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A t—design or t—(v, k, A) design is a pair (X, B) where: X is a v—element set
of points; B is a family of k—elements subsets of X', called blocks and every
t—element subset T C X is contained in exactly A blocks. It is said to be
simple or to have no repeated blocks if all the members of B are distinct.
This survey is concerned only with simple designs.

For example a 2—(7,3,1) design (X, B) is given by:
X =4{0,1,2,3,4,5,6} and B = {126,235, 346,056, 145,024,013}.
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Figure 1: the 2-(7,3,1) design

This design is represented by the picture found in figure 1.

An elementary counting argument shows that it is necessary that

(k_?) divides (’”_?)A foralli=0,1,...,t
t—1 t—1



These conditions are referred to as the necessary conditions and if the pa-
rameters t, v, k, A satisfy them we say that they are admissible. Perhaps it
was Denniston in 1980 who first discussed the problems that arise when ¢ is
large. What do I mean by large? Well, careful examination of the settling
of admissible parameters, Tables [,ILIII and IV, and also of the techniques
used has made me realize that there is a definite change in amount settled
and a definite change in the techniques available when ¢ changes from less
than 4, to 4 and 5 and to greater than 5. Thus I classify ¢ as small when
t < 3, middle when t € {4,5} and large when t > 6. In this survey then, I
will concentrate only on ¢—designs with ¢ > 6.

Table I. A summary of the parameters settled when k =¢+1and A =1

t =1: exist if and only if v = 0 mod 2.
t=2: exist if and only if v =1 or 3 mod 6 (Kirkman 1847).
t =3: exist if and only if v = 2 or 4 mod 6 (Hanani 1960).

t = 4: Only ones known have:
v = 23,47 and 83 (Denniston 1976);
v =71 (Mills 1978) and
v = 107,131 (Grannell, Griggs and Mathon 1993).

The smallest unsettled parameter set is 4-(17,5,1).

t = 5: Only ones known have:
v = 12 (Carmichael 1937, Witt 1938);
v = 24,48 and 84 (Denniston 1976);
v =72 (Mills 1978) and
v = 108,132 (Grannell, Griggs and Mathon 1993).

The smallest unsettled parameter set is 5-(18,6,1).

t > 6: None are known.

The smallest unsettled parameter set is 6-(19,7,1).



Table II: A summary of the parameters settled when &k 2¢+4+ 1 and A =1

t=1:
t=2:
t=3:
t = 4.
t=25:
t>6

exist if and only if v = 0 mod k.

For all k& there is a vy such that for all v > vg there exists a 2—
(v, k, 1) whenever v(v—1) = 0 mod k and (v—1) = 0 mod (k—1)
(Wilson 1975).

The necessary conditions are sufficient for ¥ = 4 and £ = 5
(Hanani 1961, 1972).

The case k = 6 is studied in (Mullin 1987 & 1989, Zhu, Du and
Yin 1987, Mills 1987, and Greig 1992)

The cases k = 7,8,9 were studied by M. Greig (Greig 1992).
The case k = 8 was studied independently by B. Du and L. Zhu
in 1988.

The smallest unsettled parameter set is 2-(46,6,1).

Only ones known have:

(v, k) =(¢"+1,¢+ 1), n > 2, q a prime power;

(v, k) = (22,6) (Carmichael 1937, Witt 1938) and

(v, k) = (25,5) (Denniston 1976).

There are also recursions which give further infinite classes

(Hanani 1979).
The smallest unsettled parameter set is 3-(42,6,1).
Only ones known have:

(v, k) = (23,7) (Carmichael 1937, Witt 1938) and
(v, k) = (27,6) (Denniston 1976).

The smallest unsettled parameter set is 4-(42,6,1).
Only ones known have:

(v, k) = (24, 8) (Carmichael 1937, Witt 1938) and
(v, k) = (28,7) (Denniston 1976).

The smallest unsettled parameter set is 5-(43,7,1).

None are known.

The smallest unsettled parameter set is 6-(29,8,1).



Table I1I: A summary of the parameters settled when k =¢+4+ 1 and A # 1

1t =
1t =
t=4:
t=5:
t=6:
t>7

The necessary conditions are sufficient.
The necessary conditions are sufficient (Dehon 1983).

The necessary conditions are know to be sufficient when:
A = 2 (Hartman and Phelps 1990);

A = 3 (Phelps, Stinson, Vanstone 1989);

A=0mod 3 and A = ged(v — 3,12) (Teirlinck 1984);
for all A when v =5 -2" (Etzion, Hartman 1990).

