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Extended abstract

A t—(v, k, \) design is a pair (X, B) where: X is a v—element set
of points; B is a family of a tamily of k-elements subsets of X, called
blocks; and every t-element subset T' C X is contained in exactly A
blocks. Is is said to be simple it all the members of B are distinct.

For example a 2-(7,3,1) design (X, B)

4
is given by:
X ={0,1,2,3,4,5,6} and
B = {130, 124, 235, 346,450, 156, 260} 2 0

This design is also called the Fano
plane. The blocks are easily remem-
bered by the 6 lines and one circle in 1 6 5
the adjacent diagram. It is unique up

to isomorphism and has the 2-homogeneous group PSL(2,q) gener-
ated by (0,1,2,3,6,5,4) and (1,2)(3,6) as an automorphism group.
Let a be a permutation on X. Then if + € X we denote the image
of = under a by z%. Furthermore the image of B C X under «
is B* = {a* : « € B}. A subgroup GG of Sym(X), the symmetric
group, is an automorphism group of the t-design (X, B) if

B*={s":2€ B}eB

for every block B € B and o € (. If the design has no other
automorphisms, then G is said to be the full automorphism group
In Table I the smallest possible or smallest known ¢-design is given

for2 <t <7,



Table I: Smallest ¢-designs

The smallest possible 2-design.
PARAMETERS: 2-(73,1) b=7
AUT. GROUP: PSLy(7) 2-Homogeneous.
GENERATORS: (0,1,2,3,6,5,4), (1,2)(3,6)
BASE BLoCcK: 013

The smallest possible 3-design.
PARAMETERS: 3-(8,4,1) b= 14
AUT. GROUP: PSLs(7) 3-Homogeneous.
GENERATORS: (0,1,2,3,4,5,6)(7), (0,7,1)(2,4,6)(3)(5).
BASE BLOCK: 0137

The smallest possible 4-design
PARAMETERS: 4-(11,5,1) b =66

AUT. GROUP: M;; 4-Homogeneous.

GENERATORS:
(0,1,2)(3,4 5)( ,7,8), (0)(1,3,2,6)(4,5,8,7),
(0)(1, 8,2,4)( ,6,7), (0,9)(1)(2)(3,6)(4,5)(7,8),
(0)(1)(2)(3, )( )(5,6)( ,a)

BASE BLOCK: 02346

The smallest possible 5-design
PARAMETERS: 5-(12,6,1) b =132
AUT. GROUP: M, 5-Homogeneous.

GENERATORS:
(0,1,2)(3,4,5)(6,7,8), (0)(1,3,2,6)(4
(0)(1,8,2,4)(3,5,6,7), (0,b,a,9)(1)(2

BASE BLOCK: 012345

The smallest possible 6-design
PARAMETERS: 6-(14,7,4) b= 1716

AUuT. GrOUP: (i3 Not even transitive.




GENERATORS: (0,1,2,3,4,5,6,7,8,9,a,b,¢)(d)
BASE BLOCKS:

013459d
023567d
012368d
023578d
014569d
012589d
014789d
01368ad
024679d
013458d
0145789
0124678
0234579
0123689
012367a
012568a
012569a
023478a
0123479
013568a
0123569
035679d

014567d
034567d
012568d
024578d
014579d
024589d
01347ad
024678d
025689d
013579d
0134567
0235678
0123679
0145689
023467a
012578a
0245689
023569a
013579a
0134578
0123589
01247ad

012457d
024567d
012378d
012678d
012579d
034689d
02368ad
023478d
023689d
015678d
0123457
0234569
0125679
0125789
0136789
014578a
0234789
014678a
012579a
0123578
0135689
035789d

The smallest known 7-design
PARAMETERS: 7-(33,8,10) b = 5,340,060

AUT. GROUP:

GENERATORS:
(17 2747 8’9)(376767 07 h)(57 a? k’ 97i)(77€7t’p7j)(b’ m’ d7 q7£)(f’ ,U7
u,s,n), (1,7,0)(2,4,¢)(3,a,t)(4,w,z)(5,0,€)(6,7,h)(8,p,s)(9,

j? k)(b7 f7 d)(g7 n? u)

BASE BLOCKS:
01234568 01235789 0123569a 1234678¢ 0123567a 013689ab

0124568a 0134678b 01345789 1234789¢a 0145678a

(

012346d
012458d
014568d
024569d
012479d
013469d
02358ad
023479d
023589d
013578d
0124567
0123459
0345679
0124789
023458a
013457a
024567a
013479a
0135796
0134678
0345789
034789d

