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ABSTRACT

We determine all S(3,K,17)'s which either; (i) have a block of size at least 6; or
(ii) have an automorphism group order divisible by 17, 5, or 3; or (iii) contain
a semi-biplane; or (iv) come from an S(3, K, 16) which is not an S(3,4,16). There
is an S(3,K,17) with |G| = n if and only if n € {23 : 0 < a < 7,0 < b < 1} U
{18, 60,144, 288,320, 1920, 5760, 16320}. We also search the S(3, K, 17)’s listed in the
appendix for subdesigns 5(2,K,17) and generate 22 nonisomorphic S(3, K, 18)’s
by adding a new point to such a subdesign. © 1996 John Wiley & Sons, Inc.

1. INTRODUCTION

A t-wise balanced design (tBD) of type t—(v,K,A) is a pair (X, B) where X is a
v—element set of points and B is a collection of subsets of X called blocks with the
property that the size of every block is in K and every ¢—element subset of X is
contained in exactly A blocks. If K is a set of positive integers strictly between ¢ and
v then we say the tBD is proper. A t—(v, K, A) design is also denoted by Sy (¢, K, v).
If |[K| =1, then the tBD is called a t—(v, k, A) design, where X = {k}. When t = 2

a tBD is called a pairwise balanced design and a nice survey of them is given in [3].

© 1996 John Wiley & Sons, Inc. CCC 1063-8539/94/030117-13
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2 KRAMER, KREHER, AND MATHON

If A =1, then we use the notation S(¢, K,v). An S(2,K,v) is also called a a linear
space.

2. ELEMENTARY PROPERTIES

By taking the derived incidence structure the following result is immediate:

Theorem 2.1. A t—(v,K,A) design implies the ezistence of a (t —1)-(v—1,K —
1,A) design where K—1={k; —1:k; € K}.

The strategy used in [2] to find all S(¢, K, v) designs for small v was to find (or
know) all possible S(t — 1, K, v — 1) designs and then examine possible extensions.
The S(2,K, 16) (linear spaces of order 16) were, in fact, completely classified in [1].
However, we were only able to use some of this information because of the large
number of such linear spaces. Eventually we classified those S(3,K,17)'s which
contained certain substructures or which had certain automorphisms. The type of
a point z in a linear space (P, L) of order 16, was defined in [1] to be the multiset
{|f|]—=1:z € £e L}. The type is thus a partition of 15 into parts each at least two
(since  appears exactly once with each point in P\{z}). According to [1] there are
ten nontrivial partitions that arise. They are assigned letters here for convenience:

A:555 F:53322  G:522222 H:4443 I: 44322
J:43332 K:432222 L:33333  M:333222 N:3222222

The type of the linear space is the multiset of types of all of its n points. To indicate
the number of blocks of each of the possible sizes in a tBD or linear space we use
exponential notation. For example (54532%) means that there are 3 blocks of size 5,
5 blocks of size 4 and 20 blocks of size 3. Using this notation the following theorem
is given in [1].

Theorem 2.2. There are 398 isomorphism classes of proper linear spaces on 16
points, of which

(1) two have type A=1,G=15 (633%5);

(2) one has type F=5,G=1,M=10 (61410315);

(3) one has type F=3,G=3,M=4,N=6 (614°3%3);
(4) one has type H=1,J=12,L=3 (534133%);

(5) two have type H=1,K=12,L=1,N=2 (534°3%7);
(6) one has type I=15,L=1 (5545319);

(7) one has type I=3,J=3,K=6,M=3 ,N=1 (5347316);
(8) two have type I=3,K=9,L=1,N=3 (5°4°3%7);
(9) one has type I=3,K=9,M=4 (534°318);

(10
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one has type L=2,M=12,N=2 (412316);
three have type L=1,M=12 N=3 (411318);
five have type L=1,M=10,N=5 (410320);
146 have type L=1,N=15 (453%7);

one has type M=16 (412316);

one has type M=14,N=2 (411318);

18 have type M=10,N=6 (4°3%%);

49 have type M=6 ,N=10 (473%5);

111 have type M=4,N=12 (4°32%);

28 have type M=2,N=14 (4°33°);

23 have type N=16 (4*33%); and

=~ =~ =~
-
R b S N N

3. COMPUTER SEARCHES

We did several computer searches. For example, after obtaining several S(3, K, 17)’s
we tried to extend some to S(4,K,18)’s. To attempt an extension of one of
Dy, ..., D16 (see the Appendix and Table of Summary Data), we would have first
ruled out blocks of size 7 or greater. We then consider the 18564 6-sets and 8568 5-
sets in an 18-set. These 27132 sets can be specified by listing for each which 4-sets
that they contain. If we take say Dg and add a point to each block, we then fix
the corresponding 116 sets in the 27132. Eliminating conflicting sets leaves, in the
case of Dg, 3383 blocks (candidates) for the extension to choose from. Using an
exhaustive backtrack search we find at most 72 additional blocks trying all possible
extensions. This is a typical result.

A similar technique was used in the extensions of some linear spaces on 16 points
where the problem is smaller. For possible extensions where sets larger than size 6
have been ruled out, there are 2380 4-sets, 6188 5-sets and 12376 6-sets in a 17-set,
which contains 680 triples. In a search for S(3,K,17) with X = {4,5} we have
8568 sets and we input the blocks of a linear space extended by a point and then
backtrack as before.

The searches for systems with a prescribed automorphism are based on the same
technique except that we use orbits of all sets for all possible set sizes.

4. BLOCK SIZE DISTRIBUTION

Theorem 4.1. The size of a block in an S(3,K,17) is at most 6.

Proof. If x is a point the derived incidence structure with respect to z is a linear
space. Thus, by Theorem 2.2, the only possible block sizes are 4, 5, 6 or 7. Let
n; be the number of blocks of size i, # = 4,5,6,7. Counting triples in two ways
we get 35n7 + 20ne + 10ns + 4ny = 680, hence n7 = 0 (mod 2). Consequently,
if there is a block of size 7, there are at least two blocks A and B of size 7. Let
x € A, then by Theorem 2.2 the derived incidence structure has type A=1,G=15
or F=5,G=1,M=10 or F=3,G=3,M=4,N=6. The first of these have 3 blocks of size 6
implying together with B that there are 4 blocks of size 7 in our S(3,K,17). It



4 KRAMER, KREHER, AND MATHON

is easy to see that this is impossible since they can pairwise intersect in at most
two points. The remaining two types of linear spaces have only one block of size
6. Consequently A and B are disjoint. Let C' be the remaining 3 points. Careful
scrutiny of Theorem 2.2 shows that every other block has size 4 or 5. Let the type of
aset Z be the 3-tuple (|JANZ|,|BNZ|,|CNZ]). The only types of blocks containing
a 3-tuple of type (1,1,1) are: (2,2,1),(2,1,2), (1,2,2), (1,1,3), (1,1,2), (1,2,1),
and (2,1,1). These each contain an even number of type (1,1, 1) triples except for
type (1,1, 3) which contains 3. There are 63 type (1,1, 1) triples, hence there is a
block Z of type (1,1,3). Let # be the point in the intersection of A and Z. Then
the derived incidence structure with respect to z is a linear space space of order 16
containing a block of size 6 disjoint from a block of size 4. The data given in [1]
shows that this is impossible. O

If (X,B) is an S(3,K,17), then for each k € K, By = {B € B : |B| = k} will
denote the set of blocks of size k; and X = Ugeg, B, the points in blocks of size
k. The number of blocks of size k containing a subset A of points is denoted by

degBk (A)

Theorem 4.2. If an S(3,K,17) design (X, B) contains a block of size 6, then it
ts the unique design Dy given in the appendiz. Furthermore the blocks of size 6

form a 2-(16,6,2) design.

Proof. Suppose Bs # 0. Then there is a point z and a block B such that z €
B € Bs. Thus the derived incidence structure with respect to z is a linear space
of order 16 appearing in Theorem 2.2 on lines (4) through (10). Consequently
degp,(x) € {3,6} and the points in X \ {x} are points of type H, I, J or K and
therefore |Xg| > 13. Counting incidence of points in Xg and blocks in Bs in two
ways we see that

6|Bs| = Y degg,(z) > 3|Xs| > 3-13.
reXeg
Therefore |Bg| > 7.
Let «; be the number of points of an S(3, K, 17) that have degree i in Bg, i €
{0,3,6}. The following equations hold:

ag+as+ag = 17
a3+ ag 2 13 1
3as + bag = 6|66| ( )
(Bas+ (Has < 2(15F)

The 7 solutions to these equations are given in Table I

For Solution I consider the subdesign (Xg, Bs). It represents a collection of seven
6-element blocks on fourteen points that pairwise intersect in no more than 2 points
and in which every point has degree 3. Interchanging the role of points and blocks
gives the dual structure which is a collection of 14 triples in which every point has
degree 3 and in which every pair is in at most 2 triples. An easy counting argument
shows that every pair is in exactly 2 triples and consequently we have a 2-(7,3,2)
design.

