On the state of strength-three
covering arrays

M. Chateauneuf

Center for Applied Cryptographic Research
University of Waterloo

Waterloo Ontario N2L 8G1
mchateau@cacr.math.uwaterloo.ca

D.L. Kreher

Department of Mathematical Sciences
Michigan Technological University
Houghton MI 49931 1295
kreher@mtu.edu

ABSTRACT

A covering array of size N, strength t, degree k, and order v is a k x N array on

v symbols in which every ¢t x N subarray contains every possible ¢t x 1 column
at least once. We present explicit constructions, constructive upper bounds
on the size of various covering arrays, and compare our results with those of a
commercial product. Applications of covering arrays include software testing,
drug screening, and data compression.

1. INTRODUCTION

This article focuses on constructing new covering arrays with strength ¢ = 3, and
establishing new bounds on the covering array numbers CAN(3,k,v). A covering
array, CA(N;t, k,v), of size N, strength t, degree k, and order v, is a k x N array
on v symbols such that every ¢ x N subarray contains every ¢ x 1 column on v
symbols at least once. A covering array is optimal if it has the smallest possible
number N of columns. This number is the covering array number,

CAN(¢, k,v) = min{N : 3CA(N;t,k,v)}.
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In Figure 1 we display a CA(10;3,5,2). An example application of covering arrays

1010100011
1010010101
1001001110
1001110001
1010111000

FIG. 1. CA(10;3,5,2)

appeared in the IEEE article [11] from research done at Bellcore™. Tt involved
the employment of a covering array for testing a telephone switch system. Figure 2
displays four parameters and the possible values for each parameter. An assign-
ment of each value to a symbol from the set {0,1} has been made. Each test run

parameters(k) values(v)
Call Type Local(0)
Long Distance(1)
Billing Caller(0)
Collect(1)
Access Loop(0)
ISDN(1)
Status Success(0)
Busy(1)

FIG. 2. Four discrete parameters, each with 2 possible values.

of the switch system is a setting of the parameter values. Thus a test run may be
represented as a vector in {0,1}*. If 3-way coverage of the parameter value combi-
nations is desired, then a covering array, CA(N;3,4,2), can be used by associating
each column of the array with a setting of the parameter values. Thus each of the
N columns represents a test run, and all possible combinations of any 3 parameter
values are tested. The problem is to minimize N, reducing the testing cost.

There are 8 binary 3-vectors and 16 binary 4-vectors. If the test-set consists of
all these 4-vectors, then certainly all 3-way combinations will be tested. Therefore,
we know 8 < N < 16. Fortunately, there is a collection of 8 tests which provides
the desired 3-way coverage, see Figure 3. Since N = v! in this case, the array is an
orthogonal array, see Section 2.

Other applications related to covering arrays include: authentication [29], block
ciphers [20], data compression [26], intersecting codes [14], oblivious transfer [6].
pseudorandomness [21], resilient functions [2], span programs [16], universal hash-
ing [7], and zero-knowledge [5],



STRENGTH-THREE COVERING ARRAYS 3

CallType (O 0 0 0 1 1 1 1
Billimg |O 0 1 1 0 0 1 1
Access |0 1 0 1 0 1 0 1
Status |0 1 1 0 1 0 0 1

FIG. 3. KEight tests provide three-way coverage of four binary parameters.

2. BACKGROUND RESULTS

In this section, we present basic and previously established results which we cite in
the tables of Section 6. Let A be a CA(N; t, k,v) with entries a;; € V = {0,...,v—1}.

Row-collapsing. If any row from A is deleted we obtain a CA(N;t,k — 1,v). So
CAN(t, k — 1,v) < CAN(t, k,v).

Symbol-collapsing. If each occurrence of the symbol z in the array A is replaced
with a fixed different symbol in V\{z}, then a CA(N;t,k,v — 1) is formed.
Thus

CAN(#, k,v — 1) < CAN(t, k, v).

Derived array bound. Every z € V appears M > v'~! times in row i of A. The
(k — 1) x M array obtained by deleting row ¢ of A and retaining only the
columns with an z on row i forms a CA(M;t — 1,k — 1,v). Therefore,

CAN(t, k,v) > v-CAN(t — 1,k — 1,v).
It was established by Stevens, Moura, and Mendelsohn [27] that
CAN(2,k,v) > v? +3
when 3 <wv < k — 3. Therefore we have the nontrivial lower bound,
v(v? 4+ 3) < CAN(3, k,v),
when 3 <v <k -3.
Product. Let B be a CA(M;¢, k,w) with entries b;; € W = {0,...,w —1}. Form
the k x N array C, with entries (a;;,b;) € V x W for all s = 1,...,k and

j=1,...,N. Then [Cy,...,Cp] is a CA(NM;t, k,vw) on symbol set V x W.
Therefore,

CAN(t, k,vw) < CAN(t, k,v)CAN(t, k, w).
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Construction D. Construct C in three parts as follows:

I i I11
0 B, B B, [V 0 O 0
B, 0 B By |0 V' 0 0
B, By, 0 B; |0 0 V' 0
CA(N;3,k,v—1)| : o
Br—2 Br—2 Br_o Br1|0O 0 0O 0
Br_1 Br_1 Br_1 6 |0 0 0 V'

In part I the symbol set is V' = {1,...,v — 1}, in part II, B; is row 7 of a
CA(M;2,k —1,v — 1) on symbol set V' and 0 = [0,0,...,0], and in part III,
V' =][1,2,...,u — 1]. We claim that C is a CA(N + kM + k(v — 1);3,k,v)
on symbol set V' = V' U {0}. Choose any 3 rows and consider the patterns
of 3-tuples:

T T TYX
T xTYTY
T Y T T2

All patterns on V' are covered in part I. All patterns on V can include 0
once, twice or three times. Those including 0 once are covered in part I, and
those including 0 twice and three times are covered in part III. Therefore,

CAN(3,k,v) < CAN(3,k,v — 1) + k- CAN(2,k — 1,0 — 1) + k(v — 1).

