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Abstract Several new constructions for difference matrices are given. One class of
constructions uses pairwise balanced designs to develop new difference matrices over the
additive group of GF(¢). A second class of constructions gives difference matrices over
groups whose orders are not (necessarily) prime powers.

1 Introduction

We employ definitions from design theory consistent with [2]. An orthogonal array
OA,(k,n) is a k by An? array A whose entries come from an n-element set X, so that
for any 1 < 43 < 13 < k, and any a,3 € X, there are exactly A columns in the set
{j : A[t1,j] = « and Aliy, 7] = B}. The orthogonal array is said to have order n, degree
k and index A.

A (s,v; N)—=difference matriz over the group (G, *) of order s is a v by s\ matrix D
with entries from G such that the multiset

{D[Lla.]] *D[i%j]_l ] = 1727"'5)‘}

for any pair of rows (i1,72) contains every element of G exactly A times. If the base
group (7 is abelian, additive notation is often used. If D is a (s, v; A)—difference matrix
expressed multiplicatively over the group G = {g1,...,¢s}, then

[DglaDg27Dg37"'7DgS]

is an OA)(v,s).
Difference matrices have been studied primarily as a consequence of their uses in the
construction of orthogonal arrays (see, for example, [2] and [6]). In fact, an orthogonal
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array OA)(v,s) that admits an automorphism group G acting regularly on the symbols
is equivalent to a (s, v; A)—difference matrix [7].

Jungnickel [7] established that a (s, v; A)—difference matrix satisfies v < sA. Most pre-
vious research on difference matrices has concentrated on constructions with a “large”
number of rows (close or equal to s\). However, for many selections of s and A, no
constructions of this type are available. In these cases, often the best bound is obtained
by using the observations that given a (s1,v1; A;)—difference matrix and a (s2,vq; A2)—
difference matrix, one can produce a (s, min(vq, v2); Ay + Az )—difference matrix if s; = s,
and a (s182, min(vy, v9); Ay Ag)—difference matrix. These simple “addition” and “multipli-
cation” constructions typically yield a number of rows far from the upper bound.

Hence it is of substantial interest to improve the lower bounds on the numbers of rows
in difference matrices. We develop two types of constructions here, and demonstrate that
they improve some of the lower bounds implied by the known constructions.

2 A PBD construction

In this section we give a construction for (s,v; A)—difference matrices over the additive
group of GF(s).

A pairwise balanced design of order v and index A is a pair (X,B) where X is a
v—element set of points and B is a family of (not necessarily distinct) subsets of X called
blocks such that every pair of points is in precisely A blocks. We denote a pairwise
balanced design of order v and index A by PBD(v, A). Blocks of size one and two are
permitted.

Let (X, B) be a PBD(v, A). A collection P of n disjoint blocks in B that contain all
of the points of X is a parallel class of width n. A PBD(v, ) is resolvable if it can be
partitioned into parallel classes.

An { by w PBD(v, A) is a PBD(v, ) whose blocks can be partitioned into ¢ parallel

classes of maximum width w. For example, developing the parallel class
{0},{1,2,4},{3,5,6}
modulo 7 constructs a 7 by 3 PBD(7,2). Developing the parallel class
{0}, {3}, {5}, {6}, {1,2,4}
modulo 7 constructs a 7 by 5 PBD(7,1).

LEMMA 2.1 If there is a (s,v;A)—difference matriz then there exvists an sA by s
PBD(v, \).

Proof. Let D be a (s,v; A)—difference matrix over the group (G, *). Let X be the set of
rows of D; for each column j of D and element ¢ of GG, define B; , by

Bjg = {37 €X: D[T/UJ] =g}



Let B = {Bj, : jis a column of D and ¢ € G}. For any pair of rows (i1,23) of D, the
multiset

{D[Lla.]] *D[i%j]_l ] = 1527"'8)‘}

contains the identity of (G exactly A times; hence every pair of elements of X is in exactly
A of the {B;,}. Consequently, (X,B) is a PBD(v,A). Since P; = {B,, : g € G} is a
parallel class, (X, B) is sA by s. O

We establish a partial but important converse to Lemma 2.1. A definition is required.
Let (X,B) be an £ by w PBD(v, A) and let Py, Pa, ..., Py be its partition into ¢ parallel
classes of maximum width w. Let GG be a group of order s > w and for each y =1,2,...¢
select an injection ®; : P; — (. The parallel class

Pj = {514,525 +->nj}
describes the j-th column of an v by £ matrix M with entries in G' by setting
Mlk,j] = @;(5:;) it k € 5i; € P;.