There are exactly 4 nonisomorphic 2-(7,3,2) designs that are the union of two
Fano planes intersect ing in 0,1,3 or 7 blocks respectively, [5]. Set T'= X \ X5s.
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TABLE I. Solutions to equations (1).

[ '0] o3 g |B6|
1 3 14 0 7
11 1 14 2 9
111 0 14 3 10
v 0 4 13 15
A% 0 2 15 16
VI 1 0 16 16
VII 0 0 17 17

If 2,y € X correspond to a pair of repeated blocks in the dual, then y U T is
a block in the derived linear space through z, see [1]. Hence {z,y} UT is a block.
Therefore there is at most one repeated block in the dual, else the triple T is covered
more than once. Thus the two Fano planes comprising the 2-(7,3,2) design (X, Bs)
intersect in 0 or 1 block.

Up to isomorphism the two possibilities are:

1. {0,1,2,8,9,12},{0,1,3,6,7,11}, {0,2,3,4,5,10}, {1,4,5, 11,12, 13},
{2,7,9,10,11,13}, {3,6,8,10,12, 13}, {4,5,6,7,8, 9}

2. {0,1,3,6,9,12}, {0,1,2,7,8,11}, {0,2,3,4,5, 10}, {1,4,6, 10, 11, 13},
{3,5,8,11,12,13}, {2,7,9, 10,12, 13}, {4,5,6,7,8, 9}

An exhaustive computer search showed that these two possibilities cannot extend

to an S(3, K, 17) design.

Remark 1. Suppose as # 0 and let 2 € X have degp, (x) = 6. Then according
to [1] the dual of the derived design of (X, Bs) through z consists of the 15 pairs from
a 6-element set. Consequently if x € X has degree 6 in Bs, then degg (z,y) = 2
for all but one y € X \ {z}, which has degree 0.

If ag = 2, then by Remark it is easy to see that |Bs| > 10 and thus Solution IT
is impossible. By similar reasoning if ag = 3, then |Bg| > 10, thus Solution III is
also impossible.

We now show that Solution IV is impossible. Let ai,as,as,as denote the
points of degree 3 in Bs and let #1,xy,..., z13 denote the points of degree 6. If
degg, (zi,x;) = 0 for some i # j, then by Remark , degg_(2;,a1) = degg (z;,a1) =
2, contrary to degg,(a1) = 3. Hence degp, (z;,2;) = 2 for all i # j and for each
z; there is a unique a; such that degp (z;,a;) = 0. Since there are 13 z;s, then
some a; say a1 has degp, (z;,a1) = 0 for at least 4 choices of i, say i = 1,2,3,4.
Let the points of the dual of (X, Bg) be labeled 1,2,3,...,15 Then without loss we
have as blocks 1 = {1,2,3,4,5,6}, 2 = {1,2,7,8,9,10}, 25 = {3,4,7,8, 11,12},
zg = {5,6,9,10,11,12}, and a; = {13,14,15}. Up to relabeling in the dual the
block as = {1,3,7}, but then degp, (x4,a2) = degp, (z4,a1) = 0, contrary to Re-
mark .

In Solution V|, there are 2 points a; and as of degree 3 and 15 points &1, x5, ..., 215
of degree 6 in Bg. Similar to the above argument we again see that degp_(2;, ;) = 2
for all # # j and for each z; there is a unique a; such that deg;_(x;,a;) = 0. Hence



6 KRAMER, KREHER, AND MATHON

counting in two ways we see modulo 2 that

15
0= degg, (a1, 2)=3-5=15
i=1

a contradiction.

For Solution VI consider the subdesign (X, Bs). It represents a collection of 16
6-element blocks on 16 points that pairwise intersect in no more than 2 points and
in which every point has degree 6. Interchanging the role of points and blocks gives
the dual structure which is easily seen to be a 2-(16,6,2) biplane. In particular any
z € Xg has derived design isomorphic to the linear space with 6 blocks of size 5 (line
(6) of Theorem 2.2). Using the additional 5 blocks of size 4 and the 10 blocks of
size 3 in this derived design one can show, by an elementary but somewhat tedious
argument, that the biplane is determined. (It is the one whose group has order
11,520, see [4].) An exhaustive computer search shows that this structure has a
unique completion to an S(3,K,17) design. It is given in the appendix as design
Ds.

Finally for Solution VII, by Remark for each « € X there is a unique y € X\ {2}
such that degg_ (2, y) = 0. This is impossible since | X| = 17. O

An important consequence of Theorem 4.2 together with the known uniqueness
of the inversive plane S(3,5,17) [4] is that any other S(3,K,17) designs (other
than D; and D in the Appendix) must have K = {4,5}. Also, K # {4}, since an
S(3,4,v) must have v =2 or 4 (mod 6). So in searches for the remainder of
this paper we assume that £ = {4,5} and that |B,|, |Bs| > 1.

Suppose an S(3,{4,5}, 17) design (X, B) is not the extension of an S(2, 4, 16) (the
affine geometry AG(2,4)). Then for each 2 € X we see from Theorem 2.2 that the
derived design through z contains at least 10 blocks of size 3. Thus degg, () > 10.
Counting triples in two ways gives:

680 = 4|Bs| + 10|Bs] (2)
= ) degg,(z) + 10|B5]

reX
> 17(10) + 10|5Bs]
Thus |Bs| < 50, (equation (2) shows that |Bs| is even). Also since the derived
design through z contains at most 32 blocks of size 3 we have

1 17 - 32
= - < - .
|Bs| = 5 ; degg, (x) < —— =136

As a prelude to our next Theorem we define the f-type (of the set of 4-blocks in
a linear space with only 4-blocks and 3-blocks) to be the set of frequencies of the
points among the 4-blocks. An f-type of, say F=10, 5'3'91%, means that there are
10 4-blocks and, among these blocks there is 1 point with frequency 5, 10 points
with frequency 3, and 5 points with frequency 1. We list the f-types according to
the number of 4-blocks F: F=4, 1'%; F=5, 5'1'% or 321'%; F=6, 3*1'2; F=7, 36110,
F=8 does not occur; F=9, 31°16; F=10, 5!3'91%; F=11, 5'3'213 or 3'*1%; F=12,
5231212 or 316, F=15, 58310, F=20, 5'6.

Theorem 4.3. An S(3,K,17) has |Bs| > 18.
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Proof. The maximum number of blocks in a derived linear space on 16 points is 36.
Counting points in two ways yields: 4|B4| 4+ 5|Bs| < 17 - 36 = 612. Using equation
(1), and since |Bs| is even, we get that |[Bs| > 14. Suppose now that |Bs| = 14
and hence |Bs| = 135. The average number of blocks in a derived linear space is
(5-144+4-135)/17 = 35%. Thus at least 15 points have derived linear spaces
with 36 blocks. Each linear space with 36 blocks has 4 disjoint 4-blocks. Assume
(up to relabeling) that our S(3,{4,5},17) has the following blocks: {0 1 2 3 16},
{456716}, {8910 11 16}, {12 13 14 15 16}. Up to relabeling we can assume
that the linear spaces through the points 0,1,2,3 each have four 4-blocks. Easily
this forces 3 more 5-blocks through each of 0,1,2,3 and these 12 blocks are distinct
since otherwise a triple is covered twice. But then there are 34+343+3+4=16 5-
blocks, a contradiction. Since |Bs| is even then |Bs| > 16. So assume |Bs| = 16
where K = {4,5}. The average number of blocks in a derived linear space is

M = 3515—7. So at least 5 points have derived linear spaces with F=4. We
can assume that our S(3, K, 17) has the following blocks: {012 3 16}, {456 7 16},
{8910 1116}, {1213 14 15 16}. Three cases arise from a second point whose linear
space has F=4. This produces one of the following sets of 3 blocks: (1) {04 5 8 9},
{06712 13}, {010 11 14 15}; (2) {0 45 8 9}, {0 6 10 12 13}, {0 7 11 14 15}; (3)
{0459 13}, {0710 11 14}, {0 8 12 15 16}. In Case (1) the only points which
can have derived linear space with F=4 are the points {0 1 2 3 16}. There were 15
nonisomorphic ways to select 3 more 5-blocks through point 1. Only one of these
ways could be extended to a collection of 16 5-blocks whose derived linear space
had the proper structure. This gave: {0 123 16}, {456 7 16}, {8 9 10 11 16},
{1213 14 15 16}, {04 5 8 9}, {0 6 7 12 13}, {0 10 11 14 15}, {1 4 5 14 15},
{16789},{110111213},{2451011}, {267 1415}, {28912 13}, {34512 13},
{36710 11}, {389 14 15}. An exhaustive computer search showed that these
16 5-blocks can extend only to the S(3,5,17) which has 68 5-blocks. In each of Case
(2) and Case (3) one can first show that (up to isomorphism) the derived linear
space through point 1 has F=4. In Case (2) there were then 24 nonisomorphic ways
(which did not include cases from Case (1) above) to get the 3 additional 5-blocks
through point 1. In Case (3) there were 8 ways (avoiding cases from Case (1) and
(2)) to get the 3 additional 5-blocks through point 1. None of these 32 cases could
be completed to a set of 16 5-blocks whose derived linear spaces had the proper

structure. Thus |Bs| # 16 and so |Bs| > 18. O
Conjecture 1. An S(3,K,17) has |Bs| > 20. Further, we believe that if |Bs| = 20,
then Bs is equivalent to the affine geometry AG(2,4). O

It is of interest to know the possible block sizes in a potential S(4, K, 18). Re-
call that S(4,5,18) and S(4,6,18) do not exist. The first violates the necessary
conditions and the second was disposed of in [7].