There are many possible similar constructions which are generally only used
to improve bounds in sporadic cases, since in most cases the constructed
array is larger than the arrays produced by later constructions. For example,
an upper bound on CAN(3,6,6) was 343, obtained from a test set generated
by the AETGM system, see Section 5. We used construction D to improve
this bound to 305. Other reasonable applications of this idea are the cases
where v is not a prime power, since the bounds usually come from the next
largest prime power, g > v.

Squaring k. This result of Colbourn, Chateauneuf and Kreher [9] is a general-
ization of a construction due to Atici, Magliveras, Stinson, and Wei [1]. If
((%)!,k) =1, and there is a CA(N;t, k,v), then for j >0,

CAN(¢, k% ,v) < N(G) +1)7.

2.1 Orthogonal Arrays

An orthogonal array of index 1, OA(t, k,v), is a k x v! array with entries from a set
of v symbols such that every ¢ x v* subarray contains every possible ¢ x 1 column
exactly once. Therefore, a CA(vt;t,k,v) is an OA(t, k,v). A well-known family
of orthogonal arrays is the sum-zero arrays, OA(¢,t + 1,v), obtained by taking all
vectors of Z5! whose components sum to zero, see [18]. Therefore, we have:

Theorem 2.1. For all t and v, CAN(t,t + 1,v) = v
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Another well-known family of orthogonal arrays is due to Bush, Reed, and
Solomon, see [18]. For any prime power ¢ > t — 1, there is an OA(t,q + 1,q),
and if ¢ is even, then there is an OA(3,q + 2,¢). Therefore, we have:

Theorem 2.2. For any prime power ¢ >t — 1, CAN(t,q+ 1,q) = ¢*, and if q is
even, then CAN(3,q + 2,q) = ¢°.

The derived array bound and type D constructions show that strength 2
covering arrays are important to the constructions in this article. A closely related
structure is a Latin square. A Latin square of order v is a v X v array on v symbols
such that each symbol appears exactly once in each row and exactly once in each
column. Two Latin squares L; and Ly of order v are orthogonal if the set

{(Ll[zJJ]aIQ[l:J]) 11 S i;j,S ’U}

contains all of the v? possible pairs of symbols. A collection of k pairwise orthogonal
Latin squares of order v is said to be a set of k mutually orthogonal Latin squares
of order v, MOLS(v). Two well-known facts, see [18], are

1. A set of K —2 MOLS(v) is equivalent to an OA(2, k,v), and
2. There exists a pair of MOLS(v), for every order v except v = 2 and v = 6.

Using these two facts, we have

Theorem 2.3. CAN(3,5,2) = 10.

Proof. There is no OA(2,4,2), because there is no pair of MOLS(2). Thus
CAN(2,4,2) > 5. A CA(5;2,4,2) is given in Figure 4, and so, CAN(2,4,2) = 5.
Applying the derived array bound, we have

CAN(3,5,2) > 2- CAN(2,4,2) = 10.

In Figure 4 we exhibit a CA(10;3,5,2) and therefore, CAN(3,5,2) = 10. O
1100100110
TrooT il 0100010
10010 1001001101
11100 1110000011
1111100000

FIG. 4. Optimal covering arrays CA(5;2,4,2) and CA(10;3,5,2).

2.2 Bias and perfect hash families

Due to statistical analysis in many applications, constructions of small sample
spaces in which chosen random variables are almost independent are of interest.
Recent work of Bierbrauer and Schellwat relate this idea of limited-dependence to
the notion of limited-bias. Their reason is that bias is easier to work with. The
following terminology and notation is taken from their articles [3, 2].
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Let A be a k x N, p-ary array for some prime p. A is t-wise e-dependent if for
every set U of s rows, s < t, and every u € I}, vy(u) satisfies

vy (u) 1

N p?

S 67
where vy (u) is the number of times u occurs as a column in the s x N subarray
determined by U. For example, an orthogonal array of strength t is t-wise 0-
dependent (¢-wise independent), and a covering array of strength ¢ has limited
dependence.

For v € ]Fév, the bias of v is

bias(v) = % Z vy(2)¢7 1,

where v, () is the number of times z appears as an entry in v, and ( is a primitive
complex p** root of unity. Notice that 0 < bias(v) < 1, and bias(v) = 1 if and only
if v is a constant vector. The ambiguity due to the choice of { when talking about
vectors is lost when talking of linear spaces: take the bias of a linear space to be
the maximum bias of its nonzero members. For some 0 < € < 1, A is e-biased if
every nontrivial linear combination of its rows has bias < ¢, and A is t-wise e-biased
if every nontrivial linear combination of at most ¢ rows has bias < e.

The following relationship, showing that e-biased arrays are e-dependent, is es-
tablished in [3]. If A is t-wise e-biased for some € > 0, then A is ¢-wise €'-dependent
for some €' < e. From this relationship we see that a k x N, p-ary array which is
t-wise p~f-biased is a covering array, CA(N;t, k, p).

A general construction, given in [3], involves perfect hash families. A perfect hash
family, PHF(N;t, k,m), is a collection of N functions called (k,m)-hash functions,
hj : K — M, |K| = k,|M| = m, such that for each t-subset X C K, there is a
hash function h; which is injective (perfect) on X. A perfect hash family can be
depicted as a k x N array in which the rows are labeled by the elements of K, the
columns are labeled by the functions, h;, and the [i, jl-entry is h;(3).

Theorem 2.4. If there is a PHF(Ny;t,k,m) and a CA(Ns;t, m,v), then there is
a CA(N1Ns;t, k,v).