We say that M is a matriz over G belonging to the { by w PBD(v,\) (X,B). For any

pair of rows (71,172), the multiset
{M[Lla.]] * M[i%.j]_l : .] = 1727 cee S)‘}

contains the identity element of GG exactly A times. If M has the additional property
that, for any «, € G and any two rows iy, 9,

| {7 M1, 5] = e and Mia, j] = 8} | = [ {7 : M[nn,j] = 8 and M[iz, j] = a} |,
we say that the PBD has an obverse matriz M over G.

THEOREM 2.2 Let s be a prime power. If there is an € by w PBD(v, \) with w < s < Lﬂ,
then there exists a (s,v;{ — X\)—difference matriz over the additive group of GF(s).

Proof.  Let (X,B) be an ¢ by w PBD(v,\) and let M, over the additive group of
GF(s), be any matrix belonging to (X,B). Choose a primitive root a of GF(s) and
set D' = [M,aM,a*M, ... ,a*?M]. If in rows i1, iy of column j of M the difference is
nonzero, then every nonzero difference occurs in rows ¢1, 23 in column j of exactly one
oM. Hence the vector difference of any pair of rows of D’ contains each nonzero element
of GF(s) exactly £ — A times and 0 exactly A(s — 1) times. The conditions guarantee that
C—=X>Xs—1). Thusm=L—As={0—X—X(s—1)>0 and we set Z to be the v by

m zero matrix. Therefore
D =[M,aM,a*M,...,a° *M, 7]
is a (s,v;{ — X)—difference matrix over the additive group of GF(s). a

For example, the 7 by 3 PBD(7,2) given above yields a (3, 7; 5)—difference matrix over
Zs and the 7 by 5 PBD(7,1) yields a (5, 7; 6)—difference matrix.
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LEMMA 2.3 Let v =14 nk be a prime power. Then
(i) there is v by n+ 1 PBD(v,k—1) (X, B);

(ii) ¢f v = 2™ for some m the PBD in (i) has an obverse matriz over any group G of
order s > n+ 1; and

(iii) ¢f v is odd and k is even the PBD(v,k — 1) in (i) has an obverse matriz over any
group G of order s > n+ 1.

Proof. Let f be a primitive element of GF(v) and set ¢ = f*. K = {1,9,4¢%...,¢"'}
is a subgroup of GF(v)* of order k. Let P be the parallel class consisting of {0} and the
n cosets of K in GF(v)* and define for all € GF(v) the parallel class P, by

P.=P+xz={B+ax:BecP}

Then B = Ugear(v) Pz is preserved by the 2-transitive group {z — az + 3 : a,8 €
GF(v),a#0}. Bisav by n+ 1 PBD(v,k—1).

Let G be a group of order s > n 4+ 1 and fix any injection ® : P — (G such that
®({0}) = e, the identity of . For each z € GF(v) and B € P define ¢,(B + z) = ®(B)
and construct the v by n4 1 matrix M = M}, as in the definition. That is, the [z, j]-entry
of My is ®;(B+ j) where j € GF(v) and i € B € P.

We claim that, subject to the conditions of (ii) and (iii), My is an obverse matrix. For
(ii), the matrix M; as defined above is just the addition table of the field GF(27) and an
easy induction on m shows that it is obverse. Consequently, because M} is a refinement
of My (i.e. if My[i1,x] = M[ia, x], then My[i1, x] = My[iz, x]), My is obverse.