Theorem 4.4. Design Dy does not extend to an S(4,K, 18). Thus any S(4,K, 18)
has K = {5,6}.

Proof.  Suppose D extends to an S(4, K, 18) whose point set is ¥ = {0,1,...,17}.
Now D; is the only S(3,K,17) with blocks of size larger than 5 and such blocks
comprise a 2— (16,6, 2). Assume the points used in the 2— (16,6, 2) are {1,2,...,16}
where 0 is the additional point in D;. Note that if a point of Y is contained in
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a block of size 7 then it must be contained in exactly 16 such 7-blocks. Easily,
point 0 will be contained in 7-blocks so that all points of Y are in 7-blocks. If b7 is
the number of 7-blocks in our S(4, K, 18) then counting points in two ways yields
7-b; = 1816, a contradiction. O

5. AUTOMORPHISMS

Theorem 5.1. Let p be a prime dividing |G| where G is an automorphism group
of a proper S(3,K,17). Then p=2, 3, 5 or 17.

Proof. Since GG acts on 17 points the possible prime divisors of |G| are 2, 3, 5, 7,
11, 13 or 17.

If p = 17, then an elementary backtracking search shows that there is a unique
S(3,K,17), namely the S(3,5,17) design D5 in the appendix. The automorphism
group of this design has order 26-3-5-17. Note that the primes 2, 3, 5, and 17 do
arise.

Let p = 11 or 13 and let ¢ = (1,2,3,...,p)(p+ 1)(p + 2)...(17) be an auto-
morphism of order p. Set X = {1,2,...,p}and Y ={p+1,...,17}. If a block B
contains 3 points from Y, then B is a subset of Y. We still need blocks C' where C'
has exactly 2 points from Y. Since |C| > 4, then C has at least 2 points from X.
This leads to 2 distinct blocks containing the same 3—element set, a contradiction.

An element of order 7 cannot fix 10 points by using an argument similar to the
above. Solet ¢ = (1,2,...,7)(8,9,...,14)(15)(16)(17), then some block B contains
the three fixed points 15, 16 and 17. Since B has at least 4 points we get an easy
contradiction. g

An easy computer search establishes the following.

Theorem 5.2. There is a unique S(3,K,17) that has an automorphism of order
17. It is the Steiner system S(3,5,17) and appears as design Do in the appendiz.

Theorem 5.3. There are exactly 7 proper S(3,K,17)'s with automorphism of
order 5.

Proof. Let g be an automorphism of a proper S(3,K,17) where |g| = 5. It is
easy to show that g fixes 2 points. A complete computer search was conducted and
yielded exactly 6 nonisomorphic designs (in addition to D;). The new associated
group sizes were 16320, 5760, 320, 320, 60, and 60. These designs are listed in the
appendix. Note that 52 does not divide the order of the automorphism groups. O

Suppose an element of order 3 fixed a set F' of at least 8 points. Easily, 3
points from F' force a block entirely contained in F'. But then there is a subdesign
S(3,K,|F|) which can be replaced by asingle block consisting of precisely the points
of F'. But this is not possible since any S(3, K, 17) cannot have blocks of size larger
than 6. Furthermore we have from Theorem 4.2, that design D; is the unique
S(3,K,17) containing a block of size 6. Thus assuming that there are no blocks of
size 6 we see that an element of order 3 must fix either 2 or 5 points. An exhaustive
computer search establishes the following:
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Theorem 5.4. There are exactly 28 proper S(3,K,17)'s with an automorphism
of order 3 with 2 fized points and there are exactly 75 proper S(3,K,17)'s with an
automorphism of order 3 with § fized points.

TABLE II. Group sizes of the 28 designs with an element
of
order 3 with 2 fixed points.

Group order 18 48 60 96 144 192 288 384 1920 5760 16320
Number of S(3,K,17)’s 1 6 2 8 3 1 2 2 1 1 1
TABLE III. Group sizes of the 75 designs with an element

of
order 3 with 5 fixed points.
Group order 3 6 12 18 24 48 96 144 192 288 384 5760
Number of S(3,K,17)’s 3 10 3 1 5 29 15 3 2 2 1 1

There are 7 designs, namely those with group orders divisible by 9, which have
automorphisms of order 3 of both types (2 and 5 fixed points).

Theorem 5.5. If g is an order 2 automorphism of an S(3,K,17), then ¢ has 1
or § fized points.

Proof. Let g be an order 2 automorphism of an S(3, K, 17) design (X, B) fixing
f points. If a is a fixed point, then the derived design structure with respect to
a is a linear space on X \ {a} that has an automorphism of order 2 fixing f — 1
points. In [1] the linear spaces are determined and their automorphism groups may
be calculated. We found that the automorphisms of order 2 in these groups either
fix 0, 2, 4 or 6 points. Hence f € {1,3,5,7}.

An S(3,K,17) design having an order 2 automorphism fixing 1 point is D; and
one with an order 2 automorphism that fixes 5 points is Dj.

Suppose ¢ is an order 2 automorphism of an S(3,K,17) design(X, B) fixing 3
points. Then without loss we may assume that

g = (a)(b)()(0,1)(2,3)(4,5)(6, 7)(8, 9)(10, 11)(12, 13).

Let X; = {24,254+ 1}, j =0,1,2,...,6. There are 22 triples fixed by g and any
block containing a fixed 3-subset must be fixed by g. There are thus 4 types of
fixed blocks:

1‘ Xj1UXj2aj1 #.72’
2. X U{z,ut, z,ye€{abc} a#y;
3. X;, UX;, U{z}, j1#Jj2, 2 €{a,b,c}; and
4. X;, U{a,b,c}.
Let N;, @ = 1,2,3,4, be the number of blocks in B of type i. Then counting the

number of fixed triples consisting of a fixed point and a 2-cycle in two ways we have

2Nz + 2N3 + 3N4 = 21 (3)
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There are 658 triples that are not fixed by g. They are paired into 329 orbits of
length 2. These orbits must also be covered and the only baseblocks with an odd
number of full orbits contain either 3 or 2 fixed points. These are thus fixed blocks
and consequently N2+ N4 =1 (mod 2), but Ng = 1 since any such 5-set contains
the triple {a,b,¢}. So Nz is even. The resulting 5 solutions to equation (3) are
given in Table IV.

TABLE IV. The 5 solutions to equation (3).

Solution: 1 2 3 4 5

Na: 0 2 4 6 8
Ng: 9 7 5 3 1
Ngy: 11 1 1 1

Let B* = {a,b,¢,0,1} be the unique type 4 block. The type 3 blocks induce
a graph I' on the vertices X1,...,Xs. The pair {X;, X;} is an edge labeled u if
X; UX; U{u} is a block, u € {a,b,c}. We label the vertex X; by {u1,us} if
X; U {u1,us} is a block otherwise we label it by the empty set. It is now easy to
see that the labels incident to a vertex together with the vertex label is a partition
of the fixed points. Hence the degree of every vertex of I is 1, 2 or 3, N3 is the
number of edges and N3 is the number of vertices of degree 1. Thus Ny < 6 and
it is easy to see that there are 6 graphs satisfying these conditions. The first 5
can be labeled uniquely (up to isomorphism) the last has three labelings. They are
given in Table V. An exhaustive computer search showed that none of these graphs
extends to an S(3,{4,5}, 17).