Proof. Let hy,ha,...,hy, be a PHF(Ny;t, k,m), where h; : K — M and |K| =k
and |M| = m. Let A be a CA(N2;t, m,v) and label the rows of A with the elements
of M. The j-th column of A determines a function f; : M — V, where V is the
v-element set of symbols used in A and f;(z) = A[i, j] if z € M labels row i of A.
The composition of the functions determines the array. That is we take as column
(j1,J2) the k-tuple
[fjl (hjz (m)) ‘T € M]T

To see that these NiN; columns form a CA(NyNs;t, k,v) consider any t-tuple

[m1,ma,...my] of entries from M. The properties of the perfect hash family en-
sures that there is a function h;, for which

hj1 (ml)a h‘j1 (m2)7 R hj1 (mt)
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are all distinct. Now because A is a covering array the t-tuples

[fj2 (hj1 (m1)7 fj2 (hj1 (m2)7 e sz (h’j1 (mt)]

1 < j2 < Ny must include all of the the t-tuples. Therefore the N; Ny chosen
columns form a CA(NyNs;t, k,v) as claimed. O
Two notable bounds obtained from this theorem are:

CAN(3,27,9) < 2187,
using the (optimal) PHF(3;3,73,72) for r > 2 from [4], and
CAN(3,32,8) < 1536,

using the PHF(3;3, 32, 8) from [28].

For many recent results on perfect hash families, see Blackburn [4], Stinson, Wei,
and Zhu [28], Atici, Magliveras, Stinson, and Wei [1], and Kurosawa, Johansson,
and Stinson [20].

3. COVERING ARRAYS FROM GROUPS

In this section we build on a construction of Chateauneuf, Colbourn, and Kreher [9]
that uses 2 and 3 transitive groups. Let M be a k x n array with entries from a
set 2 of v > 2 symbols, let G be a subgroup of Sym(f2), the symmetric group of
permutations on the symbols in Q and let m = |G|. For g € G, M9 is the k x n array
whose [i, j] entry is M[i, j]9, the image of M[i, j] under g. MY is the k x nm array,
[M?:ge€G]. Let C=C(k,Q) = [zJ : z € ] be the k x v array whose columns are
the all-z vectors zJ where
J=[1,1,...,1%.
\—.\,_/
k times

If M has the property that every ¢ x n subarray contains at least one representative
from each non-constant orbit of G acting on t-tuples from 2, [MY C] is a CA(nm +
v;t, k,v). The array M is called a starter array with respect to G, and

The following example illustrates the idea of using starter arrays and groups to
construct covering arrays and shows that this construction can be optimal.

Ezample: Let t = 3,2 = {0,1,2}, and G = Sq. The action of G on 3-tuples from
Q has five orbits:

Orbit No. 0 1 2 3 4
012 001122 001122 001122 001122

Orbit 012 001122 122001 122001 122001
012 122001 001122 122001 210210

pattern [zzx]T  [z2y]" [zyz]T [yzz]" [zyz]T

Brief inspection shows the following array, M, is an appropriate starter array to
construct [MY, C], a CA(27;3,4,3). One can easily check that on each set of 3 rows
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there is a representative from each orbi

M =

N = O

O

A CA(27;3,4,3) can also be constructed using Theorem 2.1.
Recall that the projective general linear group of dimension 2 may be seen as
the “fractional linear group”:

ax +b
PGL(2,q) = {w g d

ta,b,c,d €T, U{oo},ad—bc;éO},

in which we define 1/0 = 00,1/00 = 0,1 — 00 = 00 — 1 = 00, and co/oo = 1. Its
action on F, U {oo} is sharply 3-transitive. Similarly, the affine group of dimension
2 may be seen as the “linear group”:

AGL(2,q) ={z— ar+b:a,beF,,a #0}.
Its action on F, is sharply 2-transitive.

Notice in the previous example, G = Sym({0,1,2}) = PGL(2,2). The idea
behind the construction is: if each (non—constant) pattern is found in any three
rows of a starter array, then the 3-transitivity of the group action will ensure that
all 3-tuples appear when the array is developed.

Theorems 3.1, 3.2, and 3.3 were established in [9], using one-factorizations of

K2, to construct appropriate starter arrays. An illustrative example can be found
in [9].

Theorem 3.1. For a prime power ¢q >v—1>1,
CAN(3,20,v) < (20 — 1)(¢* — q) + v.

Theorem 3.2. For a prime power ¢ > v € {3,4},
CAN(3,2v,v) < (2v — 1)(¢* — q) +v.

Theorem 3.3. CAN(3,6,3) = 33.

Theorem 3.4 extends Theorem 3.2 to include the case v = 5.

Theorem 3.4. CAN(3,10,5) < 185.

Proof. There are 396 nonisomorphic one-factorizations of K1g, see Section V' 1.4.4,
Table 4.22, of [15]. Only one of these, found by Kreher and Radzisowski (unpub-
lished) using a clever search, admits an appropriate starter array, see Figure 5. The
desired covering array is [MACL(2:5) (]. O

The starter array in Figure 5 has an interesting symmetry which was studied
with the hope of finding a clever search method for larger cases. Because K12 has
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010 0|0 0|0 0|0 O
Ojr 11 111111
111 0(2 4|2 3|3 4
110 1(4 2|3 2|4 3
2|14 3|1 0|2 4|2 3
213 4|10 1|14 2|3 2
413 2|4 3|11 0|2 4
4(2 3|3 4|0 1|4 2
314 2|3 2|143|10
312 4|2 3|3 4|01

FIG. 5. The starter array developed with AGL(2,5) to construct a CA(185;3,10,5).

526,915, 620 non-isomorphic one-factorizations and, in general, K3, may have as
many as ((2v —1)!)¥~1 [15], narrower searches must be made. One such search was
conducted for v = 7, but none of the candidate starter arrays were appropriate.

