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Abstract

In this article we completely determine all proper Steiner graphical t—wise balanced designs
whose automorphsims contain the group S, wr S, (wreath product) acting on the set of n?(})
edges of the complete r—partite graph, K, ,, ... -

1 Introduction

A t—wise balanced design (tBD) of type t—(v, K, A) is a pair (X, B) where X is a v—element set of
points and B is a collection of subsets of X, called blocks, with the property that the size of every
block is in K and every t—element subset of X is contained in exactly A blocks. If K is a set of
positive integers strictly between ¢ and v, then we say that the ¢{BD is proper. If A = 1, then the
design is called a Steiner design. All designs in this article are proper Steiner designs.

A fundamental question in the theory of combinatorial designs is to ask what designs can be
obtained with a particular automorphism group. In this article we completely determine all proper
Steiner tBDs whose automorphisms contain the group S, wr S, (wreath product) acting on the set
of n? (g) edges of the complete r—partite graph, Ky p, ... n.

Denote by S, the symmetric group on {1,2,3,...,n}. If A is a subgroup of S, and B is a
subgroup of S, then the wreath product A wr B is the semidirect product of N = Ax A x---x A

~~

T

by B in which the action of B on N is given by

(01,00, ., 00)P = (), a2y - > (s

where a1,...,a, € A and 8 € B. Thus an element of A wr B is a pair
((a17a27"'7a7‘)7ﬂ)

and the product of two elements is given by

((041, ag,... ,Oé»,-), /B) ((’Yla Y25 7’)/7‘)5 6) = ((al’)/ﬂ(l)a Qa27Yp(2)s - - - aar’}/ﬂ(’r))a /35) -



Let X ={1,2,...,n} and Y = {1,2,...,7}, then the wreath product Awr B acts on X XY in a
natural way:

((011,012, .- aaT),B) [Zaj] = [aﬂ(])(z)718(-7)]

It is an easy exercise to see that S, wr S, is the automorphism group of Kn, n,... n-
N—_———

A t—wise balanced design (X, B) with parameters t—(v, K, A) is said to be graphical of type

nitng? ---nbe if X is the set of v edges of the complete r—partite graph I' = Kn71“1771227"_,n’;‘s and
whenever B is a block and « is an automorphism of I, then a(B) is also a block. That is, B is a

union of orbits under the action of Aut(T") on the edges of I'. The notation of type n}'nj’ - - - nfe is

S
adopted from that used for group divisible designs (see [3]), since I' is a group divisible design of
this type with block size 2.

Graphical ¢BDs of type 17, for r > 2, were called graphical designs in [2]. In particular, a
graphical design (X, B) of type 1" has parameters ¢t—((3}), X, A) and has the symmetric group S,
as the automorphism group. So X is the set of v = (;) labeled edges of the undirected complete
graph K, and if B € B, then all subgraphs of K, isomorphic to B are also in B. All graphical
designs with A = 1,2 were determined in [2].

Graphical tBDs of type m!n! (m < n) were called bigraphical in [5, 8]. A bigraphical design
has parameters t—(m - n, K, ) and has S,, X S,, as the automorphism group provided m # n and
Sy wr Sz otherwise. Here, X is the set of all labeled edges of the complete bipartite graph K, ,,. In
[5, 8] all bigraphical designs with A = 1,2 were determined. In the sequence of lemmas that follow
we establish the following Theorem.

Main Theorem: The only proper Steiner graphical tBDs of type n” are those given in Tables I, 11,
and III.

In an effort to reduce the size of this manuscript the proofs of many of the lemmas have been
abridged. Unabridged versions can be found in the first authors Ph.D. thesis [7].

Before proceeding we mention a few definitions and notational conventions. The partite sets of
Ky pn,...n will be displayed vertically and will be denoted by A = {a1,a9,...,an}, B = {b1,b2,...,bp},
¢ = {a1,c2,...,¢n},.... Occasionally it will be more convenient to denote the partite sets as
A1 = {a11,021,---,0p1}, A2 = {a12,a22,...,ap2},.... The automorphism that interchanges the
two partite sets A and B, namely a; < b;, for 1 < ¢ < n, is called a swap and its application to
the graph is called swapping. Cycling the partite sets A, B, C we mean to apply the permutation
(a1brc1)(agbacs) - - - (anbpey). An automorphism that interchanges two vertices within a partite
set is called a switch and its application to the graph is called switching. Needless to say, these
operations: swapping, cycling, and switching generate the automorphism group of K, , . . If
B is a block in a graphical tBD of type n", then we say B is complete whenever B = Ky, . p.
Since |B| < v, we reach a contradiction whenever covering a given t—element set with a block B,
forces B to be complete. We denote the complete /—partite graph on the partite sets A1, Ag,..., Ay
by K(A1,As,...,As). The notation GU H denotes the disjoint union of the subgraphs G and H.
Furthermore, in the figures that follow, a rectangle is drawn around a portion of a graph to indicate
that the subgraph is complete in this region.

We proceed by stating two frequently used lemmas. The first was noted by Denniston in [4].

Lemma 1.1 If A\ =1 and T is a t—element subset of the block B that is fixed by the automorphism
a, then a also fizes B.



Let Ty be a subset of edges of K, ,, .. . A sequence o, g, ..., a of automorphisms in S, wr S,
is said to t—generate Ty, from Ty if |T;-1 N (Ti—1)| > t and T; = T;-1 U o(Tj—1) for 1 < i < k.
Applying Lemma 1.1 it is easy to establish Lemma 1.2.

Lemma 1.2 Let Ty C B where B is a block of a Steiner graphical tBD of type n". If a sequence
of automorphisms t—generates Ty from Ty, then Ty C B.

If T; 1 C B where «; t—generates T; and T; 1 # T;, then we say that «; produces additional
edges in B from T; .

The next theorem is a block size bound given in [6] which we will frequently use.

Theorem 1.3 Let (X, B) be a proper, nontrivial tBD witht > 2 and A = 1. Thent+1 < k < =3
for all k € K.

Tables I, II, and III display all Steiner graphical tBDs of type n" with S, wr S, as the full
automorphism group where n > 1 and r > 2. The designs in Table I are the Steiner graphical tBDs
of type 17 found in [2]. The Designs in Table IT are the Steiner graphical ¢tBDs of type n? found in
[6]. We will show that the designs in Table III are the only other Steiner graphical tBDs of type
n” for n > 2 and r > 3. Table IV shows all other Steiner bigraphical tBDs of type m'n!, m # n.

Table I. The Steiner graphical tBDs of type 1"

Parameters Representation
n=1andr =4
Dl' 1_(65 23 1) I I
n=1landr=2=6 -
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Table II. The Steiner graphical tBDs of type n?

