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ABSTRACT

In this paper we study orthogonal main effect plans with four factors.
A table of such designs, where each factor has at most 10 levels, and there
are at most 40 runs, is generated. We determine the spectrum of the degrees
of freedom of pure error for these designs.

INTRODUCTION

A main-effect plan (MEP) has f rows (or factors), n columns (or runs)
and s; symbols (or levels) in row 7,1 < i < f. We will represent an MEP
with these parameters by s; X so X ... X sy//n. Let N;[z] be the number
of times that symbol = appears in row ¢. The replication array for a factor
contains the number of times each level of the factor appears in the design.
Thus the replication array for factor I consists of the N;[z] entries where
1 <z < ;. Let Nj; be the s; x s; incidence matriz of rows ¢ and j. The
(x,y) position of N;; is the number of runs in the MEP with z in row i
and y in row j. For the main effects to be estimated orthogonally, we re-
quire, in addition, that N;j[z,y] = N;[z]N,[y]/n for all pairs of rows ¢ and j
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(see Plackett (1946), Addelman (1962), Dey (1985)). This is often called the

condition of proportional frequencies. An orthogonal array of strength 2, de-

gree k, order s and index ), denoted by OA,(k,s),isasx s X --- X s//s*A
k

OMEP.

When runs in an experiment are expensive and/or time-consuming, the
design with the minimum number of runs is often preferred. An OMEP is
said to be minimal if, given s, Ss,..., Sk, n is the smallest number of runs
for which an s; X s9 X - - - X s//n OMEP exists. Algorithms for determining
the minimal number of runs, 7n,,,, given (si,ss,...,sk), are presented in
Street (1994) and Gallant and Colbourn (1998).

A run is said to be repeated if it occurs more than once as a col-
umn of the array. Pigeon and McAllister (1989) discussed the advantages
of having some repeated runs in an OMEP to provide an estimate of pure
error. When an estimate of pure error is required, either a design with
some repeated runs is selected, or additional runs are included in the experi-
ment. Examples of the latter case are given in Joo, Hool and Curtis (1998),
Maio, Vonholst, Wenclawiak and Darskus (1997) and Glaser and Shulman
(1996), in which runs were added to the original experiment in order to
obtain an estimate of pure error. However, adding these runs prevented the
main effects from being orthogonally estimated. If runs are expensive and an
estimate of pure error is required, then an orthogonal minimal design with
some repeated runs is preferred.

Of a sample of 61 applications papers taken from the Current Contents
Database 1993-1998 using the search string ‘fractional factorial design’, 14
papers used designs with four factors. In this paper we consider minimal
OMEPs with four factors, assuming without loss that s; < s < s3 < sy,
Si = {1,2,...,81'} and that Nz[l] < Nz[2] < ... < Ni[Si], 1 = 1,2,3,4.
Using the method of Street (1994), it is easy to show that N;4[1,1] =1 and
SO Tmin = N3[1]N4[1]. From the orthogonality condition for N34, we see
that N3[1] divides N3[z], 1 < x < s3 and Ny[1] divides Nyfy], 1 < y < s4.
Considering the entries in Ny 3 we see that N3[1]Ny[1] divides No[i|N3[1] so
Ny[1] divides Ny[z] and considering Ny 4 we see that N3[1] divides Ny[z].
Similarly we get that Ny[1] divides Ni[z] and N3[1] divides N;[z]. Let g =
ged(Ns[1], Ny[1]) and let N3[1] = gg3 and Ny[1] = ggs. Then No[z] and N;[z]
are each multiples of gg3g,. We say that an OMEP has level replication as
equal as possible if

|Ni[z] /Ni[1] = Ni[m]/Ni[1]|
|Ni[z]/ 993914 — Ni[m|/gg394|

for : = 3,4 and

L,
1, for: =1,2, where 1 <m < s;.

<
<

If the array has m; runs that are each repeated ¢ times, then the repeated
run sequence (RRS) of the array is RRS = 1"12™2 ... n™n_ Note that Y, im; =
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n. The degrees of freedom of pure error (DFPE) of the experimental design
represented by the array is

n
DFPE = »_m;(i — 1).
=1

Example 1. Some 2 x 2 x 3 x 4//16 OMEPs.