A set-system is a pair (V, B), where V is a v-element set of points and B a family
of subsets of V, called blocks. A t-wise balanced design with parameters t-(v, K, ),
is a set-system (V, B) such that each t-element subset of V' is in exactly A blocks.
The parameter K is the set of block sizes and for each k € K we denote the set of
blocks of size k by By. A parallel class in a set-system (V, B) is a collection of blocks
that partition the points. A set-system is resovable if its collection of blocks can be
divided into parallel classes Py, P»,. .., P;. For example a one-factorization of Ko,
is a resolvable 2-wise balanced design with parameters 2-(2n,2,1). This type of
resolvable design was used in Theorems 3.1, 3.2, 3.3 and 3.4. We use another type
of resolvable design, the Near Resolvable Design, to construct the starter arrays in
Theorems 3.5 and 3.6. A Near Resolvable Design NRB(v, k,k — 1), is a resolvable
pairwise balanced design (V, B) of type 2-(v, {1,k},k — 1), with |B;| = v, in which
the blocks are divided into v parallel classes Py, Ps, ..., P,, such that class P; contains
the block {7}. Results on Near Resolvable Designs can be found in [15, I.6.1]. Each
block in By, contains (’2“) t-element subsets of V' and each element appears in exactly
k — 1 non-singleton blocks. Thus it is clear that the number of non-singleton blocks
is

Bl = -1y 2 =D,
(2) k
A labeling of a resolvable set-system (V,B) having parallel classes Py, Ps,..., P,
with a set {2 is a mapping

Label : B —

such that Label(B) # Label(B’) whenever B and B’ belong to the same parallel
class P;. The point-by-class incidence matriz of an () labeled resolvable set-system
(V, B) with parallel classes Py, Ps, ..., P, is the |V| by £ array M given by

M{i,j] = label(B) if i € B and B € P;

forieV,j=1,2,...,L. An example is given in Figure 6.
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Theorem 3.5. CAN(3,7,3) < 45.

Proof. Develop the blocks {{0},{1,2,4},{3,5,6}} mod 7, to form an NRB(7,3,2)
with 7 parallel classes. Use any method to label the three blocks in each class with
the symbols from Q = {0, 1,2} and form the 7 x 7 starter array, M, by constructing
the point-by-class incidence matrix corresponding to the chosen labeling. See for
example Figure 6. Let G = Sym(Q) and consider the array [M9,C]. To see why

of {0}y {1} {2} {3} {4} {53 {6}
1/{1,2,4} {2,3,5} {3,4,6} {0,4,5} {1,5,6} {0,2,6} {0,1,3}
2|{3,5,6} {0,4,6} {0,1,5} {1,2,6} {0,2,3} {1,3,4} {2,4,5}
0 0 2 2 1 2 1 1
1 1 0 2 2 1 2 1
2 1 1 0 2 2 1 2
3 2 1 1 0 2 2 1
4 1 2 1 1 0 2 2
5 2 1 2 1 1 0 2
6 2 2 1 2 1 1 0
FIG. 6. A point-by-class incidence matrix of an NRB(7,3,2)

is a starter array for a CA(45;3,7,3).

this array is a CA(45;3,7,3), consider any 3 rows a,b,c. These are points in Zx.
So, either {a,b,c} occurs as a block of the NRB, or it doesn’t. If {a,b,c} is a
block, then the three pairs, {{a, b}, {a,c}, {b, c}} occur once more each, accounting
for four classes. But each point must still occur in each of the remaining three
classes, and it must occur independently of the others. If the block {a,b,c} does
not occur, then the three pairs from it occur twice, accounting for six classes,
leaving the seventh with the requirement that none of the pairs occur. Therefore,
if we look at any 3 rows of M, we see each of the following patterns of 3-tuples:
{(z,y, 2), (z,z,9), (z,y,2), (y,z,z)}. Consequently, because G is 3-transitive on €2,
[M9,C] is a CA(45;3,7,3). O

Theorem 3.6. CAN(3,8,3) < 45.

Proof. The starter array is constructed as in Theorem 3.5, but with {4, 00} re-
placing block {3} in class 4, for each ¢ € Z7, and oo added to the row labels so the
starter array has 8 rows. Figure 7 shows the starter array M and [MY, C] is easily
checked in a manner similar to Theorem 3.5 to be a CA(45; 3,8, 3). O

Theorem 3.7 is based on a pair of disjoint Steiner Triple System, S(2,3,9), which
make a resolvable 2-(9, {3},2) design.

Theorem 3.7. CAN(3,9,3) < 51.

Proof. The starter array is the point-by-class incidence matrix of two block-disjoint
S(2,3,9). The number of blocks in each $(2,3,9) is b = 12, and there are b/k = 4
classes. Figure 8 shows the starter array M, and [MY9,C] is a CA(51;3,9,3). The
first 4 columns are from one S(2,3,9) and the last 4 columns are from another. O
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01{0,00} {1,00} {2,00} {3,00} {4,00} {5,00} {6,00}
11{1,2,4} {2,3,5} {3,4,6} {0,4,5} {1,5,6} {0,2,6} {0,1,3}
2 {3,5,6} {0,4,6} {0,1,5} {1,2,6} {0,2,3} {1,3,4} {2,4,5}
0 0 2 2 1 2 1 1
1 1 0 2 2 1 2 1
2 1 1 0 2 2 1 2
3 2 1 1 0 2 2 1
4 1 2 1 1 0 2 2
5 2 1 2 1 1 0 2
6 2 2 1 2 1 1 0
00 0 0 0 0 0 0 0
FIG. 7. A starter array for a CA(45;3,8,3).
0710, 1,2} {0,3,6] {0,4,8} {1,3,8}]{0, 1,8} {0,2,5} {0,3,7} {3,5,8)
1143,4,5) {1,4,7) {1,5,6} {2,4,6}|{2,3,4} {1,3,6} {1,4,5} {0,4,6)
2 {6,7,8} {2 5,8} {2 3,7} {0,5,7} {5,6,7} {4,7,8} {2,6,8} {1,2,7}
0 0 0 0 2 0 0 0 1
1 0 1 1 0 0 1 1 2
2 0 2 2 1 1 0 2 2
3 1 0 2 0 1 1 0 0
4 1 1 0 1 1 2 1 1
5 1 2 1 2 2 0 1 0
6 2 0 1 1 2 1 2 1
7 2 1 2 2 2 2 0 2
8 2 2 0 0 0 2 2 0
FIG. 8. A starter array for a CA(51;3,9,3).