3-(16,{4,6},1)

n=4and r =2

" 5-(16,{6,8},1)

Parameters Representation
n>2andr =2
De: 1-(n%,n,1) Kin
n=2andr =2 —
Dr: 1-(4,2,1) —
n=3and r =2 - :
DS' 27(9, 3a 1) o <
De: n=4and r =2 T ) 4
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Table III. The Steiner graphical tBDs of type n", n> 2, r > 2

Parameters Representation
n>2andr =4 .
Dia: 17(_6n2,2n2,1) EnnUBnn
n>2andr >3
Dis: 1-(n? (g),nQ,l) Knn
D, "= 2andr >3 '—'
" 1-4(5),2,1) —
D= 2andr =3 X '—/
e 27(125 {35 4}5 1) —
— [
n=2andr =4
Dus: XX

2-(24,{3,8},1)




Table IV. The Steiner graphical tBDs of type m'n', m #n

Parameters Representation

2<m<n
» Kln

Dir: 1-(mn,n,1) ’

D18:

Dlg:

2 t=1and 2

Lemma 2.1 Suppose r > 3 and t < n?. Let B be a block in a Steiner graphical tBD of type n". If
K (Ai,Aj,Ar) C B, for distinct partite sets A;,Aj, and Ay, then B is complete.

Proof: Without loss of generality assume 4,5,k = 1,2,3. Expand the K(A1,A2,A3) in B to the
right by swapping partite sets A3 and A4 and then swapping partite sets Ao and A4. Note that
each swap fixes n? > t edges. Thus by Lemma, 1.1, B contains K (A1, A, A4) and then B contains
K (A1,A9,A3,Ay). These operations can be continued until B is complete. [ |

Theorem 2.2 The only proper Steiner graphical 1-wise balanced designs of type n” are in Ta-
bles I, II, and III.

Proof: Suppose (X, B) is a Steiner graphical 1-wise balanced design of type n” with parameters
1—(n? (;),IC,l). Forn=1,r>2and n > 2, r = 2, the designs have been characterized in [2] and
[5], respectively. So we may assume that r > 3. Label the partite sets as A, B, C,.... Let T = {a1b; }
be the graph consisting of exactly one edge and let B € B be the block containing 7. Now B # T
because t < |B| < v, so B must contain at least one additional edge, e. Up to symmetry, there are
five cases for e to consider. Each case is settled using Lemmas 1.1 and 1.2 with the appropriate,
swapping, switching and cycling operations. Case 1: If e = a1be, then B = K(A,B); hence we
obtain the design D13. Case 2: If e = byc1, then we can force B to be complete. Case 3: If e = asbo
and n > 3, then we can force a1by € B and hence we are in case 1. If n = 2, then we obtain the
design D14. Case 4: If e = baco, then we can force B to be complete. Case 5: If e = ¢1dy and 7 > 5,
then we can force B to be complete. If r = 4, then B = K(A,B)UK(c,D) = K, ,UK,,,, and the
design is Dio. |

Lemma 2.3 In a Steiner graphical 2BD of type n", if r > 3, then n = 2.

Proof: Suppose n > 3 and consider the 2-element set 7" in Figure 1. Let B be the block containing
T. As B # T, B contains an additional edge, e. If e = bycy, then there exists a sequence
of permutations which 2-generates K(A,B,¢) C B from T U {bz2c1}. Thus by Lemma 2.1, B is
complete. By symmetry, if e = aob; or e = bacs, then B is complete. So, if e # aico, then at



least one of the transpositions (ajaz), (cic2), or (cpc3) will fix e and an edge of 7. Hence this
transposition fixes ¢ = 2 edges of B. Applying this transposition to the edges in T'U {e}, we see
that one of the edges baci, asby, or bacy is forced to be in B. Thus, when e # a1co, we can easily
force B to be complete. Now suppose e = ajcy. Apply the transpositions (b2b3) and (aia2), each
of which fixes ¢ = 2 edges, to obtain a2b; € B; hence B is complete. So regardless of what the
additional edge is, B is forced to be complete. Therefore n = 2. |

———e . e - e
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A B C D F
Figure 1: Figure 2:

Lemma 2.4 There does not exist a Steiner graphical 2BD of type n" for r > 5.

Proof: By Lemma 2.3 we know that n = 2. Now consider the 2—element set 7" in Figure 2 and let
B be the block containing 7. As B # T, B contains an additional edge, e. Suppose e € K(A,B).
There exists a sequence of permutations which 2-generates K(c¢,D,E) from T U {e}. Thus by
Lemma 1.2, K(¢,D,E) C B and by Lemma 2.1, B is complete. By symmetry, if e € K(C, D), then
K(A,B,E) C Bj; hence B is complete. Now suppose e ¢ K(A,B)UK(C,D). At least one of the
transpositions (ajaz), (b1b2), (c1c2), or (di1ds) will fix e and an edge of T'. Hence this transposition
fixes t = 2 edges of B and forces one of the edges asb1, a1bs, cadi, or c1ds to be in B. Thus by
the above arguments, we can conclude that B is complete. Therefore, there cannot exist a Steiner
graphical 2BD of type n” when r > 5. |

Theorem 2.5 The only proper Steiner graphical 2-wise balanced designs of type n" are listed in
Tables I, 11, and III.

Proof: For n = 1,7 > 2 and n > 2, r = 2, the designs have been determined in [2] and [5],
respectively. So we may assume that n > 2 and r > 3. By Lemma 2.3 and Lemma 2.4, we only
need to consider two cases: (i) n =2, 7 = 3 and (ii) n = 2, r = 4. In case (i), consider Figures 3
and 4. One can easily show that the 2—element set T; forces the block By, T5 forces the block Bs,
and T3 forces the block B3. Thus we have the design Dj5. In case (ii), the 2—element sets T3, T3,
and T3 in Figure 5 force the blocks B1, B, and Bs in Figure 6. Hence we have the design D1g. B

3 t>3

In the sequence of lemmas that follow we will show there do not exist any Steiner graphical tBDs of
type n” for t > 3 where n > 2 and r > 3. The concept of derived design will be frequently used. The
derived design of a t—(v, K, \) design (X, B) with respect to S C X is (X', B') where X' = X\ S
and B={B\S:8 C B e B}. If |S| =j <t, then the derived design is a (¢t — j)—(v — 7,K', \)
design where K'={k —j : k € K}.
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Figure 3: Figure 4:
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Figure 5: Figure 6:

Lemma 3.1 Let (X,B) be a Steiner graphical tBD of type n” where n > 2 and r > 3. Write
t= (g)-l-y where 0 <y < x and let B € B.

(1) If £ > 4,n = 2, and Figure 7 C B, then B is complete.

(2) If £ > 3,n >3, and Figure 8 C B, then B is complete.

Proof: Recall that the rectangle drawn around the portion of the graph denotes that the graph is
complete in this region.

1. Expand the rectangle to the right by swapping partite sets until we have the complete graph
on (x + 1) partite sets contained in the block B. Note that swapping partite sets fixes 4(w;1)
T

edges and simple calculations show that 4(“";1) > (5)+(z—1) >t whenever z > 4. Expansion
is continued until B is complete.