1122112222221111 1122122122121112
1122221112121212 1212112222211211
1111222233333333 1111222233333333
1234123411223344 1234123411223344
RRS = 1'%, DFPE = 0. RRS = 1'*2!, DFPE = 1
(a) (b)
1122112222221111 1122112222221111
1212122122111212 1212121222112211
1111222233333333 1111222233333333
1234123411223344 1234123411223344
RRS = 1!222, DFPE = 2 RRS = 182* DFPE =4
(c) (d)

Ideally we would like to use OMEPs with equal replication since Cheng
(1980) has shown that such OMEPs are universally optimal. Lewis and John
(1976) have shown that in an OMEP with unequal replication the orthogonal
contrasts are those that correspond to the weighted hypotheses and these
depend on the particular fraction that is used. In an equally replicated
experiment the orthogonal contrasts are the usual contrasts, corresponding
to the unweighted hypotheses which are of most interest to experimenters.
The weights depend on the replication and so the more equal the replication
the less weighted are the comparisons. For most factor level combinations
the designs with equal replication have too many runs and so we compromise
and use designs with the minimal number of runs and with level replication
as equal as possible. For those factors which are equi-replicate, the design is
universally optimal, using the same proof as in Cheng (1980). An indication
of the savings to be made can be obtained from the graph in Figure 1, in
which the two values for the number of runs are plotted for each of the 98
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combinations of s; X s X s3 X s4 In the list of OMEPs in the final section of
the paper.

It can be seen from the graph that an insistence on equal replication
of levels for each of the factors can significantly increase the number of runs
required. Of the 98 cases, 19 have equal level replication with the minimum
value of n, while 20 cases require the full factorial, i.e. n = s;898354. The
remaining 59 cases require a value of n which is greater than the minimum,
but less than s;s9s3s4. The difference between the two values can be small,
for example the 2 x 2 x 3 x 3 OMEP has a minimum n value of 9, while
the value of n with equal level replication is 12. However, as the size of
the parameters sq, so, s3 and s increases, the value of n with equal level
replication can be very large. For example, consider the 2 x 3 x4 x5 OMEP,
for which the minimum number of runs is 25. If, however, we wish to have
equal replication of levels for each of the factors then the number of runs
required is 60. The 4 x 5 x 6 x 6 OMEP has a much larger difference between
the two values of n. In this case the minimum n is 36, while the value of n
with equal level replication is 360.

The next section gives a recursive construction for OMEPs and a con-
struction based on incomplete mutually orthogonal Latin squares. Using
these results, and the techniques of Street (1994) and Burgess and Street
(1994), we give, in the final section, a tabulation of four factor minimal
OMEPs, in which each factor has at most 10 levels, and with at most 40
runs, for all possible values of DFPE. Some of the OMEPs listed in the table
are already available in the literature. However, this table is different because
it provides information about the number of repeated runs, which is impor-
tant if an estimation of pure error is required. The table is also self-contained
and any of the OMEPs listed can be easily and quickly constructed from the
information given. Other tables, such as the one given in Dey (1985) do not
provide a choice of DFPE values, and often other information such as Latin
squares, orthogonal arrays or Hadamard matrices are required in order to
construct an OMEP. In some cases the number of runs required is less than
that given in Dey’s table. See for example 2 x 2 x 2 x 5//12 (16 in Dey),
2x2x4x9//40 (81 in Dey), 2 x 2 x 4 x 10//40 (50 in Dey) and the 27
OMEPs which can be done in 36 runs, but Dey lists these as requiring 49 or
50 runs.

CONSTRUCTIONS

One well-known method of obtaining one OMEP from another is by ‘col-
lapsing levels’, introduced in Addelman (1962). In its simplest form this is a
many-to-one correspondence which maps the s levels of a factor onto #(< s)
levels.