Next, we exploit the 3-transitivity of PGL(2,q — 1) and the relatively small size
of AGL(2, ¢), which is 2-transitive, when both ¢ — 1 and ¢ are prime powers. This is
reasonable because the construction using AGL(2, q) presented difficulties for g > 5.
Since PGL(2, g — 1) is quite large, but is sufficiently transitive, we consider using it
on a small part of the starter array, while using AGL(2,q) on the rest. Rosa and
Wallis [23] establish the following:

Lemma 3.8. Forv > 4, any 3 disjoint one-factors of Ko, can be extended to a
one-factorization.

We use Lemma 3.8 to establish the following:

Lemma 3.9. For v > 4, there is a one-factorization of Ka, which contains a
triangle-free triple of one-factors.

Proof. K, has the following one-factorization:

{Fi={{0,i} +j:j € Zy} :i € Ly}
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The union of any three of these one-factors of X, , is triangle-free. Because one-
factors of K, are also one-factors of Ks, and v > 4, any three of the above
one-factors can be extended to a one-factorization of Kz,, by Lemma 3.8. O

We apply the appropriate groups to the appropriate parts of a starter array and
find the following:

Theorem 3.10. When q — 1 and q are prime powers, and v < q, there is a
CA(N; 3, k,v) with

N =3q(g—1)(g—2) + (2v —4)q(g — 1) + v ~ 5v°.

Proof. Let F be a one-factorization of s, which by Lemma 3.9 contains a triple
Fi1,Fa, F3 of triangle-free one-factors. Construct M3, the 2v x 3 array, as in the
construction in Theorem 3.1, using Fi, Fa, F3. Let My be the 2v x (2v — 4) array
corresponding to the remaining one-factors, and let M; = C(2v,Z,). On any 3
rows of M3 there must be at least one column which has 3 distinct entries. By
arguments similar to those in the proof of Theorem 3.1, the remaining patterns of
3-tuples occur in Ms and M;. Therefore, the desired covering array is:

L VN )

4. GENERALIZATIONS OF ROUX’S THEOREM

The following theorem appeared in Sloane [25], and was taken from Roux’s PhD
dissertation [24].

Theorem 4.1. CAN(3,2k,2) < CAN(3, k,2) + CAN(2, k,2).

The construction is simple and instructive. First append a CA(Ns;2,k,2) to a
CA(N3; 3, k,2), making a k x (N3 +Ns) array. Then copy it below itself, producing a
2k x (N3 + N) array, and replace the copied strength 2 array by its bit-complement
array (switch 0 to 1 and 1 to 0).

We cannot simply double the CA(N3;3,k,2) for then it would be possible to
choose three rows in the constructed array in which a row of the original covering
array is repeated. The additional columns arising from the appended CA(N»; 2, k, 2)
are needed to neutralize this problem.

The constructions in this section were inspired by this idea. First we construct
strength two covering arrays using ordered designs, and then we generalize Roux’s
theorem. An ordered design, OD(t,k,v), is a k x (})t! array with entries from a
v-element set V' such that in any ¢-tuple of rows, every t-tuple of ¢ distinct entries
occurs exactly once. A v by v Latin square L is idempotent if L[i,i] = ¢ for all
and they exist when v > 3. It is easy to see that an OD(2,3,v) is equivalent to
an idempotent Latin square of order v and so they exist for all v > 3. Also for all
prime powers g the group AGL(2, q) is sharply 2-transitive. Thus, the ¢ X (¢ — 1)
array whose columns are the permutation representations of elements of AGL(2, q)
forms an OD(2, ¢, q), see [15, IV.30.2].
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Theorem 4.2. For v > 3, CAN(2,3k,v) < CAN(2,k,v) + v(v — 1)
Proof. Let A be a CA(N2;2, k,v), let B be an OD(2, 3,v), and let B; be row 7 of B,

repeated k times. We claim the following array, C, is a CA(N2 + v(v — 1); 2,3k, v):

A B
C: A82
A Bs

Choose any two rows of C. If they include distinct rows of A then all 2-tuples are

covered. Otherwise, suppose 2 rows of A are repeated. Then by construction, two

distinct rows of B are included. Therefore, all 2-tuples with repeated symbols are

covered by the first Ny columns of C, all 2-tuples with distinct symbols are covered

by the last v(v — 1) columns of C, and C is the desired covering array. O
Using an OD(2, ¢, q) we have

Corollary 4.3. For v < q, CAN(2,qk,v) < CAN(2,k,v) + q(q — 1).

Theorem 4.4. If there is an OD(2,m,u) then for v <wu and 2 < k < m,
CAN(2,m(m — 1)k,v) < CAN(2, k,v) + 2u(u — 1).

Proof. Let A be a CA(N2;2,k,v), let B be an OD(2,m,u), and let B; be row

1 of B, repeated k times. For ¢ = 1,...,m — 1, and subscripts € Z.,, construct
mk x (Na + 2u(u — 1)) arrays as follows:
A B Bit1
A B Bii2
Ci — - - -

A Bm—l Bz’+m—1
A Bm B'i+m

Let C=[Cy,Co,...,Cp — 1]T be the concatenation of these arrays, top to bottom.
Any two rows of C include either a repeated row of A and two distinct rows of B, or
just the opposite. Either way, all 2-tuples with distinct entries appear in one half,
and those with repeated entries appear in the other. Thus, C is a

CA(Ny + 2u(u — 1);2,m(m — 1)k, v).

Using an OD(2, g, q), we have for 2 < k,v < ¢

The following constructions for strength 3 arrays are similar. Using only two
copies of a CA(3,k,v) is an easier construction than using three due to the fact
that tripling allows a single row of the covering array to be chosen three times, thus
covering only pattern [z, z,z]T. Interchanging bits in Roux’s theorem is the binary
form of deranging the symbols: instead of merely ensuring that 0 — 1 and 1+ 0,
we show that supplying all possible maps x — y for x # y is sufficient for doubling
the number of rows.
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Theorem 4.5. CAN(3,2k,v) < CAN(3,k,v) + (v — 1)CAN(2, k, v).