For (iii), when k = 2 the parallel classes of the PBD form a one factorization of the
complete graph K, and thus the matrix M, is obverse. Again any refinement of M; to a
matrix My, is also obverse and so for & even the PBD has an obverse matrix M. If k
is odd, a simple parity argument shows that the PBD cannot possibly have an obverse
matrix. O

THEOREM 2.4 [fthe { by w PBD(v,\) has an obverse matriz M over the additive group
of GF(s) where s is an odd prime power such that w < s < ij, then there exists a
(s,v; Z2) ~difference matriz over (GF(s),+).

s Uy g

Proof. Choose a primitive root « of GF(s) and set

s—1

D' =[M,aM,o*M,...,az ' M]

Consider the pair of rows i1, 25 of M and let 7 be a permutation of order two on the
¢ columns of M such that if (a,b) occurs in column j on these rows, then (b,a) occurs

in column 7(j) whenever @ # b. If @ = b, then #(j) = j. Now in column j of M, if
the difference is a nonzero element @ € GF(s), then every nonzero difference occurs in
TOWS i1, i3 in column j or 7(j) of exactly one oM. Hence the vector difference of any
pair of rows of D' contains each nonzero element of GF(s) exactly (¢ —\)/2 times and 0



exactly A(s — 1)/2 times. The conditions guarantee that (¢ — \)/2 > A(s — 1)/2. Thus
m={—-Xs)/2=(—-X)/2—As—1)/2 >0 and we set Z to be the v by m zero matrix.
Therefore

D =[M,aM,a®M,...,a"7 M, 7]

is a (s, v; %)fdiﬂ‘erence matrix over the additive group of GF(s). a

COROLLARY 2.5 Let v = 1+ nk and s be prime powers, with n +1 < s < |%|. Then

there exist a (s,v;v — k + 1)—difference matriz over (GF(s),+) and there also exists a

(s,v; ”‘g""l)fdiﬁerence matriz over (GF(s),4) if v or k is even, and s is odd.

Proof. Apply Theorems 2.2 and 2.4 to Lemma 2.3. g

In particular Corollary 2.5 settles the existence of a (3, 7; 5)—difference matrix and of
a (4,13; 10)—difference matrix.

The PBD(v, k — 1) used in Corollary 2.5 is a special kind of nearly resolvable design.
In general a nearly resolvable design with parameters NRB(v, k) isa v by 1 + (v — 1)/k
PBD(v, k—1) in which every nonsingleton block has exactly k points and v = 1 4 nk for
some n. In [5] it is reported that:

v, 3) exists if and only if v =1 mod 3.

e An NRB(v,4

exists if and only if v = 1 mod 4.

e An NRB(v,5) exists for v = 1 mod 5, except possibly for v in {46, 51,141,201}

)
)
)
v,6) exists for v = 1 mod 6, except possibly for v in {55, 145}.
Applying Theorem 2.2 with s equal to the width, we get:

COROLLARY 2.6 For every prime power s and integer 3 < k < 6, there is a (5,14 (s —
D)k;2 + (s — 2)k)—difference matriz over (GF(s),+) except possibly for (s, k) = (11,5),
(29,5), (41,5), or (25,6).

Actually, more can be obtained because we can employ any prime power s in the

rangel—l—”;lgsg%—l—ﬁ.

We can also use resolvable designs:

COROLLARY 2.7 There is (s,3s;3(s — 1)/2)—difference matriz over the additive group of
GF(s) for all odd prime powers s.

Proof. Let s be an odd prime power and set n = (s — 1)/2. Then there is a Kirkman
triple system of order 3s = 34 6n (see [2]). This is a 14+3n by 1 +2n PBD(3s,1). Hence
by Theorem 2.2 the result follows. a

For example using Corollary 2.7 a (5, 15; 6)—difference matrix can be constructed;
this improves the bound on the number of rows v of a (5, v;6)—difference matrix from
10 <v <30 to 15 < v < 30.



COROLLARY 2.8 If there is a resolvable BIBD with parameters (b,v,r,k, ), with ¥ a

prime power, then there is a (7,v;r — A)~difference matriz.

Proof. A resolvable BIBD is an r by v/k PBD(v, A). Now

r —1
R >
A

<

v
k

N‘

since in a BIBD v > k and A(v —1) = r(k —1). Therefore by Theorem 2.2 a (¢, v;r — )~

difference matrix exists. O

Several resolvable BIBD exist with which new difference matrices can be constructed
using Corollary 2.8. Some examples are given in Table 1.