2. Label the partite sets as A1, Ag,.... Expand the rectangle down one row by applying the
permutations o; = (ag;as;) for 1 < 7 < z. Note that each o; displaces 2(z — 1) edges and
hence fixes 4(5)—2(z—1) edges. Simple calculations show that 4(5)—2(z—1) > (5)+(z—1) > ¢

whenever z > 2. Continue to expand down until K (A1, Ag,...,A;) C B. If r > z, then expand
L] ° L] L] L] L] L J (] L L L
J J J ] L[] L] [ ] [ ] [ ] [ ] [ ]
\—/ ;/
X X



the rectangle to the right by swapping partite sets. A simple swap fixes n? (xgl > 9(“”;1)
edges as n > 3. Again, simple calculations show that 9(:”;1) > (w) + (z — 1) > ¢ whenever

2
z > 3. Expansion to the right is continued until B is complete.
[ |
Lemma 3.2 If t < n? and if B is a block of a Steiner graphical tBD of type n™ (n > 2 and

r > 3) with exactly t edges between any two partite sets, then B contains either the t—element set
in Figure 9 where t =n, or the t—element set in Figure 10 where t = n(n — 1).

Figure 9: t =n Figure 10: t =n(n —1)

Proof: Let ¢ < n? and suppose B is a block with exactly ¢ edges between the partite sets A and
B. So T = BN K(A,B) is a t—element set. Then there exists an edge e € B\ T. Now e cannot be
between the partite sets A and B as then we would have ¢ + 1 edges between the partite sets A and
B. So we may assume that, e either lies between the partite sets A and ¢, between the partite sets
B and C, or between the partite sets ¢ and D. If e is between the partite sets ¢ and D, then switch
inside ¢ and D to force K(c,D) C B. This is a contradiction, for now switching in A and B will fix
a t-element set contained in K(c,D) and will force an additional edge between the partite sets A
and B. By interchanging the roles of the partite sets A and B, if necessary, we may assume the edge
e lies between the partite sets B and C. Switching inside the partite set ¢ guarantees at least ¢t +n
edges in B.

Consider the permutation m = (a;a;) for all i # j. Define Ny (a;) = {b € B: a;b € T'}. Suppose
Nr(ai) # Nr(a;) for some i # j. Let I = Nr(a;)NNr(a;). Now 7 displaces | Nt (a;)|+| N7 (a;)|—2|I|
edges in B. However, |Ny(a;)|+|Nr(a;)|—=2|I| < |Nr(a;)|+|Nr(aj)|—|I| = |[Nr(ai) U Nr(a;)| < n.
Thus 7 displaces at most n edges of 7" and hence fixes a set of at least ¢ edges of B. Hence 7
produces an additional edge between the partite sets A and B while fixing a t—element set in B, a
contradiction. Therefore, Ny (a;) = Nr(a;) for all ¢ # j.

If [N7(a;)| = 1, then B contains either the edge set given in Figure 9 or Figure 11. If | Ny (a;)| =
n — 1, then B contains either the edge set given in Figure 10 or Figure 12. Otherwise, B contains
Figure 13 or Figure 14.

In Figure 11, the permutation (b1b9) fixes n = t edges in B and hence forces additional edges
between the partite sets A and B, a contradiction. In Figure 12, the permutation (bb,) displaces
n edges and hence fixes at least t + n — n = t edges. Thus this permutation forces additional
edges between the partite sets A and B, a contradiction. In Figure 13 or Figure 14, note that
1 < |N7(aj)] < n—1 and the permutation (b;b;j_1) displaces n edges and fixes a t-element set.
Thus this permutation produces additional edges between the partite sets A and B, a contradiction.
Therefore B must contain either the edge set in Figure 9 or the edge set in Figure 10. |



Figure 13: 1 < |Nrp(a;)| <n—1 Figure 14: 1 < |[Np(a;)| <n—1

Lemma 3.3 Let (X, B) be a Steiner graphical t-wise balanced design of type n™ where n > 2,17 > 3,
and t < n?. Define
Bag :={YNK(A,B):Y € B,|YNK(A,B)| >t}.

If t # n, or n(n — 1), then either Bap is one of the bigraphical t-wise balanced designs in [5] or
Bag is a t-(n?,n?,1).

Proof: Clearly Bap is a t—(n?,K, 1) design. However Byp may not be proper. Now Bap is not
proper if and only if |Y N K(A,B)| =t or n? for some Y € B.

If Y N K(A,B)| =t < n?, then by Lemma 3.2 we have t =n or t = n(n — 1).

If Y N K(A,B)| = n?, then Bap is a t-(n?,n?,1) design. [ |

3.1 t>3and n=2

We assume for this section that (X, B) is a Steiner graphical ¢{BD of type 2" where ¢ > 3 and
r > 3. Note that the Steiner graphical {BDs of type 22 were determined in [5] and are included in
Tables I, II, and III.

For some small values of ¢, we will show that there do not exist any Steiner graphical tBDs of
type n” for n > 2 and r > 3. This is a stronger statement than we need now, but we will use the
full strength in Section 3.2 when we consider the cases for n > 3. For the majority of Section 3.1,
we will assume n = 2 and write t = (g) + 1y where 0 < y < z and z > 3. We will show that there do
not exist any Steiner graphical ¢{BDs of type 2" (r > 3) by considering two cases: (1) 7 > z and (2)
r < x. When r > z, we first establish a series of lemmas that rule out designs with small values of
t. Following this, we have a sequence of lemmas for values of t = (“'2“) + y for most values of x and
y. Finally, Theorem 3.22 establishes that there do not exist any Steiner graphical tBDs of type 2"
where r > z and ¢t > 3. The second part of Section 3.1 will discuss r < z.

Lemma 3.4 There do not exist any proper Steiner graphical 3BDs of type n” for n > 2 and r > 3.



Proof: We first claim that n = 2. Indeed, suppose n > 3 and consider the 3—element set 7' in
Figure 15. Let B be the block containing T. As B # T, B contains an additional edge, e. If
e = bycy, then B can be shown to be complete. By symmetry, if e = bycz, then B is complete. So
if e is not incident to co, then applying one of the permutations (cic2) or (ca2c3) displaces only one
edge of T' and hence fixes 3 edges of B. Furthermore, this permutation forces, by Lemma 1.1, either
bacy or bocs to be in B; hence B is complete. Suppose e is incident to co. Then, up to symmetry,
there are five cases to comsider: aice, asce, bica, bsca, codi. In each case it is possible to apply
permutations to obtain boc; € B. Thus, by the above arguments, B is complete. Therefore n = 2.

A B C D E F
Figure 15: Figure 16:

Now consider the 3—element set 1" in Figure 16 and suppose > 5. Let B be the block containing
T. Since B # T, B contains an additional edge, e. If e € K(C,D), then there exists a sequence
of permutations which 3-generates K(c,D,E) from 7 U {e}. Hence by Lemma 2.1, B is complete.
For all other possibilities for e, applying one of the permutations (cicz) or (didz) displaces a single
edge and hence fixes t = 3 edges of B. Furthermore, this permutation forces an additional edge in
B between the partite sets ¢ and D. Hence B is forced to be complete. Therefore, if there exists a
Steiner graphical 3BD of type n”, thenn =2 and r = 3 or r = 4.