PSLy(32) 4-homogeneous.

m,0,q)

012345d
023468d
034568d
012469d
023579d
035678d
02567ad
023469d
012356d
0135694
0234568
0245678
0345689
012457a
012468a
0236789
0256789
024579a
0134568
0123489
013567a
036789d

012367d
012468d
013478d
023459d
013679d
01467ad
01458ad
025679d
013467d
013489d
0123458
0124679
0124689
023457a
023568a
0234678
024568a
024679a
0123567
0134679
013468a
02357ad




A subgroup G of Sym(X) is t-Homogeneous on X if the ¢-
element subsets of X fall into a single orbit under G. If G is t-
Homogeneous on X, then every orbit of k-element subsets of X is
a t—(v,k, A) design for some A. The classification of finite simple
groups shows that there are no t-homogeneous groups with ¢ > 5
other then the alternating and symmetric groups. Consequently,
the following statements were heard in the 1980’s

Unknown group theorist (21980): There will not be any 6-designs.

Cameron & van Lint (1980), [2]: The existence of non-trivial
t—designs with ¢ > 5 is the most important unsolved problem
in the area.

Leavitt & Magliveras (1984), [11]: A 6-(33,8,36) design exist!
Kramer, Leavitt & Magliveras (1985), [5]: A 6-(20,9,112) design exist!
Kreher & Radziszowski (1986), [8]: There exist 6-(14,7,4) designs!

Unknown group theorist (~1986): O.K. what I meant was that will not
be any interesting 6-designs

Cameron & van Lint (1991), [3]: The existence of Steiner systems
with large ¢ is possibly the most important open problem
in design theory (A t-(v,k,1) design is also called a Steiner
system.)

In Table IIT we see that almost every known ¢-design with ¢t > 5
was constructed by a union of group orbits. Indeed given integers
0<t<k<wv,vset X and G < Sym(X) let:

o Ay, Ay, ..., Apn, be the orbits of t-subsets;
o I'1,I'y,..., 'y, be the orbits of k-subsets;

o Ay AT =K el : K2OT}, T e A, fixed.



Kramer and Mesner in 1973, [4] observed that a t-(v, k, \) design
exists with G < Sym(X) as an automorphism group if and only
if there is a (0,1)-solution U to the matrix equation

AtkU = )\1]7

where: J =[1,1,1,...,1]T.

For example let G = ((1,4,5)(2,0,6),(2,6)(4,5)), then the Aj3

matrix is:

123 125 120

340 140 160

136 146 160

356 124 456 126 256 134 130 236

350 450 150 240 250 345 346 230

234 156 245 560 246 135 235 145 360 260
12 40 16
et (R 0 T W O AR
(133435} 2 [0 |00 ]O0]2]1]0]0] 0
(144515} 0 [ 1 [ 2 0] 0] L]0 ]|[1]0] 0
(104625} 0 | 0 [ 20| 2] 0] 1] 0]0] 0
(233036} 2 [0 |00 | 0] 0| 1] 0]2]0
(262060} 0 | 0 |0 | L | 2] 0] 0] 0] 1] 1

T T T

A solution to Ay3U = J is U = [0,1,0,0,0,0,1,0,0,1]%. Hence

124 130
B = {450} U {346} U{260} is a 2-(7,3,1) design with G as an
156 235

automorphism group.



The method we use to construct t-designs with ¢ > 3 is abstractly
the following procedure.

Choose parameters t, k, v, and A;
Find a candidate for an automorphism group G}

Generate the incidence matrix Ay;

S oW e

Solve the system of equations AU = AJ for one, some
or all (0,1)-vectors U;

E. Check for any special properties required of the solutions
found;

F. Apply any known recursive methods to the solutions found
to construct more designs.

Almost every known 6 & T7-design was either found this way or
obtained from a 6 or 7-design found this way. See Table III.

In [7] we argue that it becomes apparent that the techniques
used to find ?-designs with ¢ > 3 are very different from the meth-
ods used to find designs with ¢ < 3. Furthermore, when ¢ > 5 the
methods and techniques change again. This is partly due the ob-
jects and tools that that exist from which the designs can be made.

See Table II.