Suppose g¢ is an order 2 automorphism of an S(3,K,17) design (X, B) fixing 7
points. Without loss

g9 =(0,1)(2,3)(4,5)(6,7)(8,9)(10)(11)(12)(13)(14)(15)(16).

The derived design with respect to 16 is a linear space with an order 2 automor-
phism fixing the 6 points 10, 11, 12, 13, 14 and 15. Careful examination of the
automorphism groups of the 398 proper linear spaces on 16 points yields 7 such
linear spaces. Applying Theorems 4.1 and 4.2 and the fact that the order 2 au-
tomorphisms of D; each fix exactly one point we need only consider linear spaces
having blocks of size 3 and 4 only. Among the 7 only four of them are of this type.
They are given in Table VI. Consider just the blocks of size 5. In each of the four
linear spaces they are the same and they contain exactly 3 blocks of size four with
two fixed points. Thus {B N {10,11,12,...,16}: B € Bs} is an S(2,3,7) the Fano
plane. Consequently there are 7 blocks of size 5 that contain 3 fixed points. But
any block containing three fixed points must be fixed by g and so the other two
points are a 2-cycle. There are then 5 2-cycles to be distributed into the 7 blocks of
size 5 that each contain exactly 3 fixed points. It is impossible to do this without
covering a triple twice since the fixed points in these 7 blocks form a Fano plan. O

Theorem 5.6. There is an S(3,K,17) with |G| = n if and only if
n€{293°:0<a<T7,0<b<1}U{18,60,144,288,320,1920,5760,16320}.
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TABLE V. The possible configurations of fixed blocks wunder
an
automorphism of order 2 that fixes 3 points

{fa2345}, {a6789}, {a10111213}, {b2367}, {b45 1011},
{b891213}, {c231213},{c 4567}, {c891011}, {abc01}

{a2345), {a67809}, {al10 111213}, {b 2389}, {b45 10 11},
{b671213}, {c231213},{c 4567}, {c891011}, {abc01}

|

{a2345),{a6789},{a10111213},{b2367}, {b4589}, {c2389},
{c4567}, {bc1011}, {bc1213}, {abc01}

{a2345), {a6789), {al10111213}, {b236 7}, {b4 51011},
{c231011}, {c4567},{bc89}, {bc1213}, {abco01}

m {a2345},{a6789},{b231011}, {b671213},{c2367},{acl011},
{ac1213}, {bc45},{bc89}, {abc01}
{a2345),{a6789},{a10111213}, {bc23}, {bc45}, {bc6T}
{bc89},{bc1011}, {bc1213}, {abc01}
{a2345),{a67809},{b10111213},{bc23}, {bc45}, {bc6T},
{bc89}, {ac1011}, {ac1213}, {abc01}

{a2345), {b6789}), {c10111213}, {bc23}, {bc4a5}, {ac6T}
{ac89},{ab1011},{ab1213},{abc01}

Proof. By previous theorems we know all S(3, K, 17)’s for which either 3, 5, or 17
divides |G|. If H is a 2-sylow subgroup of G, then the lengths of the point orbits of
H must be powers of 2 and these lengths must sum to the odd number 17. Thus H
must fix at least one point, say . The automorphism group of the derived linear
space through z contains H. An inventory of the groups of the 398 nontrivial linear
spaces on 16 points gives groups of order 1, 2, 3, 4, 5, 6, 8, 12, 16, 18, 20, 24, 32,
40, 48, 60, 72, 96, 120, 600, 360, 5760. Easily |H| < 27. So the only additional sizes
for |G| that are not divisible by 3, 5, or 17 are {2 : 0 < a < T}. Hence

|Gl e N ={1,2,3,4,6,8, 12, 16, 18, 24, 32, 48, 60, 64, 96, 128,
144, 192, 288, 320, 384, 1920, 5760, 16320}

For each n € N we provide, in the Appendix, at least one example of an S(3, K, 17)
whose automorphism group G has |G| = n. O
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TABLE VI. The four nonisomorphic linear spaces with block sizes 3 and
4 only that have an automorphism of order 2 that fixes 6 points.

1. {12410}, {03510}, {6 71015}, {13815}, {0 11112}, {2313 14}, {02915},
{8 9 10}, {10 11 13}, {10 12 14}, {1 5 6}, {1 7 13}, {1 9 14}, {2 5 11}, {2 6 8},
{2712}, {3411}, {047}, {4515}, {4614}, {4812}, {4913}, {3612}, {379},
{0613}, {0814}, {5714}, {5813}, {59 12}, {11 14 15}, {12 13 15}, {6 9 11},
{78 11}.

2. {12410}, {03510}, {6 71015}, {13815}, {011112}, {2313 14}, {029 15},
{8 9 10}, {10 11 13}, {10 12 14}, {1 5 6}, {1 7 14}, {1 9 13}, {2 5 11}, {2 6 8},
{2712}, {3411}, {047}, {4515}, {4613}, {4812}, {4914}, {3612}, {379},
{0614}, {0813}, {5713}, {5814}, {59 12}, {11 14 15}, {12 13 15}, {6 9 11},
{78 11}.

3. {12410}, {03510}, {6 71015}, {13815}, {011112}, {2313 14}, {029 15},
{8 9 10}, {10 11 13}, {10 12 14}, {1 5 6}, {1 7 13}, {1 9 14}, {2 5 11}, {2 6 8},
{2712}, {3411}, {047}, {4515}, {4614}, {4813}, {4912}, {3612}, {379},
{0613}, {0814}, {5714}, {5812}, {5913}, {11 14 15}, {12 13 15}, {6 9 11},
{78 11}.

4. {12410}, {03510}, {671015}, {13815}, {011112}, {2313 14}, {02915},
{8 9 10}, {10 11 13}, {10 12 14}, {1 5 6}, {1 7 14}, {1 9 13}, {2 5 11}, {2 6 8},
{2712}, {3411}, {047}, {4515}, {4613}, {4814}, {4912}, {3612}, {379},
{0614}, {0813}, {5713}, {5812}, {59 14}, {11 14 15}, {12 13 15}, {6 9 11},
{78 11}.

6. S(3,K,17)’S WITH INTERESTING
SUBDESIGNS; SOME 5(3,K,18)’S

In [2] there are S(3, K, 16)'s which contain semi-biplanes (see [6]). Briefly, a semi-
biplane (sbp(v,k)) is a collection of v blocks of size k on a v-set, such that any
unordered pair of points occurs in either 0 or 2 blocks. A biplane bp(v, k) is a semi-
biplane in which every pair of points occurs in exactly 2 blocks. Thus a bp(v, k) is
a2—(v,k,2) design. For v < 16 it is known (see [6]) that there is a unique biplane
bp(11,5), there are 3 biplanes bp(16,6), a unique sbp(12,5), and a unique sbp(16,5).
Among the 3 biplanes on 16 points one is special. The blocks of this design can be
thought of as the 16 subgraphs of K4 4 isomorphic to two disjoint K; 3’s, the points
are the 16 edges of K4 4. We found:

Theorem 4.2". The only S(3,K,17) which contains a bp(16,6) is Dy and the
biplane it contains is the special one.

Proof. 'This is just a rephrasing of Theorem 4.2 in the language of biplanes. O

Theorem 6.1. There are exactly fourteen proper S(3,K,17)’s which contain an
sbp(16,5).

Proof. A complete search was done for such proper S(3,K,17)'s. The noniso-
morphic solutions are precisely the designs in the appendix with ns = 68,52 or

36. O
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By a complete search we found the following two results:
Theorem 6.2. There are no S(3,K,17)'s which contain an sbp(14,5).

Theorem 6.3. The only two S(3,K,17)'s which contain an sbp(12,5) are
Dy (the S(3,5,17)) and D15 (see appendiz).

If an S(3,K,v) contains an S(2,K,v) as a subdesign it can be extended to an
S(3,K,v+ 1) by adding a new point to each of the blocks of the S(2,K,v). We
call this process subdesign extension. In [2] the authors determined all S(3, K, 16)'s
with at least two block sizes. One such design Dj (in [2]) is of type 4°°6° and
contains both a bp(16,6) and an AG(2,4). Note that the affine geometry AG(2,4)
is an S(2,4,16) design and is unique up to isomorphism. Adding a point to the
blocks of the AG(2,4) of this S(3,K,16) produces design D; in the appendix.

All S(3,K,16)’s with || > 1 appear in [2] and these were searched for sub
AG(2,4)'s. We get:

Theorem 6.4. The only S(3,K,17)'s which are extensions of AG(2,4), but do
not come directly from an S(3,4,16), are the 15 designs Dy, Da, ..., Dys.