:
41
x

B, B,

Figure 17: Figure 18:

The proofs that there does not exist a Steiner graphical 3BD of type 2% or of type 2* are
essentially the same. Consider the 3—element sets T and T» in Figure 17 and let By and By be the
blocks containing 77 and 75, respectively. Note that the figures are shown for r = 4. If r = 3, then
only consider the first three partite sets. As By # T1, By contains an additional edge, e. There are,
up to symmetry, four possibilities for e: aobs, a1bo, c1di, cads. In the first case, By in Figure 18 is
forced and in the other cases B; is forced to be complete. Similarly, as By in Figure 18 is forced.
However, |B; N By| > 3 = t, which contradicts the fact that A = 1. Therefore there do not exist
any Steiner graphical 3BDs of type n” for n > 2 and r > 3. |

Lemma 3.5 There do not exist any Steiner graphical 4BDs of type n" for n > 2 and r > 3.

Proof: We first show that n > 3 by supposing n = 2. Consider the 4—element set 7" in Figure 19 and
let B be the block containing T. As B # T, B contains an additional edge, e. Up to symmetry,
there are five cases for e to consider: aibo, ayici, c1dy, bidi, die;. For each case there exists a



sequence of permutations which forces K(A,B,¢) C B and hence by Lemma 2.1, B is complete.
Thus if there exists a Steiner graphical 4BD of type n”, then n > 3 and r > 3.

Figure 19: Figure 20:

Now consider the 4—element set 7" in Figure 20 and let B be the block containing 7. As B # T,
B contains an additional edge, e. Regardless of what the additional edge is, similar arguments force
B to be complete. Therefore there do not exist any Steiner graphical 4BDs of type n” for n > 2
and r > 3. [ |

Lemma 3.6 There do not exist any proper Steiner graphical 5BDs of type n" for n > 2 and r > 3.

Proof: We first show that for r > 5, B is forced to be complete by considering the 5—element

A B C D

Figure 21: Figure 22:

set T in Figure 21. Let B be the block containing T. As B # T, B contains an additional edge,
e. Regardless of what the additional edge is, arguments similar to previous lemmas force B to be
complete. Thus, if there exists a Steiner graphical 5BD of type n", then r = 3 or r = 4.

Secondly, we show that n < 3. Assume that n > 3 and consider the 5—element set 7" in Figure 22.
Let B be the block containing T'. As B # T, B contains an additional edge, e. Regardless of what
the additional edge is, arguments similar to previous lemmas force B to be complete. Therefore

n < 3.
A B C D @
Figure 23: Figure 24:

Now suppose n = 2 and r = 3 and consider the 5—element set T' in Figure 23. Note that we are
examining only a portion of this figure. Let B be the block containing T. As B # T, B contains



an additional edge, e. Up to symmetry, there are four possibilities for e: ajcy, agbe,asci, and agcs.
In each of these cases, it is easy to show that B is forced to be complete. Therefore there does not
exist a Steiner graphical 5BD of type 23.

Next consider the case n = 2 and r = 4. Again let T' be the 5—element set in Figure 23.
Attempts to cover T force the block B = K (A, B, C). Now consider the 5—element set in Figure 24.
Attempts to cover this 5—element set forces either the block By or By in Figure 25. However,
|B N B;| >5=tfori=1,2, which contradicts the fact that A\ = 1. Therefore there does not exist
a Steiner graphical 5BD of type 2.

A B c D
@ j i\: :: .
L]

B, B,

Figure 25: Figure 26:

Finally, consider the 5—element set T" in Figure 26 where n =3 and r = 3 or r = 4. A similar
case analysis as in previous lemmas shows that B is forced to be complete regardless if r = 3 or 4.
Therefore there does not exist a Steiner graphical 5BD of type 3" for r = 3 or 4. |

Lemma 3.7 There do not exist any Steiner graphical 6 BDs and TBDs of type 2" for r > 3.

Proof: For t = 6, n = 2 and r = 3, Theorem 1.3 implies that £ = 7. However, by divisibility
conditions we know there cannot exist a 6—(12,7,1) design. Therefore there does not exist a Steiner
graphical 6BD of type 23. Similarly, one can show that there does not exist a Steiner graphical
7BD of type 23.

For ¢t = 6 and r > 4, consider the 6—element set T in Figure 27. Similar arguments as in previous
lemmas show that the block containing T is forced to be complete. Therefore there does not exist
a Steiner graphical 6BD of type 2" for r > 4.

For t = 7 and r > 4, consider the 7-element set 77 in Figure 28. To cover T forces the block
B in Figure 29. To cover the 7-element set 75 in Figure 28 forces the block Bs in Figure 29.
However |B; N By| > 7, which contradicts the fact that A = 1. Therefore there does not exist a
Steiner graphical 7BD of type 2" for r > 4. |

Figure 27:

Lemma 3.8 There do not exist any proper Steiner graphical tBDs of type

(a) 23, fort > 8.
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(b) 2%, for t > 20.

Proof: (a) Since n = 2 and r = 3, we have v = 12. For 8 <t < 11, Theorem 1.3 implies that
k < [%] < t, a contradiction. (b) Similarly, since n = 2 and r = 4, v = 24, and whenever
20 < t < 23, we know, by Theorem 1.3, that k& < [%J < t, a contradiction. Therefore there do
not exist any proper Steiner graphical tBDs of type 23 for ¢ > 8 and of type 2* for ¢ > 20. |

Lemma 3.9 There do not exist any Steiner graphical 8 BDs and 9BDs of type 27.

Proof: For t = 8 and t = 9, note that n = 2 and so by Lemma 3.8, we know r > 4. Consider the
8—element set T in Figure 30 and the 9—element set 7" in Figure 31. A similar argument as used in
previous lemmas can be used to show that blocks containing 7' and T" are forced to be complete.

Therefore there do not exist any Steiner graphical 8BDs and 9BDs of type 2. [ |
A B C D E F A B C D E F
Figure 30: Figure 31:

We draw your attention to Table V. The table gives the lemma or theorem number used to show
that there does not exist a Steiner graphical tBD of type 2" for some small values of ¢ (3 < ¢ < 99)
whenever r > z. (Recall that we write ¢t = (52") +y where 0 < y < z and = > 3.) The first column
in the table gives the first digit for the value of ¢ while the top row in the table gives the second
digit. So, for example, Lemma 3.12 shows that there does not exist a Steiner graphical 12BD of
type 2" for r > 5.

Lemma 3.10 Ift = (“2”) where r > x > 5, then there does not exist a Steiner graphical tBD of type
2.