Proof. Let A be a CA(N3;3,k,v), and B be a CA(Ns;2,k,v), both on the symbol
set {1,2,3,...,v}. Let C, be the cyclic group of permutations generated by

r=(1,2,3,...,0).

Construct C as follows:

c_[AB B B
“|AB™ BT ... B""

where BY is the array obtained by applying the permutation g to each of the symbols
in B. Consider three rows of C, a,b,c € {1,...,2k}, and all patterns of 3-tuples:

T T TYX
T TYZTY
T Y TIT =2

If a,b, c include 3 distinct rows of A, then all triples on these rows occur among
the first N3 columns. If a < b < k < ¢ = a + k, then the triples with patterns
[z,y,2]" or [z,z,2]" occur in the first N3 columns of C. For pattern [z,z,y]" we
observe that there is a permutation, 7/ € C,, which maps z to y. Hence the triples
with this pattern are covered in the corresponding section of C, Slmﬂarly, patterns
[y, z,z]" and [z,y, ] are covered since there is a permutation 7/ mapping y to =
and permutation 77 which maps z to z. Checking the case ¢ = b + k is similar.
The other cases a < k < b < ¢ are easily checked, using the inverse permutations.
Therefore, C is a covering array, CA(N3 + (v — 1)N»; 3, 2k, v). O
Theorem 4.5 and the result

. CAN(2,k,v) w
lim ——————+ = —
k—oo  logy k 2

proven in [17] give us our next theorem:

Theorem 4.6.

1 CANG ko) _ (v)

oo logk 2

5. COMPARISON WITH A COMMERCIAL TESTING TOOL

The AETG™ Web (AETG is a service mark of Telcordiatm Technologies, Inc.)
is an online commercial system which generates test sets based on a model of a
system. The system is located at http://aetgweb.argreenhouse.com. The tester
can input names of parameters, create relations between the parameters, define
levels for each parameter, specify coverage, omit certain combinations from the test
set or require the occurrence of certain combinations, and more. The details are
discussed in [12, 10, 11]. The covering arrays constructed using algebraic techniques
such as those introduced in this article provide complete three-way coverage of
discrete parameters, all with the same number of levels, and are smaller than the
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TABLE I. Relative sizes of CA(N;3,k,v): entries are (AETG,algebraic methods).

k\v 3 4 5 6 9 10
6 47,33 105,64 343,305 1508,1331
7 50,45 116,88 229,185 1664,1331
8 56,45 131,88 249,185 1832,1331
9 60,51 141,112 272,185 1998,1331
10 63,55 150,112 287,185 2145,1331
11 65,57 157,121 308,225 2283,1331
12 71,57 166,127 319,225 548,510 2414,1331
27 ?,2187 0,2541

corresponding test sets generated by the AETG system. We expect our methods to
improve results on other types of test sets such as adaptive and mixed-level.

Table I compares the sizes of a few test sets developed in this article with those
generated by AETG. When we attempted to construct a covering array with 27
factors at 9 levels, the system ran for several hours and returned no result, so we
aborted the computation. Our next attempt involved 27 factors at 10 levels. After a
few seconds the system returned a test set of size 0, which seems to indicate system
failure. Generation of 4-way covering test sets was attempted and the system failed
to produce any results.

6. TABLES

Tables III, IV, V, and VI show current bounds on the covering array numbers,
CAN(3, k,v) and CAN(2, k,v). The [k,v]-entry is either N, when CAN(t,k,v) = N,
or [N¢, N,], when only N, < CAN(t,k,v) < N, is known. The superscripts are
decoded in the Table II. When an entry has no superscript, it is due to row-
collapsing.



16 CHATEAUNEUF AND KREHER

TABLE II. Key for covering array tables.

No OA Bush

Sloane[25]
PHF(N1;t, k,m) x CA(Na;t, m,v) Theorem?2.4, bias[3, 2]
CAN(t, k,v — 1) < CAN(¢, k,v) symbol-collapsing
CAN(t, k,v) > CAN(t — 1,k — 1,v) derived array bound
CA(M;t, k,w) x CAN(N;t,k,v) product
No MOLS(2) Theoreml
[MASLZa) ") Theorems3.2 and 3.4

Nurmela[22]

squaring k[9]

construction D
CAN(3, 2k, v) < CAN(3,k,v) + (v — 1)CAN(2, k, v) Theorem 4.5

W HF® 03I RIS TTRNO A0 T

OA Sloane[18]
Katona[19]
Ostergard-Mallows[9, 25]
Stevens[26]

CAN(2, 3k, v), CAN(2, gk, v) Theorem 4.2,Corollary4.3

AETG Cohen, et.al.[13]
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TABLE III. CAN(2,k,v)