Other sporadic results are also known.

The smallest unknown is 3-(25,4,4).

The only known infinite families are:

4-(4 4 8u, 5,4u) for all u > 0 (Teirlinck 1989)

4-(v,5,A) for all v =4 mod A , where A = 2641807540224
(Teirlinck 1987).

Sporadic examples are also known.

The smallest unknown is 4-(15,5,2).

The only known infinite families known are:

5-(5 + 8u, 6,4u) for all u > 0

(Teirlinck 1989, using a result of Kreher and Radziszowski 1986)
5—(v,6, A) for all v =5 mod A, where

A = 74300837068800000000000 (Teirlinck 1987).

Sporadic examples are also known.

The smallest unknown is 5-(16,6,2).

The only known infinite families are:

6—(6 + 8u,7,4u) for all u > 0

(Teirlinck 1989, using a result of Kreher and Radziszowski 1986)
6—(v,7,A) Yv = 6 mod A, where

A = 13974055172471046820331520000000000000 (Teirlinck
1987).

No other 6-(v,7,A) designs are known.

The smallest unknown is 6-(15,7,3).

The only known infinite family is:

t—(v,t+1,A) for all v = ¢t mod X where A = (¢+1)!?*+! (Teirlinck
1987).

No other t—(v,t + 1, A) designs are known.

The smallest unknown is 7-(16,8,3).



Table IV: A summary of the parameters settled when £ #¢+ 1 and A # 1

t=4:
t=5:
t=6:
t>7

The necessary conditions are sufficient.
The case k =4 and A = 2 is completely settled (Rosa 1993).

The smallest unsettled parameter set is 2-(22,8,4).

Several infinite families and many sporadic examples are known.

The smallest unsettled parameter set is 3-(16,7,5).

There are twenty infinite families known, see Table V.
Many sporadic examples are known.

The smallest unsettled parameter set is 4-(12,6,6).

There are seven infinite families known., see Table V
Many sporadic examples are known.

The smallest unsettled parameter set is 5-(13,7,6).

The only known infinite family is: 6—(23416m, 8, 4(m+1)(16m+
17) for m > 0, (Kreher 1993).

The only other known examples are:

6—(33,8,36) (Leavitt and Magliveras 1984);

6—(20,9,112) (Kramer, Leavitt and Magliveras 1982);
6—(22,8,60) (Kreher and DeCaen 1992) and

6—(28,8, ), for A = 63,84, 105, (Schmalz 1993).

The smallest unsettled parameter set is 6-(16,8,15).

None are known. The smallest unsettled parameter set is 7—

(18,9,5).



Table V: The known infinite families of ¢ designs with ¢ > 4.

4-(2" 4+ 1,2™ (2™ — 3)1'[?;_21%,:—11) designs exist provided 2 < m < n
(Hubaut 1974).

4-(27 + 1,271 41, (2771 = 3)(27 =2 — 1)(2"~! — 4)) designs exist provided
n > 4 (Driessen 1978).

4-(2"4+1,2m+ 1, (2" + I)H?;l;;—__i,:—ll) designs exist provided 2 < m < n

and m does not divide n (Hubaut 1974).
4-(2" + 145,271 — 1, (P73 (2771 — 1)(2772 — 1)(277 ! — 4)) designs

S

exist for each s > 2 such that n > 6 is large enough so that 2nn__11_2 >s4+6
(Magliveras 1987).

4-(2" + 14 s,2™, (2n+55_3) (2™ — 3)u) designs exist for m sufficiently close

to n, with m large enough so that (})/("1*) > Ao(Ao — A1) where p =

k
Hﬁgl% and Ag, A; are the number of blocks and replication number

respectively (Magliveras 1987).

4-(2" + 1+ s,2™ + 1, (2n+;_3) (2™ + 1)p) designs exist for m sufficiently
close to n, with m large enough so that (Z)/(H's) > Ao(Ag — A1) where

S

un o= H?;l%,__—ll and Ag, A; are the number of blocks and replication

number respectively (Magliveras 1987).
4-(4+4 8u,5,4u) designs exist for each u > 0 (Tierlinck 1989, using a result
of Kreher and Radziszowski 1986).

4-(9m + 5,6, (2Tm? + 3m)/2) (Kramer, Magliveras, O’Brien 1993).
4-(27 +1,6,10) designs exist for all odd f > 5 (Bierbrauer 1989a).
4-(27 +1,9,84) designs exist for all f > 5 (Bierbrauer 1989b).