Table V:in=2and r>z >3

[e=]
—

| 2 [ 3 | 4 [ 5 |6 [ 7 [ 8 ]9 |
3.4 3.5 3.6 3.7 3.7 3.9 3.9
3.10 | 3.11 | 3.12 | 3.22 | 3.22 | 3.10 | 3.11 | 3.12 | 3.22 | 3.22
3.22 | 3.10 | 3.11 | 3.12 | 3.13 | 3.22 | 3.22 | 3.22 | 3.10 | 3.11
3.12 | 313 | 3.14 | 3.15 | 3.22 | 3.22 | 3.10 | 3.11 | 3.12 | 3.13
3.14 | 3.15 | 3.16 | 3.22 | 3.22 | 3.10 | 3.11 | 3.12 | 3.13 | 3.14
3.15 | 3.16 | 3.17 | 3.18 | 3.22 | 3.10 | 3.11 | 3.12 | 3.13 | 3.14
3.15 | 3.16 | 3.17 | 3.18 | 3.19 | 3.20 | 3.10 | 3.11 | 3.12 | 3.13
3.14 | 315 | 3.16 | 3.17 | 3.18 | 3.19 | 3.20 | 3.21 | 3.10 | 3.11
3.12 | 313 | 3.14 | 3.15 | 3.16 | 3.17 | 3.18 | 3.19 | 3.20 | 3.21
3.19 | 310 | 3.11 | 312 | 313 | 3.14 | 3.15 | 3.16 | 3.17 | 3.18

O O[O | W N | O e+

Proof: We will illustrate the proof when £ = 6 by considering the 15—element set 7" in Figure 32.
Recall that the rectangle drawn across the first row of vertices indicates that the graph is complete
in this region. Let B be the block containing T'. As B # T, B contains an additional edge, e. If
e = ageq, then there exists a sequence of permutations which 15-generates Figure 7 from T'U{aze; }.
By Lemma 1.2, B contains Figure 7 and hence by Lemma 3.1, B is complete.

So, if the additional edge e is not incident to a; and not incident to ag, then the permutation
(a1a2) displaces exactly one edge of T'U{e} and hence fixes ¢ edges. Furthermore, the permutation
forces age; € B; hence B is complete. Now assume that e is incident to a; or as. Up to symmetry,
we have the following 14 cases for e to consider: a1b2, aice, a1dsa, ai1€2, a1g1, asba, asco, asds, ases,
as9g1, a1 f1, a1f2, asf1, and asfo. In all these cases it is easy to force ase; € B. Thus B is complete
in all cases.

If £ = 5, then omit partite set B shown in Figure 32 and follow the argument above. For
z > 6, add additional partite sets between the partite sets A and B such that the top vertex in each
additional partite set is incident to ao. In this case, some additional swapping is necessary, but can
easily be done. Therefore there does not exist a Steiner graphical {BD of type 2" when ¢ = (“2”) and
r>x>0.

A B cC D E F G H A B cC D E F G H
%’ ] ) ) ) %ﬁ’ o] A i i
Figure 32: Figure 33:

Lemma 3.11 Ift = (’2") + 1 where r > x > 5, then there does not exist a Steiner graphical tBD of
type 27.

Proof: Consider the t-element set 7" in Figure 33. Note that the figure is shown for z = 6. If
x = 5, then omit the partite set B. For x > 6, add additional partite sets between the partite sets
A and B such that the top vertex in each additional partite set is incident to as. The same strategy
and techniques used in the proof of Lemma 3.10 can be used to show that the block containing T
is forced to be complete. Therefore there does not exist a Steiner graphical {BD of type 2" when



t=(5)+1landr >z >5. [ |

Lemma 3.12 Ift = (g) + 2 where v > x > 5, then there does not exist a Steiner graphical tBD of
type 2".

Proof: We illustrate the proof when z = 5 by considering the t—element set T in Figure 34. For
z > 5, add additional partite sets between the partite sets ¢ and D. Similar arguments as used in
Lemma 3.10 can be used to show that the block containing 7" is forced to be complete. Complete
details of the proof can be found in [7]. Therefore there does not exist a Steiner graphical tBD of

type 2" when ¢t = (5) + 2, r >z > 5. [ |
A B C D E F G
\\- D '//' e ...
Figure 34:
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Figure 35:

Lemma 3.13 Ift = (”2”) + 3 where v > x > 7, then there does not ezist a Steiner graphical tBD of
type 27.

Proof: We illustrate the proof when x = 7 by considering the t—element set 1" in Figure 35. For
x > 7, add additional partite sets between the partite sets F and G. Similar arguments as used in
Lemma 3.10 can be used to show that the block containing 7" is forced to be complete. Therefore

there does not exist a Steiner graphical tBD of type 2" when ¢ = (g) +3andr>z>7T. |
A B C D E F G H [ J
Figure 36:

Lemma 3.14 Ift = (”2”) + 4 where v > x > 8, then there does not exist a Steiner graphical tBD of
type 27.

Proof: We illustrate the proof when x = 8 by considering the t—element set T in Figure 36. If
z > 8, then add additional partite sets between the partite sets G and H. Similar arguments as used
in Lemma 3.10 can be used to show that the block containing T is forced to be complete. Therefore
a Steiner graphical tBD of type 2" does not exist when ¢ = (”2”) +4and r > x > 8. |
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Lemma 3.15 Ift = (”2”) + 5 where r > x > 8, then there does not exist a Steiner graphical tBD of
type 2".

Proof: We illustrate the proof when xz = 8 by considering the t—element set 71" in Figure 37. If
z > 8, then add additional partite sets between the partite sets ¢ and H. Similar arguments to
those used in Lemma 3.10 can be used to show that the block containing T is forced to be complete.
Therefore a Steiner graphical tBD of type 2" does not exist when ¢ = (g) +5andr>z>8 N

A B c D E F G H | J K
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Figure 38:

Lemma 3.16 Ift = (52”) + 6 where r > x > 9, then there does not exist a Steiner graphical tBD of
type 27.

Proof: We illustrate the proof when z = 9 by considering the t—element set T in Figure 38. If
z > 9, then add additional partite sets between H and 1. Similar arguments as used in Lemma 3.10
can be used to show that the block containing 7' is forced to be complete. Therefore there does
not exist a Steiner graphical tBD of type 2" when t = (52”) +6andr>xz>9. |

Lemma 3.17 Ift = (’2”) + 7 where v > x > 10, then there does not exist a Steiner graphical tBD
of type 27.

Proof: We illustrate the proof when x = 10 by considering the t—element set 7" in Figure 39. If
z > 10, then add additional partite sets between I and J. Similar arguments as used in Lemma 3.10
can be used to show that the block containing T is forced to be complete. Therefore there does
not exist a Steiner graphical tBD of type 2" when t = (“2;) +7and r >z >10. [ |

A B C D E F G
[e D » A D » _.
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Figure 39:
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Lemma 3.18 Ift = (52”) + 8 where r > = > 10, then there does not exist a Steiner graphical tBD
of type 27.

Proof: Consider the t—element set 7' in Figure 40. Note that the figure is shown for z = 10. If
z > 10, then add additional partite sets between the partite sets I and J. Similar arguments as
used in Lemma 3.10 can be used to show that the block containing 7' is forced to be complete.
Therefore a Steiner graphical tBD of type 2" does not exist when t = (g) +8andr>z>10. N

A B C D X1 X2 Xm E F G H | J K L
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Figure 41:

Lemma 3.19 Ift = (5) +y where 0 <y <=z, r >z > 11, y > 9, and y = 0(mod 3), then there
does not ezist a Steiner graphical tBD of type 2.

Proof: Write y = 3(m + 1) where m > 2 and consider the t—element set 7" in Figure 41. Note that
the top vertex in the partite set X; (1 < 4 < m) is incident to c2,d2, and es. The same strategy
and techniques as used in the proof of Lemma 3.10 can be used to show that the block containing

T is forced to be complete. |
A B c D E F G H | J K L M
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Lemma 3.20 Ift = (g) +y where 0 <y <z, r>xz>11, y > 10, and y = 1 (mod 3), then there
does not exist a Steiner graphical tBD of type 27.