Table 1: Some resolvable (v,b,r, k, A) designs that give new (7,v;r — A)-difference ma-
trices

No. in [8] (v,b,r, k, ) (%, v; 7 — A)-difference matrix
14 (15,35,7,3,1) (5,15; 6)—difference matrix

151 (65,208,16,5,1) (13, 65 15)—difference matrix
219 (39,247,19,3,1) (13, 39; 18)—difference matrix
279 (85,357,21,5,1) (17, 85;20)—difference matrix

3 Two constructions

In this section we describe two constructions which produce difference matrices over
arbitrary groups.

THEOREM 3.1 If an OA,(k,n) exists with at least A constant columns, then, over any
group G of order n + 1, a (n+ 1,k; A(n — 1))-difference matriz exists.

Proof. Let G be any group of order n+1 with identity element e. Let A be an OA,(k, n),
with entries from X = G\ {e}. In this array every ordered pair of symbols of X occurs
A times in each ordered pair of rows. Hence in the multiset

{A[lh ]*AI:I'27-]] b '. = 1727"'5)‘}

for any pair of rows (i1,42) e occurs An times and each nonidentity element of GG occurs
A(n — 1) times. Deleting A of the constant columns constructs the desired difference
matrix. O

A (10,27; 24)—difference matrix exists by Theorem 3.1, using an OA3(27,9).



THEOREM 3.2 [f v is a prime power and v = 1 4+ nk for nonnegative integers n and k
withn > k—2 >0, then for any group G of order n+1 there is a (n+1,v;24+(n—1)k)-
difference matriz over G.

Proof. Let f be a primitive element of GF(v) and set ¢ = f". Then the order of ¢
in GF(v)* is k. Hence, B = {¢’ : 0 < j < k} is a subgroup of GF(v)* of order k and
B; = fi7'B,1=1,2,3,...,n is a complete set of cosets. Let By = {0}. Define the v by
v matrix M indexed by GF(v) and with entries in G = {ag = €, a1, a2,...a,} by:

M, B] = a; if and only if a + 8 € B;.

Now set 7 to be the permutation of the elements of GG given by = = (e)(ay, az, as, ..., a,)
and define (M) to be the v by v matrix with [z, j]-th entry #(M][z, j]). Finally set Z to
be the v by (n — k + 2) constant matrix containing e and define the v by (nv+n —k+ 2)
matrix D to be

D= [M,z(M),7*(M),---, 7" Y (M), Z]
We claim that D is difference matrix over G. Let a, 3 € GF(v), a = f* (1 <{ <n—1),
and consider any i,j € GF(v). Ifa, = M[a-i+B,a-j— 3], then f'(i+j)=a(i +j) =
a-i+B+a-j—p € B, = f*"'B. Hencei +j € f**'B = B,_,, which implies
M[i,j] = 7 *(a,). Now fix a pair of rows g, of M and consider any other two rows
i1,t7. Since the group H = {z — ax + B : a, € GF(v)} acts sharply 2-transitively on
GF(v), there is a unique a, 8 € GF(v) such that a-ig+ 8 =4, and o -tj + 3 = ¢|. The
above argument shows that the pair (M[i1, -5 — B8], M[i}, a-j—B]) = 7" (Mo, j], M2}, 7])
Hence (M[i1, -5 — B], M[¢}, - 5 — B]) and (M[io, ], M[ig, j]) belong to the same orbit of
7 on ordered pairs. In particular if the orbit of (a;,a;) under 7 is represented N; ; times
in some ordered pair of rows of M it is represented exactly N;; times in every pair of
rows. The value of IV; ; can now be calculated. Let (z,y) be in the orbit of (a;,a;) under
.
Case 1.1#0, 5 #0.

In this case there are in column « of M exactly k? ordered pairs of rows that have
(z,y). The length of the orbit of (a;,a;) under 7 is n and so in column « there are exactly
nk? ordered pairs of rows that have an orbit representative of the orbit of (a;, a;) under
7. Summing over all columns and dividing by the number of ordered pairs of rows, we
find Ni,j = k.

Case2.1=0,5#0o0rz#0,5=0.

In this case there are in column « of M exactly k ordered pairs of rows that have
(z,y). Following exactly the same argument as in case 1 we have in this case N;; = 1.