An S(2,K,17) can be found as a subdesign of D; for i € {1} U {6,...,11} U
{17, ...,33}. In 3 cases it can be found in two nonisomorphic ways and in 3 cases
it can be found in three nonisomorphic ways. Each S(2,K,17) is isomorphic to
the S(2,{4,5}, 17) obtained by deleting the points forming a line in the projective
plane of order 5 from the points and blocks of the plane. The resulting 22 designs
found by this subdesign extension are given in the appendix. The structure of these
S(2,{4,5},17)’s shows that further subdesign extension is impossible. Thus none
of the 33 designs with v = 18 can contain an S(2, K, 18).

7. ARE THERE ANY S(4,K,18)’S

In the last column of the summary table we have indicated some cases that are
known to not extend to an S(4, K, 18). As a consequence of the nonextendability

of the S(3,5,17) design Ds, we have:

Theorem 7.1. If an S(4,5,17) exists, then it cannot contain an S(3,5,17).

Proof. 'The unique S(3,5,17) design is Dq. If an S(4,5, 17) contained an S(3, 5, 17)
as a subdesign, then adding an 18th point to each block of the subdesign S(3,5,17)
would produce an S(4, K, 18) which would be an extension of Da, a contradiction.d

In the following set of 24 5-blocks the first 20 are equivalent to an AG(2,4) and
the additional (unique up to isomorphism)4 5-blocks contain 1, 2, 17: {01234 17},
{01561317},{01791617},{018101117},{0112141517},{0257 1117},
{026101217},{02891517},{0213141617},{0358 1417}, {0367 1517},
{039101317},{0311121617},{04591217},{04681617},{047 1014 17},
{04 1113 1517}, {0510 15 16 17}, {0 6 9 11 14 17}, {0 7 8 12 13 17}, plus
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TABLE VII. Summary data.

bp’s and Extends Subdes. Extends

k=4 k=5 k=62 3 517 |G| sbp’s  AG(2,4) exts. to a 4BD

7 special .
D1 40 20 16 23 51 1920 bp(16,6) yes 1 no
6 sbp(16,5),
D> 0 68 0 2° 3 5 17 16320 pr(12,5) ves 0 no
D3 40 52 0 221 51 320 sbp(16,5) yes 0 no
D, 40 52 0 2201 11 64  sbp(16,5) yes 0 no
Dy 40 52 0 21 11 32 sbp(16,5) yes 0 no
De 80 36 0 221 51 320 sbp(16,5) yes 1 no
D+ 80 36 0 2001 11 64  sbp(16,5) yes 1 no
Dsg 80 36 0 221 11 32 sbp(16,5) yes 1 no
Do 80 36 0 21 11 16  sbp(16,5) yes 1 no
Do 80 36 0 241 11 16 sbp(16,5) yes 1 no
Dy 80 36 0 241 11 16  sbp(16,5) yes 1 no
D2 80 36 0 2t 1 11 16  sbp(16,5) yes 0 no
Dz 80 36 0 221 11 8 sbp(16,5) yes 0 no
Dy 80 36 0 221 11 8 sbp(16,5) yes 0 no
Dis 80 36 0 221 11 4 sbp(16,5) yes 0 no
Dig 100 28 0 223 5 1 60 sbp(125) no 0 1o
Dy 120 20 0 27 32 5 1 5760 yes 1 ?
Dis 120 20 0 273 11 384 ves 3 ?
Dy 120 20 0 2° 32 11 288 yes 1 ?
Dso 120 20 0 2003 11 192 ves 2 ?
Dy 120 20 0 2* 32 11 144 yes 1 ?
D2z 120 20 0 271 11 128 yes 3 ?
D23 120 20 0 2 3 11 96 ves 1 ?
D2y 120 20 0 22 3 51 60 yes 3 ?
Dss 120 20 0 243 11 48 ves 0 ?
Dae 120 20 0 223 11 24 ves 0 ?
Ds7 120 20 0 2 3211 18 ves 0 ?

Dy 120 20 0 223 11 12 yes 0 ?
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TABLE VII. (continued)

bp’s and Extends Subdes. Extends

k=4 k=5 k=6 2 3 5 17 |G| sbp’s  AG(2,4) exts. to a 4BD

Dog 120 20 0 2 3 11 6 yes 0 ?
Dsg 120 20 0 1 3 11 3 yes 0 ?
Dsp 120 20 0 21 11 2 yes 0 ?
Dsy 120 20 0 21 11 2 yes 0 ?
Ds3 120 20 0 11 11 1 yes 0 ?

{12581617},{1267 1417}, {129 111217}, {12 1013 15 17}. A complete
search showed that these 24 blocks do not extend to an S(4, K, 18).

Theorem 7.2. No S(4,K,18) can have two or more derived point extensions of

AG(2,4).

We are prepared to make the following;:
Conjecture 1. There is no S(4,K,18). O
We also conjecture:

Conjecture 2. An S(3,K,17) is one of Dy, ..., Dig, or it extends an S(3,4,16)
containing an AG(2,4). O
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APPENDIX

This appendix provides generating information for specific designs. A design of
type 40529616 means there are 40 4-blocks, 20 5-blocks and 16 6-blocks. A given
subgroup H (G will be the full automorphism group of the design) will act on the
listed base blocks to generate the design. Any additional generators to produce G
are mentioned, along with |G|. When there is a subdesign S(2, K, 17), which then
gives an S(3, K, 18), we list one such S(2, K, 17) for each nonisomorphic S(3, K, 18).
D;: The unique S(3,K,17) of type 40520616,
H=1{(12345678)(91011 12 13 14 15 16)), |H| = 8.



16

DQZ

D3:

D4:

D5:

D6:

D:

Dg:

KRAMER, KREHER, AND MATHON

Base blocks: {1 23612 14}, {139101316}, {01279}, {01 510 14}, {01 12 13 15},
{12416},{121015}, {1357}, {1413 14}, {15 1216}, {1911 12}, {91113 15}.

G =(H, (13131610 9)(2 4 6)(5 14 15 12 7 11)), |G| = 1920.

This is the unique S(3,K,17) with a block of size 6. The group G is 2-transitive group on 16
points and fixes 0. The base blocks of size 6 form the special biplane bp(16,6), whose group
has order 11520.

Sub S(2,K,17): Use H with base blocks: {01 5 10 14}, {1 2 4 16}, {1 9 11 12}.

The unique S(3,5,17) of type 5%8.

H={((0714181029 1135 124 6 13)), |[H| = 15.

Base blocks: {01234}, {015613},{017916},{01121415},{025 711}, {0510 15 16}.
G=(H (01286153513107912 41611 14), (1 24 3)(6 79 8)(11 12 14 13)(15 16)),
|G| = 16320.

An S(3,K,17) of type 4%0552,

H={((01234)(567809)(1011 12 13 14), (0 4)(1 3)(5 9)(6 8)(10 14)(11 13)), | H| = 10.

Base blocks: {01234},{015613},{017916},{0181011},{01121415},{025 711},
{0213 1416}, {0510 15 16}, {0 6 9 11 14}, {5 6 7 8 9}, {5 6 12 14 16}, {5 7 13 14 15},
{02615},{02812}, {06712}, {07815}, {01012 13}, {5 10 11 14}.

G:(H, (01 27512314)(4611 10139815)>,|G|:320.

An S(3,K,17) of type 4%0552,

H=(02129714155)(1108 13 4 6 11 3), (0 8)(1 15)(2 3)(4 12)(5 6)(7 11)(9 10)(13 14)),
|H| = 16.

Base blocks: {0123 4},{01101316}, {02589}, {07811 16}, {01812}, {01914},
{0 69 11}.

G = ( H, (0 2)(1 5)(3 8)(4 9)(6 15)(7 14)(10 12)(11 13)>, |G| = 64.

An S(3,K,17) of type 4%0552,

H=((01178)(25136)(310149)(1215), (1 124 15)(2 10 3 5)(6 13 9 14)(8 11)), |H| = 16.

Base blocks: {01234},{01567},{01101316},{02589}, {078 1116}, {12 51415},
{14121516},{23131416},{01812},{019 14}, {06911}, {1312 14}, {23 5 6}.

G = (H, (01)(25)(36)(4 7)(8 15)(9 14)(10 13)(11 12)}, |G| = 32.
An S(3,K,17) of type 480536,
H=((01234)(56789)(10 11 12 13 14), (0 4)(1 3)(5 9)(6 8)(10 14)(11 13)), |H| = 10.

Base blocks: {0 1 7 9 16}, {0 2 6 10 12}, {0 2 8 9 15}, {0 2 13 14 16}, {0 5 10 15 16},
{0781213},{561214 16}, {1011 1213 14},{01211},{0138}, {01512}, {01 13 15},
{0569}, {05714}, {06 11 13}, {0 7 10 11}, {0 11 14 15}, {5 6 8 13}, {5 7 11 15},
{51213 15}.