Proof: We illustrate the proof when z = 11 and y = 10 by considering the t—element set T' in
Figure 42. For x > 11, add additional partite sets between the partite sets J and K. If y > 10,
then add the necessary number of partite sets between D and E such that the top vertex in each
additional partite set is incident to bo, co, and fo. The strategy and techniques used in the proof of
Lemma 3.10 can be used to show that the block containing T is forced to be complete. |
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Lemma 3.21 Ift = (§) +y where 0 <y <z, r >z >12, y > 11, and y = 2 (mod 3), then there
does not exist a Steiner graphical tBD of type 27.

Proof: We illustrate the proof when x = 12 and y = 11 by considering the t—element set 7' in
Figure 43. For £ > 12, add additional partite sets between the partite sets K and L. If y > 11,
then add the necessary number of partite sets between E and F such that the top vertex in each
additional partite set is incident to co,ds, and go. The strategy and techniques used in the proof
of Lemma, 3.10 can be used to show that the block containing T is forced to be complete. |

Theorem 3.22 Ift = (g) +1y, where 0 <y < x and r > x > 3, then there does not exist a Steiner
graphical tBD of type 27.

Proof: By Lemma 3.4 through Lemma 3.9, we know that there do not exist any Steiner graphical
tBDs of type 2" for t = 3, 4, 5, 6, 7, 8, or 9. By Lemma 3.10 through Lemma 3.21, we know that
there do not exist any Steiner graphical tBDs of type 2" except possibly for ¢ = 13, 14, 18, 19,
20, 26, 27, 34, 35, 43, 44, and 54. In each case we consider a different t—element set and show the
nonexistence of each Steiner graphical tBD of type 2". Complete details of these cases can be found
in [7]. |

Recall that t = (”2”) + 1y, where 0 < y < z and z > 3. Up to this point we have shown that there
do not exist any Steiner graphical tBDs of type 2" for all values of ¢ > 3 when r > z. We now
prove that there do not exist any Steiner graphical tBDs of type 2" for all values of ¢ > 3 when
r < x. We first consider the case x < 7 and then close the section by considering the case x > 8.
For z <7, we need the following result.

Lemma 3.23 (a) If 10 <t < 19, then there do not exist any proper Steiner graphical tBDs of
type 24,

(b) If 15 < t < 27, then there do not exist any proper Steiner graphical tBDs of type 25.

(c) If 21 <t < 27, then there do not exist any proper Steiner graphical tBDs of type 2°.

Proof: Case (a): If 13 <t < 19, then taking the derived design with respect to Uf«:z K(A1,4;) we
obtain a Steiner graphical sBD of type 22 where 1 < s < 7. By Lemmas 3.4, 3.5, 3.6, 3.7, and
3.7, we know that there does not exist a Steiner graphical sBD of type 23 for 3 < s < 7. Hence
there does not exist a Steiner graphical tBD of type 24 for 15 < t < 19. It remains to show that
there do not exist any Steiner graphical tBDs of type 2* for 10 < ¢ < 14. In each case we consider a
different t-element set and show the nonexistence of a Steiner graphical tBD of type 2¢. Complete
details of these cases can be found in [7]. Therefore there do not exist any proper Steiner graphical
tBDs of type 24 for 10 < ¢ < 19.



Case (b): We take the derived design with respect to [J°_, K (A1, A;). Similar arguments and
techniques as used above can be used to show the nonexistence of any proper Steiner graphical
tBDs of type 2° for 15 < ¢ < 27.

Case (c): By taking the derived design with respect to U?,:Q K(A1,A;) and employing similar
arguments and techniques as used in Case (a), one can show the nonexistence of any proper Steiner
graphical tBDs of type 26 for 12 <t < 27. |

Theorem 3.24 Writet = (52") +y, where 0 <y <z. If 3 <r <z <7, then there do not exist any
Steiner graphical tBDs of type 2".

Proof: Note that 3 < r < z < 7 implies that 6 < ¢ < 27. Lemma 3.7 proves that there does
not exist a Steiner graphical 6BD or 7BD of type 2. To show the nonexistence of tBDs for the
remaining values of ¢, we use Lemma 3.8, as well as, Lemma 3.23 |

Given that t = (“2”) + 1y, where 0 < y < z and z > 3, we have proved that if 3 <r <z <7,
then there do not exist any Steiner graphical {BDs of type 2". It remains to prove that there do
not exist any Steiner graphical tBDs of type 2" where 3 < r < z and z > 8. We first prove the
following lemma.

Lemma 3.25 Ift =4(r — 1) + 1 and r > 4, then there does not exist a Steiner graphical tBD of
type 27.

Proof: If r =4,5,6, then £ = 13,17, 21, respectively. Lemma 3.23 shows that there do not exist
such designs. If r = 7, then ¢ = 25 and Case 6 in the proof of Theorem 3.22 shows that there
cannot exist such a design.

For r > 8, consider the (4(r—1)+1)—element set T in Figure 44 and let B be the block containing
T. As B # T, B contains an additional edge, e. If e = fah1, then we claim that B is forced to be
complete. Swap partite set H with all of the r — 8 partite sets to the right of H. Next swap A and
B, swap A and D, swap B and D, and swap C and D. Now swap partite set F with each of the r — 6
partite sets to the right of F. Up to this point |B| > t+1+(r—8)+1+1+1+1+2(r—6) = t+3r—15.
Swapping partite sets E and F displaces the 4 edges incident to ej, the 2 edges incident to f; and
the 2 edges incident to fo and hence fixes t + 3r — 15 —8 =t 4+ 3r — 23 > ¢ as r > 8. Continue to
swap partite sets until B contains all the edges which are between the top row of vertices and the
bottom row of vertices. Now |B| > 2(3) = r(r — 1). Finally switch inside each partite set to force
B to be complete. Note that each switch (e.g. (ajaz)) fixes all the edges between the remaining
(r — 1) partite sets, which is 2(T§1) =(r—1)(r—2)>4(r—1)+1=tasr>8. Thusif fohy € B,
then B is forced to be complete.

So, if e is not incident to g1, g2, h1, he, then we can easily force foh; € B by swapping G and H.
Hence B is forced to be complete. Now suppose e is incident to g1, gs, h1, or he. Up to symmetry,
we have several possibilities for e which we have classified into 3 different types:

1: e€e K(A,G) UK(B, Q)

2: e€ K(A,H)UK(B,H)

and

3: e€ K(¢,G)UK(D,G)UK(E,G)UK(F,G)UK(C,H)UK(D,H)UK(E,H) UK (F,H) UK(G,H) U
K(n,1).



Figure 44:

Regardless of what the additional edge e is we can swap partite sets and always force foh € B;
hence B is complete. Therefore there does not exist a Steiner graphical (4(r — 1) + 1)BD of type
2" for r > 8. |

Theorem 3.26 Ift = (g) +1y,0<y<z,3<r <z andzx > 8, then there do not exist any Steiner
graphical tBDs of type 27.