This regularity on M shows that in any pair of rows in D every ordered pair (a;, a;)
occurs k times if neither ¢ nor j is 0 and occurs once otherwise. Hence in any pair of
rows each nonidentity difference occurs k(n — 1) + 2 times. A pair (a;,a;) has difference
e if and only if ¢ = j. If the pair is in column « and rows (1, 32) of M this means that
B1,B2 € B —a. But {B;+v:~v € GF(v)} is a set system invariant under the 2-transitive
group H and is hence a 2—(v, k, k — 1) design. So the identity of GG occurs as a difference
in any particular pair of rows of D exactly n(k —1)+n —k +2 = k(n — 1) 4+ 2 times.
O

Some examples of this construction appear in Table 2.
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Table 2: Some new difference matrices over arbitrary groups

A (6,11;10)—difference matrix over the group A = {ag = e,ay,...,a5} is constructed
by cyclically shifting the following five columns (shown transposed) into 55 columns and
appending five columns of all zeros.

Gp a1 Gz 44 A3 G5 G5 G3 44 A2 A7
Gp Gz a3 45 G4 G G1 G4 A5 A3 G2
Gp a3 G4 41 A5 G2 G G5 41 G4 G3
Gp G4 G5 A2 47 G3 G3 A1 A2 A5 G4
Gp G5 a1 a3 Az Ggq Gg Gz A3 A7 G

A (4,13;10)—difference matrix over the group A = {ag = €, a1,az,a3} is constructed by
cyclically shifting the following three columns (shown transposed) into 39 columns and
appending one column of all zeros.

Gg a1 4z G a3z Gy a3 a3z a1 az Gz ay Ay
Gg G A3z G3 4y Gz 41 41 Gy A1 G3 a3 A2
Gg a3 4y a1 Gz G3 G 4z 43 4 41 41 A3

4 Concluding Remarks

We have developed a number of constructions here for difference matrices, but the number
of rows obtained is relatively small. Nevertheless, the results obtained often improve upon
the best available results in the literature. To see what effect the results developed have
upon the bounds on the number of rows, we tabulate in Tables 3 and 4 the best lower
bounds on the number v of rows in a (s,v; A)—difference matrix for 1 < s < 32 and
1 < X <30. A key is provided to interpret the authority for each entry, which is given
as a single letter superscript on the entry. When the superscript is omitted, the entry is
obtained by the addition or multiplication construction stated in the introduction.

Key For Table 3 and 4
blank | obtained by addition or multiplication

sporadic example; see [1] and [2]
tensor product; see [9]

d de Launey [4]

g generalized Hadamard matrix; see [3]
h Hadamard matrix; see [2]

j Jungnickel [7]

m Theorem 3.2

n Theorem 3.1

p Theorem 2.2

q Theorem 2.4

s

t




We do not include the upper bounds, as for the most part they can be calculated
easily. When s =2 (mod4) and A =1 (mod 2), a (s,v; A)—difference matrix exists
only for v < 2 (see, for example, [2]). In the remaining cases, v < s\ always provides an
upper bound [7]; when equality holds, the difference matrix is a generalized Hadamard
matriz. Nonexistence of generalized Hadamard matrices for certain choices of s and A
(see, for example, [3]) reduces the upper bound to v < sA — 1.
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Table 3: Lower Bounds on Numbers of Rows in (s, k; A)—difference matrix