Theorem 1 (Addelman (1962)) Let S; = {1,2,....,s;}, 1 < i < k, be the
level sets corresponding to the factors of a s1 X s X -+ X s,/ /n OMEP A. If,
for each i, a map f; : S; — T; is chosen such that t; = |T;| < s; = |S;|, then
applying f; to the levels in factori of A, 1 < i <k, gives aty Xty X---Xtx//n
OMEP B.

To obtain the OMEP B constructed in Theorem 1 we would say:

Collapse A via fi(1),---, fi(s1)/f2(1),- -, fa(s2) /- -~ [ fu(1), - -, fi(sk)-

Example 2. The 2 x 2 x 2 x 3//16 OMEP below has Rrs = 182* and
DFPE = 4. It was obtained by performing a collapse of example 1 (a) via
12/12/122/1123.

1122112222221111
1122221112121212
1111222222222222
1123112311112233

The next result gives conditions under which two OMEPs can be jux-
taposed to get an OMEP with more runs and with more levels for one of the
factors. For a proof see Gallant and Colbourn (1998).

Theorem 2 If there is a s; X sg X -+ X 8g//ny OMEP A and a t; X ty X
-+« X 1/ /ny OMEP B such that

1. s; =t; for all i except possibly for some i = iy,

2. ng = uny,

3. Npi|z] = uNa;z] for all x and all i # ig

4. for all x, Na;,[x] and Np;,[x] are multiples of some ;.

Then there is a s1 X S3 X - -+ X (8iy + tiy) X -+ X sg//(n1 + ng) OMEP.

Example 3. Consider a 2 x 2 x 2 x 3//8 OMEP and a2 x2x2x4//8
OMEP. Apply Theorem 2 with ¢g = 4. Then px = 1 and in the first three
rows Np;[z] = Ng;lz]. In the fourth row all the Ny4[x]’s and Npy[z]’s are
multiples of 2. Hence we get a 2 x 2 x 2 x 7//16 OMEP. The DFPE is the
sum of the DFPE in each of the original OMEPs.



1122221111222211
1212212112122121
1111222211112222
1233123345674567

Recall that a pair of mutually orthogonal Latin squares of order s;
corresponds to an orthogonal array of strength 2 (Raghavarao (1971), for
instance), and so to an s; X s; X 81 X s1//s,? OMEP. Applying Theorem 2
to two such OMEPs will give s; x 81 X 81 X s4//2512 minimal OMEPs where
s1 < s4 < 2s; and with a range of values for DFPE.

Theorem 3 Suppose there exists a pair of MOLS of order s;. Then there
exists a s; X 81 X 81 X (281 — p)//2s12 OMEP 1 < p < s; — 1 with DFPE=
qf, 1<q<pand0< f<s, f#5 —1.

Proof. A pair of MOLS of order s; is a s; X 81 X 81 X 51//s12 OMEP. Using
Theorem 2 with two of these gives a s; X s1 X 1 X 281//2812. It is possible to
collapse levels so that there are repeated runs. Let o be a permutation of s;
symbols and suppose that ¢ has f fixed points. Apply o to the symbols in
the third row of the second s; x 51 x 51 x 51//512 OMEP. Collapse levels in
factor 4 of the s; X sy X 51 X 51//2512 OMEP so that the final number of levels
is 2s; — p and DFPE= ¢f, by collapsing = + s; to x for 1 < z < ¢. A further
p — q levels need to be collapsed. For x = ¢+ 1 to p, collapse = + s; to y for
any y # x. The fixed points of o appear with all the symbols in the other
three rows equally often and so for each level which is collapsed by mapping
T + s1 to x there are f repeated pairs of runs. Since o is a permutation of
s1 things there can be any number of fixed points between 0 and s; except
S1 — 1.

Example 4. Let s; = 5 and consider the two MOLS:

12345 13524
23451 24135
34512 and 35241
45123 41352
51234 52413

They can be used to construct two 5 x 5 x 5 x 5//25 OMEPs and using
Theorem 2 we obtain the 5 X 5 x 5 x 10//50 OMEP given below, where
0 =10.