Proof: We first note that = > 8 implies that ¢ > 28. Secondly, note that z > 8 and r < z implies
that t = (5) +y > (5) > 4(z — 1) > 4(r — 1). So by taking the derived design with respect to
Ui—y K (A1, A;) we obtain a Steiner graphical ¢/BD of type 2" where # = ¢t —4(r —1) and ' = r — 1.
Continue taking the derived design until either r > z or z < 8.

If 3 < z < 8, then we are done by Theorem 3.24. If r > x > 3, then we are done by
Theorem 3.22. Otherwise it must be that r > z and so x = 2. Therefore we must show that the
Steiner bigraphical designs Dg and D7 do not extend and the designs D19, D13, D14, D15, and Dyg
do not extend. To do this we will make the following observations:

(a) there does not exist a Steiner graphical 9BD of type 2 by Lemma 3.8.
(b) there does not exist a Steiner graphical 17BD of type 2° by Lemma, 3.23.

(c) there do not exist any Steiner graphical ¢{BDs of type 2" for t = 4(r — 1) + 1 and r > 4 by
Lemma 3.25.

(d) there does not exist a Steiner graphical 14BD of type 2* by Lemma, 3.23.
(e) there does not exist a Steiner graphical 18BD of type 2° by Lemma 3.23.

We end this section with a short summary. For n = 2, we write ¢ = (’2”) +y, where 0 <y <z
and x > 3. If r > z, then Theorem 3.22 proves that there do not exist any Steiner graphical tBDs
of type 2". For 3 < r < z <7, Theorem 3.24 proves that there do not exist any Steiner graphical
tBDs of type 2". Finally, Theorem 3.26 shows that there do not exist any Steiner graphical ¢tBDs of
type 2" for 3 < r < x and z > 8. Therefore, if ¢ > 3, then there do not exist any Steiner graphical
tBDs of type 2" for r > 3.



3.2 t>3and n>3

We first show that there do not exist any Steiner graphical tBDs of type n” for ¢t > n? when n > 3
and 7 > 3. Secondly, we prove that there do not exist any Steiner graphical tBDs of type n" for
t < n? when n > 3 and r > 3 using Lemma 3.3. For ¢t > n?, we begin by considering r = 3. We
refer the reader to [7] for the complete details.

Theorem 3.27 There does not exist a Steiner graphical tBD of type n® for t > n? and n > 3.

Proof: The proof given in [7] is organized into the following five cases: (i) t = n2+1 for n > 3 (ii)
t=n?+2forn >3, (iii) 12 <t < 18 where n = 3, (iv) n2+3 <t < 2n? for n > 4, and (v) ¢t > 2n?
for n > 3. |

We now consider values of ¢ such that (é) n?<t< (zgl)n2 where £ > 2andn > 3 whenr—/¢ > 2
and then when r — £ = 1. Again we refer the reader to [7] for the proofs.

Lemma 3.28 Ift = (g)n2 + 1 where £ > 2, n > 3, and r — £ > 2, then there do not exist any
Steiner graphical tBDs of type n”.

Lemma 3.29 Given £ > 2 and partite sets A1, Ag,...,Ay,B,C,..., where B := Ap41,C 1= Agya, etc.
If
U K(a,a)UK(8,0)
1<i<j<t+1

18 contained in the block B containing T, then B is complete.

Theorem 3.30 If (g)n2 <t< (“2'1)n2 where £ > 2,n > 3, and v — £ > 2, then there do not exist
any Steiner graphical tBDs of type n'.

Proof: Note that » > 4. If t = (S)n2 + 1, then Lemma 3.28 shows that there does not exist a
Steiner graphical tBD of type n".

For the remaining values for ¢, let s = ¢ — (g)n2 and label the partite sets as A1, Ag,..., Ay, B,
C,..., where B := Ay,1,C := Ay o, etc. We will construct a subgraph

T .= U K(Ai,Aj) us
1<i<j<t
with ¢ edges and where |S| = s. Note that 0 < s < In? = (HQ'I)n2 - (é)n2 We organize s into four
cases: (i) 2<s</tn—1,¢02>2, (ii) 2n < s < 2n?, (iii) fn < s < In?%, £ > 2, and (iv) s = In?,
£ > 2. In each case, a set S is constructed and then Lemma 3.29 is used to force B to be complete.
Therefore whenever (g) n?<t< (2451) n?and r—£> 2,4 > 2,n > 3, there do not exist any Steiner
graphical tBDs of type n". |

Theorem 3.31 If (é)n2 <t< (2;1)n2 where £ > 2,n > 3, and r — £ = 1, then there do not exist
any Steiner graphical tBDs of type n".

Proof: We first claim that if r > 4, then we can take the derived design through (r — 1)n? edges.

Note that ¢ > (g) n? = (Tgl)n2 > (r — 1)n? provided that r > 4. Now we take the derived design

with respect to |JI_, K (A1, A;) which has (r — 1)n? edges. Thus the claim holds. After taking



the derived design through (r — 1)n? edges we obtain a Steiner graphical #BD of type n" where
t'=t— (r—1)n? and v’ = r — 1. Continue to take the derived design until ¢ < (r — 1)n? or r = 3.

Suppose t < (r — 1)n?. If r — £ > 2, then Theorem 3.30 shows that there do not exist any
Steiner graphical tBDs of type n”. So suppose r —£ < 1. Then (g) n? <t < (r — 1)n? which implies
(5) < (r—1) < ¢. Simplifying we have that £—1 < 2 or £ < 3. Thus, £ = 2 and 7 = 3 which implies
that n? < t < 3n?

So, we need only show that there do not exist any Steiner graphical tBDs of type n® (n > 3)
for n? < t < 3n?. This has been proven by Theorem 3.27.

Therefore whenever (g) n2<t< (“2'1)n2 and £ > 2,n > 3, and r — £ = 1 there do not exist any

Steiner graphical tBDs of type n". |

Lemma 3.32 There do not exist any Steiner graphical tBDs of type n” for t = n?> whenn > 3 and
r > 3.

Proof: First suppose r = 3 and consider 7" = K(A,B). One can easily show that the block
containing T' is B = K (A, B, C) = K, 5, a contradiction. Therefore there does not exist a Steiner
graphical n?BD of type n?, n > 3.

Now assume 7 > 4 and consider the t—element set

T:= K(A, B) U {aldl, bQCQ} \ {an,lbn, anbn}

Similar arguments and techniques as seen before force the block containing 7' to be complete.
Therefore there does not exist a Steiner graphical n?BD of type n”, n > 3 and r > 4. |

Theorem 3.33 If t > n? where n > 3 and r > 3, then there do not exist any Steiner graphical
tBDs of type n'.

Proof: Theorem 3.27 proves that there do not exist any Steiner graphical tBDs of type n® for
t > n?. Theorem 3.30 and Theorem 3.31 establish that there do not exist any Steiner graphical
tBDs of type n” for t > n? and r > 4. Finally, Lemma 3.32 proves there does not exist a Steiner
graphical n?BD of type n” for n > 3 and r > 3. |

We finish this section by proving that there do not exist any Steiner graphical tBDs of type n"
for t < n? whenn > 3 and r > 3.

Lemma 3.34 Ifn =1t > 3, then there does not exist a Steiner graphical tBD of type n™ for r > 3.