k\y 2 3 4 5 6 7 8 9 10 11
3]4™ 9 16 25 36™ 49 64 81 100 121
4|5 g™ 16 25 37¢ 49 64 81 100™ 121
5| 6 11°  16™ 25 37,39" 49 64 81 100 ,101 121
6| 6 12 19°  25™ 37 ,41° 49 64 81 100 ,101° 121
71 6 12 19,21°  29° 37 ,42° 49 64 81 100,120 121
8| 6 12,13 19,23° 29,33" 39°,42¢  49™ 64 81 100 ,120 121
9| 6 12 ,13° 19,24 29,35° 39 ,48" 52°63 64™ 81 100 ,120 121
10| 6" 12 ,14° 19,24' 29,37° 39 ,52° 52 ,63° 67°,80 81™ 100,120 121
11| 7 12 ,15 19,25" 29,38" 39 ,55° 52 ,73° 67 ,80° 84°,120 100 ,120 121
12| 7 12 ,15 19,26 29,40° 39 ,57° 52 ,76' 67 ,99° 84 ,120 103°,120  121™
13| 7 12 ,15 19,26° 29,41° 39 ,58° 52 ,79° 67 ,102° 84 ,120%¢ 103 ,120° 124°,231
14| 7 12 ,15 19,27 29,42° 39 ,60° 52 ,81° 67 ,104° 84 ,131° 103 ,162° 124 ,231
15| 7™ 12 ,15 19,27% 29,43° 39 ,61° 52 ,83¢ 67 ,107° 84 ,135° 103 ,166° 124 ,231
16| 8 12 ,15 19,28 29,45 39 ,69° 52 91 67 ,120 84 ,153 103 ,180 124 ,231
17| 8 12 ,15 19,28 29,45 39,76 52 ,91 67 ,120 84 ,153 103 ,180 124 ,231
18| 8 12,15 19,28 29,45 39,76 52 ,91 67 ,120 84,153 103 ,180 124 ,231
19| 8 12 ,15° 19,28 29,45 39 ,76 52 ,91 67 ,120 84 ,153 103 ,180 124 ,231
200 8 12 ,17 19,28° 2945 39,76 52 91 67 ,120 84 ,153 103 ,180 124 ,231
21] 8 12 ,17 19,31 29,45 39,76 52,91 67 ,120 84 ,153 103 ,180¥ 124 ,231
22| 8 12 ,17 19,31 2945 39,76 52 .91 67,120 84 ,153 103 ,202 124 ,231
23| 8 12 ,17 19,31 2945 39,76 52,91 67,120 84,153 103 ,202 124 ,231
24| 8 12 ,17° 19,31 2945 39,76 52 ,91 67,120 84,153 103 ,202 124 ,231
25| 8 12 ,18 19,31° 29,45° 39 ,76 52 ,91 67 ,120 84,153 103 ,202 124 ,231
26| 8 12 ,18 19,32 2949 39,76 52 91 67,120 84 ,153 103 ,202 124 ,231
27| 8 12 ,18 19,32 2949 39,76 52 ,91 67,120 84,153 103 ,202 124 ,231
28| 8 12 ,18 19,32 2949 39,76 52,91 67,120 84,153 103 ,202 124 ,231
29| 8 12 ,18 19,32 2949 39,76 52 .91 67,120 84 ,153 103 ,202 124 ,231
30| 8 127,18° 19,32° 29,49° 39 ,76° 52 ,91° 67 ,120° 84 ,153' 103 ,202 124 ,231
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TABLE IV. CAN(2,k,v)

k\o| 12 13 14 15 16 17 18 19

3 144 169 196™ 225 256 289 324™ 361

4 144 169 196 ,225 225 256 289 324 ,3337 361

5 144 169 196 ,225 225 256 289 324 ,360 361

6 144 169 196 ,225¢  225™ 256 289 324 ,360 361

7 144™ 169 196 ,255 225 ,255 256 289 324 ,360 361

8 | 144 ,169 169 196 ,255 225 ,255 256 289 324 ,360 361

9 (144 ,169 169 196 ,255 225 ,255 256 289 324 ,360 361

10 | 144 ,169 169 196 ,255 225 ,255 256 289 324 ,360 361
11]144 ,169 169 196 ,255 225 ,255 256 289 324 ,360 361
12144 ,169 169 196 ,255 225 ,255 256 289 324 ,360 361

13 (144 ,169 169 196 ,255 225 ,255 256 289 324 ,360 361
14147%,169¢  169™ 196 ,255 225 ,255 256 289 324 ,360 361
15(147 ,255 172°,255 196 ,255 225 ,255 256 289 324 ,360 361
16147 ,255 172 ,255 199°.255 225 ,255 256 289 324 ,360 361
17147 ,255 172 ,255 199 255 228°,255 256™ 289 324 ,360 361
18147 ,255% 172 ,255¢ 199 ,255¢ 228 ,255° 259°,288 289™ 324 ,360 361
19(147 ,276 172 ,325 199 ,360 228 ,288% 259 ,288° 292°.360 324 ,360 361
20(147 276 172 ,325 199 ,360 228 ,360 259 ,360 292 ,360 327°,360  361™
211147 ,276° 172 ,325 199 ,360¢ 228 ,360¢ 259 ,360¢ 292 ,360¢ 327 ,360° 364°,529
22147 ,288 172 ,325 199 ,437 228 450 259 ,496 292 561 327 ,529 364 ,529
23(147 288 172 ,325 199 ,437 228 450 259 ,496 292 561 327 ,529 364 ,529
24147 288 172 ,325 199 ,437' 228 450 259 ,496 292 561 327 ,529¢ 364 ,529¢
25|147 ,288 172 ,325 199 ,437 228 450 259 ,496 292 561 327 ,600¢ 364 ,600¢
26 (147 288 172 ,325 199 ,437 228 450 259 ,496 292 561 327 ,625¢ 364 ,625¢
271147 ,288 172 ,325 199 ,437" 228 450 259 ,496 292 ,561 327 ,666 364 ,703
28(147 ,288 172 ,325 199 ,437 228 ,450 259 ,496 292 561 327 ,666 364 ,703
29147 ,288 172 ,325 199 ,437 228 450 259 ,496 292 561 327 ,666 364 ,703
30147 ,288° 172 ,325¢ 199 ,437¢ 228 450 259 ,496° 292 ,561* 327 ,666° 364 ,703!
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TABLE V. CAN(3,k,v)