1111122222333334444455555 1111122222333334444455555
1234512345123451234512345 1234512345123451234512345
1234523451345124512351234 1234523451345124512351234
1352424135352414135252413 6807979680807969680707968

Now apply the permutation (12) to the third row of the second 5x5x5x5//25
OMEP. Thus there are 3 fixed points. Now collapse by equating 6 and 1 in
row 4. The runs with 6 in row 4 before the collapsing and symbols 3, 4 or 5
in row 3 are all now repeats of the runs in the first 5 x 5 x 5 x 5//25 OMEP.
Thus we have constructed the 5 x5 x 5 x 9//50 OMEP with DFPE= 3 given
below.

1111122222333334444455555 1111122222333334444455555
1234512345123451234512345 1234512345123451234512345
1234523451345124512351234 2134513452345214521352134
1352424135352414135252413 1807979180807919180707918

We can get a 5 x 5 x 5 x 8//50 OMEP with 4 repeated runs by using the
same initial OMEP and the permutation (123) and collapsing 6 to 1 and 7
to 2. To get 2 repeated runs we could collapse 6 to 1 and 7 to 3.

It is possible to extend the previous result to adjoining more than 2
copies of the OMEP.

Theorem 4 Suppose there exist m MOLS of order s,. Then there erists a
51 X 81 X 81 X (ms; —p)//ms;2 OMEP, 1 < p < s; — 1, with DFPE= qf,
1<qg<pand0< f<sy, f#5—1.

The OMEPs constructed by Theorems 3 and 4 are not always minimal.
For example, if (ms; —p)? < ms?, then an s; X 51 X 51 X (ms;—p)//(ms; —p)?
OMEP can be constructed by collapsing levels in an (ms; —p) X (ms; —p) %
(msy;—p) x (ms; —p)//(ms, —p)? OMEP. These exist when ms; —p ¢ {2,6}.

An easy upper bound on DFPE comes from the observation that each
pair (z,y), x € S;, y € S; must occur at least once in rows 7 and j. Thus

DFPE < n — §;5;. (1)

This bound is best when s; and s; are the largest of the values and can
sometimes be improved by considering a third row, see Street (1994). The
OMEPs in Theorems 3 and 4 could never have DFPE equal to one less than
the upper bound. The next result shows that this observation is independent
of the method of construction of the designs.



Theorem 5 Consider a minimal s; X Sy X $3 X 84//n OMEP where n =
s3(s4 + 2) say. Then the upper bound for DFPE is s3z and there is no design
with DFPE = s3z — 1.

Proof. The replication vector for the third factor has all entries equal to
s4~+ z and the replication vector for the fourth factor has all entries multiples
of s3 (because of the form of n and the proportionality requirement) so there
are s, — z entries equal to s3 and z entries equal to 2s3 (if we want the
replication to be as equal as possible).

Repeated runs must come from those levels of the fourth factor with
replication 2s3. Each of these levels have exactly two occurrences of each
level of the third factor and so all repeated runs occur in pairs.

Consider a design with DFPE= s3z—1. In z—1 of the levels of the fourth
factor all levels of the third factor are involved in repeated runs. In the zth
level there are only s3 — 1 levels of the third factor involved in repeated runs.
The final level of the third factor can only not be involved in repeated runs
if there are different levels of the second and first factors available to fill the
places. But the proportionality requirement means that each of the z levels
of the fourth factor has the same number of the occurrences of each level of
each of the other factors. So if there are s3 — 1 repeats in a level of factor 4
then the only levels left must correspond to a repeated pair.

The same argument can be used to establish the following result.

Theorem 6 Consider a minimal $; X sg X s3 X 84//n OMEP with n =
(s3 + 2)s4 say. Then the upper bound for the DFPE is sqz and there is no
design with DFPE = s34z — 1.

There are relationships between OMEPs and incomplete arrays or Latin
squares with holes.