G=(H (0127512314)(46 111013 9 8 15)), |G| = 320.

Sub S(2,K,17): Use K = ((01 27 512 3 14)(4 6 11 10 13 9 8 15)) with base blocks:
{0510 15 16}, {0 1 3 8}, {0 6 11 13}.

An 5(3,K,17) of type 4805%6,

H={((032151411710)(1125 1396 48), (0 1)(2 5)(3 6)(4 7)(8 15)(9 14)(10 13)(11 12)),
|H| = 16.

Base blocks: {01234}, {0191416}, {02615 16}, {01813}, {01 1112}, {02 7 14},
{021012}, {02 1113}, {039 11}, {04 5 14}.

G=(H,(01149)(31512 8)(4 5)(6 13 11 10)), |G| = 64

Sub S(2,K,17): Use H with base blocks: {019 14 16}, {0 2 10 12}.

An S(3,K,17) of type 4805%6,

H={(02147)(1594)(3151110)(6 8 12 13), (03 1 6)(2 13 5 10)(4 15 7 8)(9 12 14 11)),
|H| = 16.

Base blocks: {0123 4},{0191416}, {026 1516}, {048 12 16}, {01 8 15}, {01 10 13},
{0111 12}, {02 7 14}, {0 2 10 12}, {0 2 11 13}, {0 3 5 15}, {0 3 9 11}, {0 4 5 14},
{0411 15}, {08 13 14}, {09 13 15}, {0 10 14 15}.

G=(H,(27)(36)(45)(810)(11 12)(13 15)), |G| = 32.
Sub S(2,K,17): Use H with base blocks: {019 14 16}, {0 2 10 12}, {0 3 5 15}.
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An S(3,K,17) of type 480536,
H = ((2 7)(3 6)(4 5)(8 10)(11 12)(13 15), (0 1)(2 4)(5 7)(8 13)(9 14)(10 15),
(02 95)(1414 7)(312 11 6)(10 15)), |H| = 16.

Base blocks: {01234},{0191416},{02589},{0261516},{036810},{36111216},
{81013 15 16}, {0 1 8 13}, {0 1 11 12}, {0 2 7 14}, {0 2 10 12}, {0 2 11 13}, {0 3 9 12},
{031114}, {0814 15}, {0913 15}, {3811 13}.

G =H, |G| =16.
Sub S(2,K,17): Use H with base blocks: {01 9 14 16}, {0 2 10 12}.

:An S(3,K,17) of type 480526,

H={((011112)(28515)(396 14)(4 10 7 13), (0 3 1 6)(2 13 5 10)(4 15 7 8)(9 12 14 11),
(0 1)(2 4)(5 7)(8 13)(9 14)(10 15)), |H| = 16.

Base blocks: {01234},{0191416},{02589} {0261516},{0481216}, {2457 16},
{01815}, {011112}, {027 14}, {0 21012}, {0211 13}, {0 3 5 15}, {0 3 9 12},
{031114}, {04514}, {0411 15},{08 1314}, {09 13 15}, {2 4 8 13}, {2 5 10 13}.

G =H, |G| =16.

Sub S(2,K,17): Use H with base blocks: {01914 16}, {2457 16},{02 1012}, {035 15}.
An S(3,K,17) of type 480536,

H = {(27)(3 6)(4 5)(8 10)(11 12)(13 15), (0 1)(2 4)(5 7)(8 13)(9 14)(10 15),

(0 3)(1 6)(2 8)(4 10)(5 15)(7 13)(9 12)(11 14), (0 9)(1 14)(2 5)(3 11)(4 7)(6 12)), |H| = 16.
Base blocks: {01234},{0191416}, {02589}, {02615 16}, {04812 16}, {245 7 16},
{01813}, {0111 12}, {027 14}, {0 2 10 12}, {0 2 11 13}, {0 3 5 15}, {0 3 9 12},
{031114}, {04514}, {04 11 15}, {08 14 15}, {09 13 15}, {2 4 8 13}, {2 5 10 13}.

G =H, |G| =16.

Sub S(2,K,17): Use H with base blocks: {01914 16}, {2457 16},{02 1012}, {035 15},
{2911 15}.

:An S(3,K,17) of type 480526,

H = {(01)(2 5)(3 6)(4 7)(8 15)(9 14)(10 13)(11 12),

(0 3)(1 6)(2 8)(4 10)(5 15)(7 13)(9 12)(11 14), (0 2)(1 5)(3 8)(4 9)(6 15)(7 14)(10 12)(11 13),
(0 4)(1 7)(2 9)(3 10)(5 14)(6 13)(8 12)(11 15)), |H| = 16.

Base blocks: {0 12 3 4}, {01 9 14 16}, {0 2 6 15 16}, {0 3 7 13 16}, {0 4 8 12 16},
{0510 11 16}, {0 1 8 15}, {0 1 10 12}, {0 2 7 14}, {0 3 5 15}, {0 3 9 11}, {0 4 5 14},
{0 4613}, {0 4 11 15}, {0 5 12 13}, {0 7 8 11}, {0 7 12 15}, {0 8 13 14}, {0 9 13 15},
{010 14 15}.

G =H, |G| =16.

An S(3,K,17) of type 480536,

H = ((01)(2 5)(3 6)(4 7)(8 15)(9 14)(10 13)(11 12),

(03)(1 6)(2 8)(4 10)(5 15)(7 13)(9 12)(11 14), (0 9)(1 14)(2 4)(3 12)(5 7)(6 11)(8 10)(13 15)),
|H| = 8.

Base blocks: {01234}, {0191416},{02589},{0261516},{03 71316}, {04812 16},
{05101116}, {24 5716}, {01815}, {01 1013}, {01 11 12}, {02 7 12}, {0 2 10 14},

{021113},{03515},{03912},{03 1114}, {045 14}, {04613},{0411 15}, {0512 13},
{06911},{06 1214}, {07811}, {0813 14}, {09 13 15}, {2 4 8 13}, {2 5 10 13}.

G=H, |G| =8.

:An S(3,K,17) of type 480526,

H = {(01)(2 5)(3 6)(4 7)(8 15)(9 14)(10 13)(11 12),

(03)(1 6)(2 8)(4 10)(5 15)(7 13)(9 12)(11 14), (0 9)(1 14)(2 4)(3 12)(5 7)(6 11)(8 10)(13 15)),
|H| = 8.

Base blocks: {01234}, {0191416}, {02589}, {02615 16}, {03713 16}, {04812 16},
{05101116}, {24 5716}, {018 11}, {01 1013}, {0 2 7 14}, {0 2 10 12}, {0 2 11 13},
{03515}, {03912}, {0311 14}, {04514}, {04613}, {0411 15}, {0512 13}, {069 11},
{0612 14}, {07815}, {08 1314}, {09 13 15}, {0 10 14 15}, {2 4 8 13}.

G=H, |G|l =8.



18

D15:

D]g:

KRAMER, KREHER, AND MATHON

An S(3,K,17) of type 480536,
H = ((01)(2 5)(3 6)(4 7)(8 15)(9 14)(10 13)(11 12),
(0 11)(1 12)(2 13)(3 14)(4 15)(5 10)(6 9)(7 8)), |H| = 4.

Base blocks: {01234},{0191416}, {02589}, {02615 16}, {03 6810}, {03 71316},
{047910}, {0481216}, {051011 16}, {23910 16}, {2 4 5 7 16}, {3 4 14 15 16},
{01811}, {011013}, {027 14}, {0 21012}, {02 11 13}, {0 3 5 15}, {0 3 9 12},
{0 3 11 14}, {0 4 5 14}, {0 4 6 13}, {0 4 11 15}, {0 5 12 13}, {0 6 9 11}, {0 6 12 14},
{0 7 8 15}, {0 8 13 14}, {0 9 13 15}, {0 10 14 15}, {2 3 5 6}, {2 3 13 14}, {2 4 8 13},
{241015},{251013},{26913}, {2610 14}, {346 7}, {3489}, {369 14}, {3 78 14},
{37814}, {37915}

G=H, |G| =4.

:An S(3,K,17) of type 4100528,

H={((01234)(56789)(1216 15 13 14), (0 5)(1 9)(2 8)(3 7)(4 6)(10 11)(12 13)(15 16)),
|H| = 10.

Base blocks: {0 1 234}, {0156 15}, {0179 10}, {025 7 12}, {0 5 10 11 14},
{1213 14 15 16}, {018 12}, {01 11 13}, {0 1 14 16}, {0 2 6 16}, {0 2 10 15}, {0 2 13 14},
{061214}, {071315}, {0814 15}, {09 12 15}, {0 10 13 16}, {0 11 12 16}.

