 fix two points, and thus they fix (¢ — 1)/3
h—element subsets. There are 2|G|/(¢ — 1) such elements, so they contribute

(26 =D _2,
|G|(<q—1> 3 )‘3t |

(iv) If ¢ = 1 (mod 10), elements of order 5 fix two points, and thus they fix (¢ — 1)/5
h—element subsets. There are 4|G|/(¢ — 1) such elements, so they contribute

(A6 a-DY _4,
|G|(<q—1> 5 ) 5 0™

(v) If ¢ = 9 (mod 10), elements of order 5 fix no points, and thus they fix (¢ + 1)/5
S—element subsets. There are 4|G|/(¢g + 1) such elements, so they contribute

1 ((4|G| (q+1)) 4

— ==t .
GI\(g+1) 5 5 0™

if ¢=3,23,27, or 47 (mod 60);
if ¢=17, or43 (mod 60);

it ¢=11, or 59 (mod 60);

if ¢=19, or 31 (mod 60);

Hence, m =

(%]
[N o wie ©

=
(%3}

12



O

Now, counting the number of 5—element subsets of X that contain {0, 1,00} ( or any
given 3—element set) we see that

-2
6N + 1010 + 30Nap = (q , )
Furthermore by Theorem 5 we have:
% if ¢ =3,23,27, or 47 (mmod 60);
£ﬁ%ﬁl—l—% if ¢=17, or43 (mod 60);
Ng + Nig + N3g = —)(0—3 .
ﬁq—%q—l—{—% it ¢=11, or 59 (mod 60);

(¢=2)(¢=3) +22 if ¢=19, or 3l (mod 60);

60 15

Lastly, by Proposition 11 we know that

NmZ{ Lif ¢ =7 (mod 12)

0 otherwise

It is elementary to solve these equations and the following result is obtained:

Theorem 6. Let Ny be the number of orbits of 5—element subsets of X under the action
of G that are 3—(q¢+ 1,5, X) designs. Then A =6, 10 or 30 and

0, q2_5q+6) if  q=3,23,27, or 4T (mod 60);
717w) if ¢q=17, or43 (mod 60);
1,0, ¢ —5q =098y f g =11, or 59 (mod 60);

(0,
(N67N107N30) = E
(,1,M) if q=19, or 31 (mod 60).

This theorem has the following consequence.

Theorem 7. Let ¢ > 3 be a prime power congruent to 3 modulo 4 and let N >
1 be a integer. There is a uniformly-PSL(2,q) LS|N](3,5,¢ + 1) if and only if ¢ =
3,23,27, or 47 (mod 60) and N divides (¢ — 2)(¢ — 3)/60.

Proof. Let [(X,B;)]Y, be a uniformly-PSL(2,¢) LS[N](3,5,q + 1). Then each B; is a
3—(g+1,5,A), where )\ = (¢—2)(¢—3)/2N. Furthermore each B; is a union of A; orbits
that are 3 — (¢ +1,5,6) designs, B; orbits that are 3 — (¢ + 1,5, 10) designs and C; orbits
that are 3 — (¢ + 1,5,30) designs. Thus, A = 6A4; + 10B; 4+ 30C;, for all :. We see from
Theorem 6 that if for some i, B; # 0, then B; = 1, and B; = 0 for all other ¢. But B, =1
implies that A = 1 (mod 3), and B; = 0 implies that A = 0 (mod 3). So B; = 0. Also,
if for some ¢, A; # 0, then A; = 1, and A; = 0 for all other ;. But A; = 1 implies that
A =6 (mod 10), and A; = 0 implies that A = 0 (mod 10). So A; = 0. Thus A = 30m, for
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some m, and ¢ = 3,23,27 or 47 (mod 60) In this case, 30m = (¢ — 2)(¢ — 3)/2N implies
that N divides (¢ — 2)(¢ — 3)/60.

Conversely, let ¢ = 3,23,27 or 47 (mod 60), and N|(¢—2)(¢ —3)/60. By Theorem 5,
every orbit of h—element subsets of PSL(2,¢) is a 3 — (¢ + 1,5,30) design, and there are
N3o = (¢ —2)(¢ — 3)/60 of them. Let N = (¢ — 2)(¢ — 3)/60m. Then Nm = Njp, and
taking m of these orbits at a time, a uniformly-PSL(2, ¢) LS[N](3,5, ¢+ 1) is constructed.
O

The existence of a uniformly-PSL(2, ¢) LS[(¢—1)(¢—3)/60](3,5,¢+1), ¢ = 3 (mod 4),
was established in [1], but stated incorrectly.

For given positive integers t < K and N let LS[N](¢, k) denote the set of all v such
that there exist an LS[N](¢, k,v). In [6] the following result is given .

Theorem 8.  (Qiu-rong Wu [6]) If v,w,€ LSINJ(t — 1,t +1) and v — 1,w — 1,€
LSIN](t —1,t), thenv+w —t € LS[N](t — 1,t 4+ 1).

Corollary 2.  [f vy, vq,...,v, € LSIN|(t — 1,t 4+ 1) and v1 — Livg — 1,...,0, — 1 €
LSIN](t —1,t), thent —taz+ Y7, v; € LSIN](t — 1,t +1).

Proof. Recursively apply Theorem 8. a
We use this to establish our next theorem.

Theorem 9. For all nonnegative integers R, S, ny,ny,...,nR

(i) 4-3R+X_1, 3"+ € LYIN|(3,5) for all N dividing ged{(3'+1=3)/60 : 1 < j < R},

(ii) 4—3[1’—{—2?:1 31+3 e LS[N](3,5) for all N dividing ged{(3***=3)/12 : 1 < j < R},

and

(iii) 4 — 3R+ 95 + Y_I, 37w+ € LS[3](3,5).

Proof.  To prove part (i), we let n be a non—negative integer, and we define a, =
(34t — 2), b, = (3" — 3)/60. An easy congruence argument shows that b, is an
integer. By Theorem 7, 1 4+ 3**** € LS[N](3,5) for any N dividing a,b,. By Theorem
4, 3**1 € LS[N](3,4) for any N dividing 5b,. Therefore, 1 4+ 3***! € LS[N](3,5) and
34t e LS[N](3,4) for any N dividing (3*"*' — 3)/60. The result now follows from
Corollary 2.

To prove part (ii), we let n be a non—negative integer, and we define ¢, = (313 —-2)/5,
d, = (3""*3 —3)/12. Easy congruence arguments show that ¢, and d,, are integers. By
Theorem 7, 1 + 3***3 € LS[N](3,5) for any N dividing ¢,d,. By Theorem 4, 3***3 ¢
LS[N](3,4) for any N dividing d,. Therefore, 1 + 3***3 € LS[N](3,5) and 3*"*3 ¢
LS[N](3,4) for any N dividing (3*"*® — 3)/12. The result now follows from Corollary 2.
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