Proof: If n =t = 3, then Lemma 3.4 proves there does not exist a Steiner graphical 3BD of type
3" for r > 3. So we may assume that n =t > 4. Let

T:={aih|l <i<n—2}U{bpcili =n—1,n}

and let B be the block containing 7. Similar arguments and techniques as seen before force B to
be complete. Therefore there does not exist a Steiner graphical nBD of type n” when n > 4 and
r > 3. [ |

Lemma 3.35 Ift = n(n — 1) and n > 3, there does not ezxist a Steiner graphical tBD of type n'
forr > 3.



Proof: Consider the t—element set T in Figure 45. Similar arguments and techniques as seen before
force the block containing T' to be complete. Therefore there does not exist a Steiner graphical
tBD of type n" for t =n(n — 1) whenn >4 and r > 3.

It remains to show that when n = 3 and ¢ = n(n — 1) = 6, there does not exist a Steiner
graphical 6BD of type n” for r > 3. Consider the 6-element set in Figure 46 Similar arguments
and techniques as seen before force the block containing 7' to be complete. Therefore there does
not exist a Steiner graphical 6BD of type 3". |

. A B C D E
Figure 45: Figure 46:

Lemma 3.36 If 3 <t < n? and n > 3, then a Steiner graphical tBD of type n” for r > 3, cannot
have a block B containing K (A, B).

Proof: Note that throughout this proof we are assuming that the Steiner graphical tBD has a
block B containing K (A,B). If n = 3, then we need only consider 7 <t < 9 as t = 3,4,5,6 were
dealt with in Lemmas 3.4, 3.5, 3.6, and 3.35, respectively. For ¢ = 7, consider the 7—element set
T in Figure 47 and let B’ be the block containing T'. Note that B’ # B and |[B'N K(A,B)| <t—1
for otherwise |[B N B'| > t. Regardless of what the additional edge e € B'\T is incident to, we can
always force an additional edge €' € K (A, B), which is a contradiction. For ¢ = 8, take T to be the
7—element set in Figure 47 together with the edge {asbs}. The same argument as in the ¢ = 7 case
forces a contradiction. Therefore we may assume that n > 4.

Figure 47:

For n > 4, we construct a t—element set 7' where |T'N K(A,B)| =t — 1. We organize ¢ into 5
cases. Observe that these 5 cases cover ¢ > 9. In each of these cases we will prove that there cannot
exist a Steiner graphical ¢tBD of type n” for n > 4 and r > 3, if B is a block containing K (A, B).
Let B’ be the block containing 7" and let e € B'\T. Observe that B’ # B and |B'NK(A,B)| <t—1
for otherwise |[B N B'| > t.

Case (i): t —1 = ¢%2 + 2k where 1 < k < £ < n, £> 3. Consider the t-element set

T = {aibnli = 2,... .k + 1} U {bianli = 2, ...,k + 1} U {ashj|1 <i,5 < £} U {bnca}



Regardless of what the additional edge e is incident to, we can always force an additional edge
¢ € K(A,B). However, this is a contradiction since |[B N B'| > t.

Case (ii): t—1=¢2+2k+1 where 1 <k < £ <n, £>3. Add the edge {a,b,} to the t-element
set in Case (i) and apply the argument from Case (i).

Case (iii): t —1 = £2 — 1 where 3 < £ < n. Consider the t-element set T := {a;b;|1 <i,j <<
n}\ {aeuben} U{bncy}. Regardless of what the additional edge e is incident to, we can always force
an additional edge ¢’ € K(A,B). This is a contradiction since |B N B'| > t.

Case (iv): t —1 = £? where 3 </ < n. Add the edge {a,b,} to the t—element set in Case (iii)
and apply the argument from Case (iii).

Case (v): t —1 =/? 4+ 1 where 3 < £ < n. Add the edges {a,bn,anc,} to the t-element set in
Case (iii) and apply the argument from Case (iii).

Therefore if t > 9, then there does not exist a Steiner graphical ¢{BD of type n” where n >
4, r > 3, and B is a block containing K (A, B).

Now suppose 3 <t < 9 where n > 4 and r > 3. By Lemmas 3.4, 3.5, and 3.6, we know there
cannot exist a Steiner graphical 3BD, 4BD, and 5BD when n > 4 and r > 3. If { = 6, then consider
the 6-element set in Figure 48 and let B’ be the block containing T'. As B’ # T, B’ contains an
additional edge, e. Regardless of what e is incident to, we can always force an additional edge
e/ € K(A,B). This is a contradiction since |B N B’| > t. Suppose t = 7 and consider the 7-element
set in Figure 49 and let B’ be the block containing T'. Regardless of what e is incident to, we can
always force an additional edge €' € K (A, B), a contradiction. Finally suppose ¢ = 8 and consider
the 8—element set in Figure 50. Let B’ be the block containing T'. Regardless of what e is incident
to, we can always force an additional edge ¢’ € K(A,B), a contradiction. Therefore, if 3 <t < 9,
then there does not exist a Steiner graphical tBD of type n” where n > 4, r > 3, and B is a block
containing K (A, B). [ |

Figure 48: Figure 49:

Figure 50:

Theorem 3.37 If3 < t < n? and n > 3, then there do not exist any Steiner graphical tBDs of
type n” for r > 3.



Proof: By Lemma 3.3, either there is a block B containing K (A, B), or t = 3,4,5 (values for which
there exists a bigraphical design in [5]), t = n, or t = n(n — 1).

Lemma 3.36 proves that there does not exist a Steiner graphical tBD of type n" if there is a
block B containing K(A,B). In Lemma 3.4, 3.5, and 3.6, we proved that there does not exist a
Steiner graphical 3BD, 4BD, or 5BD of type n" for n >3 and r > 3. When t =n or t = n(n — 1),
Lemma 3.34 and Lemma 3.35 established that there do not exist any Steiner graphical tBDs of
type n” for n > 3 and r > 3. |

Main Theorem: The only proper Steiner graphical tBDs of type n" are those given in Tables I, 11,
and ITI.

Proof: The designs D1, Dy, D3, Dy, and D5 are the Steiner graphical {BDs of type 1" found in
[2]. Designs Dg, D7, Dg, D9, D1g, and Di; are the Steiner graphical ¢{BDs of type n? found in [5].

Assume now that n > 2 and r > 3. Theorem 2.2 and Theorem 2.5 establish the proper Steiner
graphical ¢{BDs of type n” for t = 1 and ¢ = 2, respectively. These are the designs Do, D13,
D14, D15, and Dyg in Table ITI. For ¢ > 3, we consider two cases for n: (i) n = 2 and (ii) n > 3.
Theorem 3.22, Theorem 3.24, and Theorem 3.26 establish that there do not exist any proper Steiner
graphical tBDs of type 2" where r > 3 and ¢ > 3.

Finally, Theorem 3.33 proves that there do not exist any proper Steiner graphical tBDs of type
n” where n > 3,7 > 3, and ¢t > n?. Theorem 3.37 establishes that there do not exist any proper
Steiner graphical tBDs of type n” where n > 3,7 >4, and 3 < t < n?. [ ]
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