>

1 23 4 5 6 7 8 9 10 11 12 13 14 15
29 4+ 2 g8 92 12" 2 16" 2 20" 2 24" 2 28" 2
39 69 99 129 7™ 187 9 249 279 309 9 369 12 18 21¢
49 89 129 169 & 12 12 329 367 13™ 12 28 16 569 12
59 109 7¢ 209 259 15P 177 20 20 509 17 25% 20 20 33/
2 6°2 6 2 6 2 100 2 11" 2 8 2 16™ 2
79149 7 289 119 15P 499 28 28¢ 15 28 28 28 989 28
89 169 8 329 8 16 567 649 217 16 32 32 21 56 56
99 189279 369 18 549 27 729 819 36 27 108 36 54 54
2 4 2 8 2 5 210° 2 5 2 10 2 5 2
119229 11 449 11 22 11 44 197 22 1219 44 22 22 44
6°6 6 6 6 8 6 8 9 117 6 15 6 8 8
139269 13 529 13 26 13 52 197 26 237 52 1699 277 65°
2 5 2 7 2 7 2 8 2 7 2 13 2 17 2
57 77 7 9 7 10 7T 7 7 10 7 9 1%
169329 16 649 16 32 16 1289 16 32 16 64 16 32 657
179349 17 689 17 34 17 68 197 34 237 68 277 34 31¢
2 6°2 8 2 9 2 9 2 9 2 12 2 9 2
199387919 769 19 38 19 76 19 38 23¢ 76 277 38 31¢
4 8 5 10° 5 10 5 13 7 10 7 12 7 10 12
6 6 7 7 7 9 7 12 7 7 7 14 7 9 9
2 4 2 8 2 11 2 11 2 11 2 12 2 11 2
239467 23 929 23 46 23 92 23 46 23 92 277 46 317
6° 6 8 8 7 9 8 12 8 8 8 16 8 9 8
259 509 25 1009 1259 50 50 100 100 125 50 100 100 100 125
2 4 2 8 2 12 2 13 2 13 2 13 2 13 2
279 549 8191089 54 1629 81 108 2439 108 81 3249 108 108 162
5.7 7 8 7T 12 7 14 7 8 7 12 7 12 11
299 589 29 1169 29 58 29 116 29 58 29 116 29 58 31¢
2 5 2 6 2 6 2 7 2 6 2 8 2 6 2
319629 31 1249 31 62 31 124 31 62 31 124 31 62 31
329649 32 1289 32 64 322569 32 64 32 128 32 64 32

S
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Table 4: Lower Bounds on Numbers of Rows in (s, k; A)—difference matrix (cont’d)

>

s 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
32k 2 36" 2 40" 2 44% 2 48" 2 52 2 6% 2 60"
489 24 549 27 30 27 30 21 7290 27 30 817 42¢ 27 90!
649 32 36 13 28 28 32 36 36' 36 32 1087 56 28 56
807 35% 909 20 1007 25 25 25 60¢ 1259 50 35 50 25 75!
200 2 10 2 25 2 10 2 15 2 31™ 2 16 2 16
377 28 63¢ 28 28 49 28 37 28 49 1829 31" 1969 28 91¢
1289 21 32 32 32 56 56 56 64 32 32 32 56 56 997
7272 1629 36 72 81 54 54 108 72 T2 2439 72 72 108
18 2 19 2 10 2 &8 2 2 2 10 2 10 2 12
44 379 22 44 44 37 2429 44 121% 37 44 44 619 37 44
12 8 12 9 22 9 23 8 16 9 11 12 12 9 12
52 52 397 52 52 52 39 52 52 52 3387 52 169% 52 65
M 2 7 2 14 2 7 2 2 2 217 2 14 2 11
2 7 10 7 12 9 9 10 18 7 10 10 29" 9 18
2569 337 397 64 64 457 39 65 128 45 39 64 64 45 65
27292899 397 34 85 68 39 34 68 68 39 34 68 68 39
7 2 12 2 18 2 9 2 18 2 9 2 18 2 20
76 31 397 3619 85 457 39 76 76 45 39 76 76 61¢ 39

Ly S Ay S Y . e
OO W R O © 0TSOt W N

20 |16 8 199 10 199 12 10 12 15 10 13 12 16 12 12
21 |14 7 14 7 1415 9 9 18 7 12 9 14 12 14
2 (16 2 11 2 20 2 11 2 22 2 11 2 22 2 11
23 192 31 46 31 92 437 46 5299 92 46 46 92 92 46 637
24 |16 8 16 8 16 9 23 8 18 8 12 9 16 9 16
25 |100 100 100 100 125 100 100 100 100 6257 100 100 100 100 125
26 |16 2 13 2 20 2 13 2 25 2 13 2 26 2 13
27 |108 108 243 108 108 243 108 108 324 108 108 7299 108 108 243
28 |16 7 14 8 13 12 12 11 15 8 27 12 199 12 12
29 |116 31 58 31 116 437 58 477 116 47 58 47 116 8419 637
30 |10 2 7 2 10 2 6 2 9 2 T 2 29 2 7
31 (124 31 62 31 124 437 62 477 124 47 62 47 124 597 637
32 5129 32 64 32 128 32 64 32 256 32 64 32 128 32 64
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