G=(H,(148117)(269310)(1215 16 13 14)), |G| = 60.

:An S(3,K,17) of type 4120520,

H={(01841210113147 56139 2)), |H|=15.

Base blocks: {01 7916}, {0510 15 16}, {012 11}, {01 5 12}, {0 1 13 15}, {0 1 4 10},
{01614},{03610}, {03713}, {039 15}.

G=(H,(0143216811)(47 1213109 5 15)), |G| = 5760.

Sub S(2,K,17): Use K = {((01 27512 3 14)(4 6 11 10 13 9 8 15)), with base blocks:
{051015 16}, {0 1 3 8}, {0 6 11 13}.

:An S(3,K,17) of type 4120520,

H=1{((012)(345)(678)(91011)(121314), (01412)(21393)(5101114)(6 7 8 16)),|H| =
24.

Base blocks: {013615},{04101415},{07111315}, {6 781516}, {01216}, {014 12},
{01514},{0179},{01813},{011011}, {045 11}, {04616}, {0569}, {06 7 10},
{0810 16}.

G=(H, (0381109165)(26 1114137 124)), |G| = 384. Three sub S(2,K,17)’s: Use
H for the first two subdesigns.

Base blocks of first subdesign: {0 7 11 1315}, {014 12}, {05 6 9}, {0 8 10 16}.

Base blocks of second subdesign: {0 4 10 14 15}, {6 7 8 15 16}, {01 8 13}, {0 5 6 9}. Use
K = ((012)(345)(678)(910 11)(12 13 14), (0 11 13)(1 3 10)(2 14 5)(4 12 9)(6 8 16)),
|K| = 12, for the third subdesign.

Base blocks of the third subdesign: {0 4 10 14 15}, {6 7 8 15 16}, {0 1 7 9}, {0 3 8 12}.
An 5(3,K,17) of type 4120520,

H={(012)(345)(678)(91011)(121314), (014 104)(12 5 13)(311 912)(6 16 7 8)), |H| =
24.

Base blocks: {013615},{04101415},{07111315}, {6 781516}, {01216}, {01411},
{01514},{0179},{01813},{0468},{04716},{0569}, {06710}, {0810 16}.

G=(H (02110312)(41311 149 5)(7 16 8)), |G| = 288.
Sub S(2,K,17): Use H, with base blocks: {04 1014 15}, {678 1516},{01813},{0569}.

:An S(3,K,17) of type 4120520,

H=((012)(345)(678)(91011)(1213 14), (2 16)(4 13)(5 9)(7 10)(8 12)(11 14)), |H| = 24.
Base blocks: {0136 15}, {0 41014 15}, {37 121415}, {012 16}, {01 4 8}, {01 5 10},
{011114}, {03413}, {03514}, {03812}, {04511}, {0569}, {3468}, {34711},
{34914}, {3611 14}.

G = (H,(1 6)(2 9)(5 16)(7 11)(8 12)(10 14)), |G| = 192.

Two subdesigns: Use K = {((0 2 11 6)(1 8 14 9)(3 5 16 4)(7 10 13 12),

(0 6)(1 3)(2 11)(4 8)(5 9)(7 10)(12 13)(14 16)) where |K| = 8.
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Base blocks of first subdesign: {0912 15 16}, {01510}, {026 11}, {03 4 13}, {1 3 14 16},
{71012 13}.

Base blocks of second subdesign: {0 7 11 13 15}, {1 8 9 14 15}, {0 1 5 10}, {0 2 4 9},
{03812}, {1712 16}.

An S(3,K,17) of type 4120520,

H={((014121192)(16138107)(354), (010111 6 8)(2 14 1312 9 7)(4 16 5)), |[H| = 24.
Base blocks: {0136 15}, {0258 15}, {07111315}, {345 15 16}, {012 16}, {01 5 10},
{0179}, {01813}, {0111 14}, {0210 13}, {034 11}, {03 5 13}, {0 3 7 16}.

G = (H, (07 13)(2106)(3 4 16)(8 9 14)), |G| = 144.

Sub S$(2,K,17): Use K = ((0 1 2)(3 4 5)(6 7 8)(9 10 11)(12 13 14),

(0 9 12)(1 6 11)(2 13 8)(3 4 5)(7 14 10)), |K| = 12, with base blocks: {0 7 11 13 15},
{3451516}, {01 510}, {06 14 16}.

:An S(3,K,17) of type 4120520,

H={(0851429615)(1107 16 311 4 13), (0 2)(4 7)(8 15)(9 14)(10 16)(11 13)).|H| = 16.

Base blocks: {0123 12}, {0491215},{07111216},{0145},{0167}, {01811},
{011314},{0247}, {0256}, {0289},{021011}, {04814}, {04 10 16}, {0 5 8 16},
{071013}, {1347}, {131011}.

G=(H,(0736)(1524)(8161014)(913 11 15) ), |G| = 128.

Three subdesigns: Use K = {(0 3)(1 2)(4 5)(6 7)(8 10)(9 11)(13 15)(14 16),
(0 2)(1 3)(4 7)(5 6)(8 9)(10 11)(13 16)(14 15), (0 7)(1 5)(2 4)(3 6)(8 15)(9 14)(10 13)(11 16),
(0 10)(1 9)(2 11)(3 8)(4 16)(5 14)(6 15)(7 13)) where |K| = 16.

Base blocks of first subdesign: {01 23 12}, {04 8 14}, {05 11 15}, {0 6 9 16}, {0 7 10 13}.
Base blocks of second subdesign: {012312},{041016}, {05913}, {061114},{07815}.
Base blocks of third subdesign: {04912 15},{01811},{02 56}, {0314 16}, {0710 13}.
An S(3,K,17) of type 4120520,

H = {(1213)(4516)(7 8 14)(10 11 15), (0 10 13 15)(1 9 2 11)(5 16)(6 14 7 8)), |H| = 24.

Base blocks: {0 1 2 12 13}, {0 3 6 9 12}, {0 4 11 12 14}, {3 4 5 12 16}, {6 7 8 12 14},
{0135},{0245}, {0168}, {01714}, {01911}, {03710}, {04610}, {0479},
{3467}, {4578}

G=(H, (09111)(2101315)(35 16 4)(6 14)), |G| = 96.

One subdesign: Use K = ((0 10 13 15)(1 9 2 11)(5 16)(6 14 7 8),
(0 9)(1 10)(2 15)(5 16)(8 14)(11 13), (3 4)(5 16)(6 14)(7 8)(9 11)(10 15) ) where |K| = 16.

Base blocks of subdesign: {01212 13},{3451216}, {67812 14},{038 11}, {05 10 14}.
An 5(3,K,17) of type 4120520,

H = ((013 10)(1 2 9)(3 6 11)(4 12 5)(7 8 14), (0 13 10)(1 4 11)(2 14 5)(3 8 9)(6 12 7)),
|H| =12.

Base blocks: {0169 16}, {0101315 16}, {1357 16}, {1812 15 16}, {01 2 14}, {01 3 13},

{01412},{01515},{01710},{01811},{02410}, {02615}, {09 1415}, {124 7},
{141115}, {161415}, {1238}, {1256}, {12915}, {161415}.

G=(H,(012539)(126710)(4138 14 11)) = PSLy(5) acting on the 15 unordered pairs
of the projective line. The points 15 and 16 are fixed. |G| = 60.

Three sub S(2,K,17)’s: Use H.

Base blocks of first subdesign: {1 35 7 16}, {0 10 1315 16}, {0 1 2 14}, {1 4 11 15}.
Base blocks of second subdesign: {1 3 5 716}, {0 10 13 15 16}, {01 4 12}, {1 2 9 15}.
Base blocks of third subdesign: {13 5 7 16}, {010 1315 16}, {018 11}, {1 6 14 15}.

:An S(3,K,17) of type 4120520,

H={(017)(15134216)(69)(7 1114 108 15), (04)(1 3)(2 16)(5 13)(6 10)(7 9)(8 15)(11 14)),
|H| = 24.

Base blocks: {01212 13}, {03 6912}, {04 111214}, {6 78 1214}, {013 7}, {01 5 16},
{0189}, {011115}, {0478}, {06710}, {6711 15}.

G=(H, (07)(16)(214)(310)(49)(5 15)(8 13)(11 16))}, |G| = 48.



20

D27:

D23 H

Dgl:

D32 :

KRAMER, KREHER, AND MATHON

:An S(3,K,17) of type 4120520,

H={((012)(345)(678)(91011), (0145 3 15 2)(1 4)(6 13 11 9 16 8)(7 10)), |H| = 24.

Base blocks: {0 1212 13}, {03 6 912}, {08 10 12 16}, {0 1 3 10}, {0 1 5 16}, {0 1 6 7},
{0789}, {071011}.