Table II: Available ingredients

t=2,3 Latin squares, transversal designs, orthogonal arrays
of strength 2, rich source of 2 and 3 homogeneous
groups, recursive constructions, geometry.

t=4,5 A few 4 and 5 homogeneous groups, union of orbits
under other groups, coding theory.

t>6 Union of group orbits,
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The difficulty in the above method is part D. That is in solving
AtkU = )‘Ja (1)

for (0,1)-valued vector U. This equation can be solved by using
backtracking if the N; by Ny dimensions of A;; are small, but be-
comes impossible when they are larger. For such equations we use
alternative methods. The most successful has been basis reduc-
tion [9].

Observe that if U is a (0,1)-solution to equation 1, then U

satisfies
1 0 vl
Ag —AJ 1 o

Conversely let B be the set of columns of

1 0
A —AJ

and let £ = Span(B) C Z"t™ . Then L is a n + m-dimensional
lattice with basis B. Observe that if

o

U
0
.| €L,
0
where U a (0, 1)-vector, then A;,UU = mA for some integer m. Con-
U
0
sequently any (0,1)-vector U = | | | € L yields a t—(v, k, mA)
0

design for some integer m.
The key observation is that U is a short vector of £. More
precisely the Euclidean length ||U|| < v/Nj; and it can be observed



that most of the vectors in any basis of £ that contain U have length
greatly exceeding v/N;. Consequently we seek tools to find bases
for £ that have vectors of small Fuclidean length. Hopefully our
desired solution to equation 1 will be among them. The available
tools to date are:

1. The L? algorithm by Lenstra, Lenstra and Lovdz 1982, [10].

2. The improvements by Kreher and Radziszowski 1986, [9].

3. The improvements by Schnor and Euchner 1988/1991, [12, 13].
The following reduced basis algorithm can be found in the 1982
paper of Lenstra, Lenstra, and Lovasz, [10] It is often called the L®
or Lovasz algorithm.

Step 1 Let B = [by,by,...,b,] be a basis for lattice L.
Step 2 Let B* = [b7,05,...,0%] be the Gram=Schmidt

orthogonalization of B.

b = by

* *

62 = bg — QLle;
j—1

b; = b; SE @b
e=il

b - b;
||65] [
Step3 Foryj=2ton
For: =35 —1 down to 1

do where ¢;; is the integer closest to «;.

where oy; = for 2 < 7.

do
recompute a;;.

Step 4 If |65, 4+ a; 4163 > < 2|[b3]]* for some j,
interchange b; and b;4; and return to step 1.




It is shown in [10] that given a basis B of lattice £ € Z" that the
L? algorithm produces a reduced basis B’ of £, such that:

i. L? uses at most O(n?) arithmetic operations.
ii. B'is almost orthogonal.

iii. B’ contains short vectors. They prove that it contains a vector
that is shorter than 2™ (length of shortest nonzero vector in
L). In practice it has much much better performance.

The simplest form of the basis reduction algorithm to find a
solution to
AU =R
for a (0, 1)-valued vector U; where A and R are integer valued
matrices is the following algorithm:

Step 1

] s [ I 0
SetB—[A _R],andB—lA AJ—R]’

Step 2 Consider the lattice £(B) where B is the matrix given
above.

Step 3  Find a reduced basis B’ of L(B).

Step 4  Check if B’ contains a column of the form [+, 0] with
U € {0,1}". If so stop; U solves equation AU = R.

Step 5 Repeat Steps 1 to 3 with B replaced with B. If a
vector [£U,0] with U € {0,1}". is found as column
of the new reduced basis, then J — U solves AU = R.

Otherwise, stop. No solution has been found.

In [9] other basis reduction tools are introduced and the algorithm is
modified so that instead of stopping in step 5 it continuously loops
back to Step 3 using these other basis reduction tools to reduce the
lengths of the vectors in the basis. When either the basis cannot



be reduced any further or a solution is found the algorithm stops.
The difficulty with this is that the algorithm may get stuck on
bases “surrounding” a local minimum that is not near enough to
a solution for the solution to be contained in the basis. Plans to
alleviate this condition are being studied.

For further information on combinatorial designs and algorithms
that search for them the reader is directed to the soon to be re-
leased CRC Handbook of combinatorial designs, in the CRC ref-
erence series in discrete mathematics. Contact the editors Charles
J. Colbourn (cjcolbou®@math.uwaterloo.ca ) and Jeff H. Dinitz
(dinitz@uvm-gen.emba.uvm.edu) for more information.
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