4-(27 +1,8,35), 4-(27 +1,6,60), 4-(27 + 1,6,90), 42 + 1,6,150), 4-
(27 +1,6,70),

4-(27 +1,6,100), 4-(2 +1,6,160), 4-(2 +1,9,63) and 4-(2/ + 1,9, 147)
designs exist for all f relatively prime to 6 (Bierbrauer 1989c).

4-(4+4 8u, 5, 4u) designs exist for each u > 0 (Tierlinck 1989, using a result
of Kreher and Radziszowski 1986).

5-(2" 42,2771+ 1,(2"71 — 3)(2"=% — 1)) designs exist provided n > 4
(Alltop 1972).

5-(20 43,271 1, (20 —2) (271 = 3)(272 — 1)), 5(2" +4,27" 1 +2, (2" —
1)(27 = 2)(27=2 = 1)), 5-(2" +5, 21 +2,27(27 —1)(2" — 2)(2*~% — 1)) and
5—(2" + 6,271 4 3,2771(2" 4 1)(2" — 1)(2" — 2)) designs exist provided
n > 6 (van Trung 1986).



5-(2" 4+ 245,27 + 1, (2n+j—3) (27=1 — 3)(2"~2 — 1)) designs exist for each

n > N such that s > 0, N >4 and 2:;:{\7 > s+ 4 (Magliveras 1987).

5—(5+ 8u, 6,4u) designs exist for each u > 0 (Tierlinck 1989, using a result
of Kreher and Radziszowski 1986).

6—(6 + 8u, 7, 4u) designs exist for each u > 0 (Tierlinck 1989, using a result
of Kreher and Radziszowski 1986).

6—(23 + 16m, 8, %(16”;“)) designs exist for each m > 0 (Kreher 1993).

t—(v,t+ 1, (t + 1)1?'*+1) designs exist provided v =t mod (¢ + 1)!?**1) and
v >t 4+ 1 (Teirlinck 1987).

Table VI
t What’s known  Techniques used
/ 1\ 2 lots Various algebraic , geometric
Small 3 lots and recursive constructions.
4 something Use of 4 and 5 transitive groups,
N union of orbits under other groups
Middle 5 something recursive constructions

and coding theory!.

;\ 6 a little Union of orbits under some group

Large | > 7 almost nothing and ‘large set recursion’.

Let g € Sym(X'), the full symmetric group on X'. For each « € X, the
image of « under g is denoted by «¢. If K C X, then K¢ = {29 : 2 € X}.
An automorphism of a t—(v, k, A) design (X, B) is an element g € Sym(X),
such that K9 € B whenever K € B. The set of all automorphisms of a ¢-
(v, k, A) design is said to be the full automorphism group of the design. Any
subgroup of the full automorphism group is simply said to be an automor-
phism group of the design. For example G = ( (1,4,5)(0,6,2), (2,6)(4,5))

is an obvious automorphism group of the 2—(7,3,1) design given in figure 1.

1Simple 5-designs were constructed using coding theory for example in the 1969 sem-
inal paper of Assmus and Mattson.



If K C X, and G is a subgroup of Sym(X), then the orbit of K under G
is {K?9:g€G}.

Given integers 0 < ¢t < k < v, v—set X and G < Sym(X) let Ay, Ay,
. . ., Ay, be the distinct orbits of ¢—subsets and let I'y , I's , . . . | Iy,
be the distinct orbits of k—subsets. The N; by N incidence matrix Ay is
defined by A;[A;, T;]=|{K €T;: K DT}, T € A, fixed.

For example when G = ((1,4,5)(2,0,6),(2,6)(4,5)}, then the A3 ma-

trix is:

123 125 120
340 140 460
136 146 160
356 124 456 126 256 134 130 236
350 450 150 240 250 345 346 230
234 156 245 560 246 135 235 145 360 260
124016565024 1 | 1 | 1 | 1 | 1] 0] 00 ]0]G0 |
1334352 | 0 |0 00 2L ]0]0]0|
1445150 | 1 |2 00 [ 1[0 [T 00|
1046250 |0 | 202 [0 L [0 0[O0 |
2330362 [0 |00 0] 0 I1]0]2]0|
262060] 0 [0 ] 0 | 1 ]2 ]0 ]0]0]1]1
1 1 1

In 1973 Kramer and Mesner made the following fundamental observation:

A t—(v,k, A) design exists with G < Sym(X) as an automor-
phism group if and only if there is a (0,1)-solution U to the
matrix equation

AtkU - )\J,

where: J =[1,1,1,...,1]T.