K\ 2 3 4 5 6 7 8 9

4| 8™ 27™ 64 125 216™ 343 512 729

5| 109 282,33 64 125  222¢ 275" 343 512 729

6 12 33" 64™ 125™ 222 305" 343 512 729

7 12 36°,45 76°,88 125 ,185 222 ,343 343 512 729

8 12 36 ,45' 76 ,88" 145°185 222 ,343Y  343™ 512 729

9 12 36 ,51" 76 ,112 145 ,185 234°,470 343 512 512 729
10| 12 36 ,55' 76 ,112' 145 ,185" 234 ,470' 364°,512° 512™ 729™
11| 12 36,57 76,121 145 225 234 510 364 ,637 536°,960 729 ,1331
12|14°,15° 36 ,57° 76 ,121' 145 ,225' 234 ,510' 364 ,637 536 ,960 756°,1331¢
13|14 ,16 36 ,69 76 ,151 145 ;301 234 ,553 364 ,637 536 ,960 756 ,1377
14|14 ,16° 36 ,69' 76 ,151' 145 ,301' 234 553 364 ,637 536 ,960 756 ,1377
15|14 ,17 36 ,74 76 ,159 145 317 234 ,553 364 ,637 536 ,960 756 ,1377
16|14 ,17° 36 ,74' 76 ,159' 145 ,317° 234 ,553' 364 ,637° 536 ,960 756 ,1377
17|16°,18 36 ,77 76 ,184 145 ;325 234 ,710 364 ,890 536 ,960 756 ,1377
18|16 ,18 36 ,77" 76 ,184 145 325! 234 ,710' 364 ,890 536 ,960' 756 ,1377
19|16 ,18 36 ,83 76 ,184 145 333 234 ,730 364 ,890 536 ,1072 756 ,1377
20|16 ,18' 36 ,83' 76 ,184' 145 ,333' 234 ,730' 364 ,890' 536 ,1072' 756 ,1377
21]16 ,18 36 ,87 76 ,196 145 ,377 234 ,785 364 ,1029 536 ,1520 756 ,2187
22(16 ,18' 36 ,87 76 ,196' 145 ,377° 234 ,785' 364 ,1029 536 ,1520' 756 ,2187
23|16 22 36 ,87 76 ,199 145 ,385 234 ,795 364 ,1029 536 ,1536 756 ,2187
24116 ,22° 36 ,.87° 76 ,199' 145 385" 234 ,795' 364 ,1029 536 ,1536 756 ,2187
25(16 ,23 36 ,99 76 ,229 145 465 234 ,843 364 ,1029 536 ,1536 756 ,2187
26(16 ,23 36 ,99 76 ,229' 145 465 234 ,843' 364 ,1029 536 ,1536 756 ,2187
27|16 ,23 36 ,99 76 ,232 145 ,469 234 ,853 364 ,1029 536 ,1536 756 ,2187
28116 ,23' 36 ,99 76 ,232' 145 469" 234 853" 364 ,1029 536 ,1536 756 ,2187
29|16 24 36 ,104 76 ,238 145 473 234 858 364 ,1029 536 ,1536 756 ,2187
30|16 ,24' 36 ,104' 76 ,238' 145 473" 234 ,858' 364 ,1029' 536 ,1536° 756 ,2187¢
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TABLE VI. CAN(3,k,v)

K\ 10 11 12 13 14 15

4 1000™ 1331 1728™ 2197 2744™ 3375™
5 | 1000 ,1250¢ 1331 1728 ,2112F 2197 2744 34307 3375 ,4096
6 | 1000 ,1331 1331 1728 ,2112F 2197 2744 ,4096 3375 ,4096
7 | 1010¢,1331 1331 1728 ,2197 2197 2744 4096 3375 ,4096
8 | 1010 ,1331 1331 1728 ,2197 2197 2744 4096 3375 ,4096
9 | 1010 ,1331 1331 1728 ,2197 2197 2744 4096 3375 ,4096
10| 1010 ,1331 1331 1728 ,2197 2197 2744 4096 3375 ,4096
11| 1010 ,1331 1331 1728 ,2197 2197 2744 ,4096 3375 ,4096
12| 1010 ,1331¢ 1331™ 1728 ,2197 2197 2744 4096 3375 ,4096
13| 1030¢,2197 1331 ,2197 1728 ,2197 2197 2744 4096 3375 ,4096
14| 1030 ,2197¢ 1364°,2197¢ 1728 ,2197¢ 2197™ 2744 4096 3375 ,4096
15| 1030 ,2411 1364 ,2541  1764°,3696 2197 ,4096 2744 ,4096 3375 ,4096
16| 1030 ,2411 1364 ,2541 1764 ,3696  2236°,4096 2744 4096 3375 ,4096
17| 1030 ,2411 1364 2541 1764 ,3696 2236 ,4096  2786°,4096 3375 ,4096
18| 1030 ,2411 1364 ,2541 1764 ,3696' 2236 ,4096¢ 2786 ,4096¢ 3420°,4096%
19| 1030 ,2411 1364 2541 1764 ,3781 2236 ,4225 2786 ,6859 3420 ,6859
20| 1030 ,2411 1364 ,2541 1764 ,3781 2236 ,4225 2786 ,6859% 3420 ,6859%
211 1030 ,2411 1364 ,2541 1764 ,3781' 2236 ,4225 2786 ,7411 3420 ,7666
22| 1030 ,2411 1364 ,2541 1764 ,4056 2236 ,4225 2786 ,7411 3420 ,7666
23| 1030 ,2411 1364 ,2541 1764 ,4056 2236 ,4225 2786 ,7411 3420 ,7666
24| 1030 ,2411° 1364 ,2541 1764 ,4056 2236 ,4225 2786 ,7411 3420 ,7666
25| 1030 ,2541 1364 ,3993 1764 ,4056 2236 ,4225 2786 ,7411 3420 ,7666
26| 1030 ,2541 1364 ,3993 1764 ,4056 2236 ,4225 2786 ,7411 3420 ,7666
27| 1030 ,2541 1364 ,3993 1764 ,4056 2236 ,4225 2786 ,7411 3420 ,7666
28| 1030 ,2541¢ 1364 ,3993 1764 ,4056' 2236 ,4225' 2786 ,7411 3420 ,7666
29| 1030 ,3905 1364 ,3993 1764 ,6501 2236 ,6591 2786 ,7411 3420 ,7666
30| 1030 ,3905° 1364 ,3993 1764 ,6501 2236 ,6591 2786 ,7411 3420 ,7666
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