G =H, |G| =24.

An S(3,K,17) of type 4120520,

H={((012)(345)(678)(91011)(12 13 14), (1 2)(3 5)(6 8)(9 12)(10 14)(11 13),
(0 14 10)(1 12 11)(2 13 9)(6 7 8))7 |H = 18.

Base blocks: {0 13 6 15}, {0 4 10 14 15}, {0 7 11 13 15}, {0 9 12 15 16}, {3 4 5 15 16},
{6 781516}, {01216}, {01411}, {0178},{01910},{0349}, {0357} {03812},
{031116}, {0468}, {04716}, {0610 13}, {06 14 16}.

G=H, |G| =18.

An 5(3,K,17) of type 4120520,

H=((051324)(61179810)(1316)(1415), (06)(1 7)(28)(3 9)(4 10)(5 11)(13 14)(15 16)),
|H| =12.

Base blocks: {012 12 13}, {0369 12}, {0 4 11 12 14}, {1213 14 15 16}, {01 3 7}, {0 1 4 6},

{01516}, {01809}, {0110 14}, {01 11 15}, {0 3 13 16}, {0 3 14 15}, {0 4 9 15},
{0613 14}, {0615 16}, {07 14 16}.

G=H, |G| =12.

:An S(3,K,17) of type 4120520,

H=((012)(345)(678)(91011), (09)(1 10)(2 11)(3 6)(4 7)(5 8)(13 15)(14 16)), |H| = 6.
Base blocks: {01212 13}, {0369 12}, {04 11 12 14}, {05712 15}, {34512 16}, {12 131415 16},
{0134}, {015 16}, {0167}, {0189}, {01 10 14}, {01 11 15}, {037 10}, {03 13 16}, {03 14 15},
{045 13}, {046 10}, {0479}, {048 15}, {058 14}, {06 13 14}, {06 15 16}, {078 13}, {07 14 16},
{09 13 15}, {3467}, {348 14}, {36 13 15}.

G=H, |G|l =86.

:An S(3,K,17) of type 4120520,

H=1{((012)(345)(678)(91011)), |H|=3.

Base blocks: {0 1 2 12 13}, {0 3 6 9 12}, {0 4 11 12 14}, {0 5 7 12 15}, {0 8 10 12 16},
{3451216}, {37 111213}, {6 7812 14}, {9 10 11 12 15}, {12 13 14 15 16}, {0134},
{015 16}, {0167}, {0189}, {01 10 14}, {01 11 15}, {037 10}, {038 11}, {03 13 16}, {03 14 15},
{045 13}, {046 10}, {0479}, {048 15}, {056 11}, {058 14}, {059 10}, {06 13 14}, {06 15 16},
{078 13}, {07 14 16}, {09 11 16}, {09 13 15}, {0 10 11 13}, {3467}, {348 14}, {349 10},
{3411 15}, {36 10 16}, {36 13 15}, {378 16}, {38 10 13}, {39 13 14}, {39 15 16}, {311 14 16},
{679 15}, {67 10 11}, {69 11 14}, {69 13 16}, {6 10 14 15}.

G=H, |G|l =3.

An S(3,K,17) of type 4120520,

H= ((0 4)(2 13)(3 5)(6 9)(10 14)(11 15))7 |H| = 2.

Base blocks: {0 1 9 14 16}, {0 2 6 15 16}, {0 3 7 13 16}, {0 4 8 12 16}, {0 5 10 11 16},
{12121316}, {13 5816}, {171115 16}, {2 391016}, {2 811 14 16}, {3 6 11 12 16},
{678916}, {T10121416}, {0123}, {0147}, {0156}, {01811}, {01 1013},
{011215},{02413}, {0258}, {02714}, {02911}, {02 1012}, {03411}, {035 14},
{0368},{03912},{031015}, {0469}, {041014}, {0579}, {0512 13}, {067 10},
{0 6 11 13}, {0 6 12 14}, {0 7 8 15}, {0 7 11 12}, {0 8 9 10}, {0 8 13 14}, {0 9 13 15},
{0111415}, {12515}, {1268}, {1279}, {121011}, {13615}, {13714}, {131012},
{16912}, {161114}, {17812}, {181014}, {2356}, {23711}, {23815}, {2313 14},
{25914}, {2511 12}, {26712}, {26913}, {261014}, {27813}, {2 71015}, {289 12},
{211 13 15}, {2 12 14 15}, {3 5 7 12}, {3 5 11 15}, {3 6 9 14}, {3 7 8 10}, {3 7 9 15},
{38911}, {3 81214}, {31011 14}, {6 7 14 15}, {6 8 10 11}, {6 9 11 15}, {6 10 12 15},
{81112 15}.

G=H,|G|l =2.

An 5(3,K,17) of type 4120520,

H = ((012)(1 11)(2 10)(3 9)(4 8)(5 13)(6 14)(7 15)), |H| = 2.
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Base blocks: {0 1 9 14 16}, {0 2 6 15 16}, {0 3 7 13 16}, {0 4 8 12 16}, {0 5 10 11 16},
{135816}, {1461016}, {1 7111516}, {23910 16}, {2457 16}, {3 4 14 15 16},
{56131416},{0123},{0147}, {0156}, {01811}, {011013}, {0112 15}, {02413},
{0258},{02714}, {02911}, {02 1012}, {03411}, {03 5 14}, {03 6 8}, {03 9 12},
{031015}, {04515}, {0469}, {041014}, {0579}, {05 1213}, {06 7 10}, {06 11 13},
{0612 14}, {0 7 8 15}, {0 8 9 10}, {0 8 13 14}, {0 9 13 15}, {0 11 14 15}, {1 2 4 14},
{12515}, {12609}, {1278}, {121011}, {1349}, {13615}, {13714}, {1311 13},
{14513}, {14815}, {15710}, {16813}, {1611 14}, {17913}, {1810 14}, {1910 15},
{1131415}, {2356}, {23815}, {2313 14}, {24810}, {24915}, {2 59 14}, {2 5 10 13},
{26713}, {261014}, {271015}, {28913}, {346 7}, {34813}, {35913}, {369 14},
{37915}, {46814}, {4613 15}, {4 7 13 14}, {5 7 13 15}, {6 7 14 15}.

G=H,|G|l =2.

:An S(3,K,17) of type 4120520, |G| = 1.

Blocks: {01914 16},{0261516},{0371316},{0481216},{05101116},{12121316},
{135816}, {1461016}, {1 7111516}, {23910 16}, {2 4 57 16}, {2 8 11 14 16},
{34141516},{36 111216}, {4911 1316}, {56 1314 16}, {59 12 15 16}, {6 7 8 9 16},
{7101214 16}, {8 10131516}, {0123}, {0147}, {0156}, {01811}, {0110 13},
{011215},{02413},{0258},{02714},{02911},{021012}, {03 4 11}, {03 5 14},
{0368},{03912},{031015}, {045 15},{0469},{041014}, {0579}, {05 1213},
{0 6 7 10}, {0 6 11 13}, {0 6 12 14}, {0 7 8 15}, {0 7 11 12}, {0 8 9 10}, {0 8 13 14},
{091315},{011 1415}, {12414}, {12515},{1268}, {1279}, {121011}, {1349},
{13615}, {13714}, {131012},{131113}, {14513}, {14815}, {141112},{1 5710},
{15911}, {151214},{16713},{16912}, {1611 14}, {17812}, {18913}, {1810 14},
{191015}, {1131415},{23412},{2356}, {23711},{23815}, {2313 14}, {246 11},
{24810}, {24915}, {25914}, {251013},{25 1112}, {26 712}, {26913}, {2 6 10 14},
{27813},{271015},{28912},{211 1315}, {21214 15}, {34 510}, {346 7}, {34813},
{35712},{35913}, {351115}, {36914}, {361013}, {37810},{37915}, {38911},
{3812 14}, {3 10 11 14}, {3 12 13 15}, {4 5 6 12}, {4 5 8 9}, {4 5 11 14}, {4 6 8 14},
{461315}, {47811}, {47910}, {4 712 15}, {4 7 13 14}, {4 9 12 14}, {4 10 11 15},
{41012 13}, {5 6 711}, {5 6 8 15}, {5 6 9 10}, {5 7 8 14}, {5 7 13 15}, {5 8 10 12},
{58 1113}, {51014 15}, {6 7 14 15}, {6 8 10 11}, {6 8 12 13}, {6 9 11 15}, {6 10 12 15},
{7911 14}, {791213}, {71011 13}, {89 14 15}, {8 11 12 15}, {9 10 11 12}, {9 10 13 14},
{11 12 13 14}.
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