This observation lead to the investigation of several algorithms for solving
AU = AJ and hence for finding ¢—designs. Besides ordinary backtracking
the most successful such algorithms are: Leavitt’s Algorithm?!, Schmalz’s
Algorithm? and Basis Reduction®. In general the method now commonly
used to find ¢t-designs with large ¢ is:

o Choose parameters ¢, k, v, and A;

e Find a candidate for an automorphism group Gj;

1Found in the 1985 paper of Kramer, Leavitt and Magliveras.
2Described in Schmalz’s 1993 paper
3Best description is in the 1990 paper of Kreher and Radziszowski.



e Generate the incidence matrix Ayp;

e Solve the system of equations A;;U = AJ for one, some or all (0,1)-
vectors U

e Check for any special properties you may require of the found solu-
tions;

e Apply any known recursive methods to the solutions found to con-
struct more designs.

Almost every known 6—design was either found using the method or ob-
tained from a 6-design found with the method.

Table VII: The known 6 designs

Parameters Aut. Group. Size of Ay Method
6-(14,7,4) Cis 99 by 132 Basis reduction®
6-(6 + 8u, 7, 4u) ? ? L.S. recursion®
for all u > 0

6-(20,9,112) PSL(2,19) 19 by 52 Leavitt's Alg.!
6—(22,8,60) PSL(2,19)pp 36 by 120  Basis Reduction®
6—(23,8,68) ? ? Cleverness®
6-(23 + 16m, 8, L (**7t1)) 0 ” N
for all m > 0 7 7 L.S. recursion

6-(28,8, A), , 9
for A = 63, 84, 105 PTL(2,27) 14 by 72 Schmalz’s Alg.

6—(33,8,36) PT'L(2,32) 13 by 97 Leavitt’s Alg.!

giivé?n)\o)é ‘:\Vh&iri = (1)@ ? ? Magic” and L.S. rec.

The only theoretical methods that have been successful in constructing
t—designs with large ¢ is the method of large set recursion due to Teirlinck
1986 & 1989. An LS[n](t, k, v) is a partition of the k—subsets of a v—element

set into n disjoint (v, k, A) designs; where A = %(z:ﬁ)

4This method of using large sets to recursively construct designs was first described
by Teirlinck in 1987.

5Described in the 1992 tech. report of Kreher and DeCaen.

5Details appear in the 1993 paper of Kreher.

7A remarkable result by Teirlinck in 1984.



Example: A LS[7](2,3,9), here A = 1.
Design 1 Design 2 Design 3 Design 4 Design 5 Design 6 Design 7

024 035 046 057 061 072 013
136 247 351 462 973 614 725
857 861 872 813 824 835 846
018 028 038 048 058 068 078
235 346 457 961 672 713 124
467 971 612 723 134 245 356
037 041 052 063 074 015 026
268 378 418 928 638 748 158
415 926 637 741 152 263 374
056 067 071 012 023 034 045
127 231 342 453 964 675 716
348 458 968 678 718 128 238

A survey of large sets is given by Teirlinck in the 1992 collection of sur-
veys edited by Dinitz and Stinson. We have at our disposal two important
results.

Theorem 1 (Khosrovshahi and Ajoodani-Namini 1991) If there is an
LS[N](t,t+ 1,v) and an LS[N](t,t + 1,w), then there is also an
LS[N](t,t+ 1, v+ w—1).

The case when v = w in Theorem 1 was first established by Teirlinck
1987 & 1989. Teirlinck also established for all ¢ the existence of an LS[(v—
t)/Al(t,t + 1,v) for all v = ¢ mod A; where A = (¢ + 1)!?**1. This result
in particular implies the existence of simple ¢-designs for all values of . A
very useful generalization is the Corollary below.

Theorem 2 (Qiu-rong Wu 1991) If there are large sets with parameters
LS[N](t — 1,t 4+ 1,v), LS[N](t — 1,t + 1,w), LS[N](t — 1,t,v — 1) and
LS[N)(t = 1,t,w—1), then there is also an LS[N|(t — 1,t+ 1,v 4+ w—1).

A LS[2](t, k, v) is also known as a halving of the complete design as first
discussed by Hartman in 1987. It is interesting to note that other than
Teirlinck’s family described above the only known examples of large sets of
6—designs are in fact halvings of the complete design: LS[2](6,7, 6 + 8u) for
u > 0, LS[2](6,8,60) and LS[2](6,8,23 4+ 16m) m > 0, see Table VI.
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