Using the notation of Horton (1974) an IA(n, k, s) is an s x (n? — k?)
array on n objects with a distinguished subset of £ objects such that the
ordered pairs obtained by superimposing any two rows gives the n? ordered
pairs except for the k2 ordered pairs from the distinguished subset. So when
k =2 and s = 4 these are a pair of MOLS of order n with a 2 x 2 subsquare
missing, and they exist if and only if n > 6, see Heinrich (1991).

Theorem 7 AnIA(n,2,4) is equivalent to an (n—1)x(n—1)x(n—1)xn//n?
OMEP with DFPE=2.

Proof. In one square we put 4 n — 1’s in the 2 x 2 hole and change all n’s
to n — 1’s. In the other square we put a 2 x 2 Latin square on the symbols
n — 1 and n. Then we label the rows and columns so that we can write a
(n—1)x (n—1) x (n — 1) x n//n* OMEP. The OMEP will always have
DFPE = 2 which is maximum possible for these parameters.
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Remark 8 This also establishes that there are no OMEPs of type 3 x 3 X
3x4//16 or 4 x4 x 4 x5//25 with DFPE = 2.

In general an TA(n, k,4) gives a (n—k+1)x (n—k+1) X (n—k+1)xn//n?
OMEP with DFPE = k(k — 1) (and k£ < n of course).

Example 5. For example, n = 6, k = 2, gives the IA(6,2,4), written as
two incomplete MOLS,

5 6 3 4 1 2 1 2 5 6 3 4
21 6 5 3 4 6 5 1 2 4 3
6 5 1 2 4 3 4 3 6 5 1 2
4356 2 1 and 56 4 3 2 1
1 4 2 3 2 4 3 1
3 2 4 1 31 2 4
In the first square put 2 g in the hole. In the second square, fill the hole

with 5’s and change all the 6’s to 5’s. This gives the following 5 x5x5x6//36
OMEP with DFPE = 2:

111111222222333333444444555555555555
123455123455123455123455123412345555
125534551243435512554321243131245555
563412216534651243435621142332415566

TABLE OF OMEPs

In this section minimal orthogonal main effect plans with four factors,
each with at most 10 levels, and at most 40 runs, are listed. The listed
OMEPs have level replication as equal as possible and unlisted OMEPs with
DFPE less than the upper bound (1) were shown not to exist by a simple
backtracking algorithm. Repeated runs are often required in an experiment
to provide an estimate for pure error, and for many OMEPs listed in the
table there is a choice of DFPE values. However, if an s; X so X 83 X s4
OMEP is not listed with any repeated runs, then an OMEP with larger
parameter values can be constructed and appropriate factor levels collapsed
to obtain the required OMEP with some repeated runs. For example, the
2 x 2 x 2 x 2//8 has no repeated runs. An OMEP with DFPE=1 can be
obtained by collapsing the levels of the fourth factor in the 2 x 2 x 2 x 5//12
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resulting in the 2 x 2 x 2 x 2//12 OMEP, or alternatively an OMEP with
DFPE=4 can be obtained by collapsing the levels of the last two factors in
the 2 x 2 x 3 x 3//9 resulting in the 2 x 2 x 2 x 2//9 OMEP.

1. 2x2x2x2//8 DFPE=0:

12122121
12121212
11221122
11112222

2.2x2x2x3//8 DFPE=0:

11222211
12122112
11112222
12331233

2x2x2x3//8 DFPE =1 :Does not exist by Theorem 5.
4. 2x2x2x4//8, DFPE=0:

11222211
12122121
11112222
12341234

5. 2% 2x 3 x3//9, DFPE =0 : Collapse 7 via 123/123/122/122
2x3x3x3//9, DFPE=0:Collapse 7 via 123/123/123/122
7.3x3%x3x%x3//9, DFPE=0:

123312231
123231312
123123123
111222333

8. 2x2x2x5//12, DFPE=0:

121122122211
121212212121
111111222222
551234551234

9. 2x2x2x6//16, DFPFE=0:

1111222222221111
1212112212122211
1111111122222222
5566123455661234

10. 2x2x2x6//16, DFPE = 2:

1112122222122111
1121212222211211
1111111122222222
5566123455661234

w

(=]
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11.

12.
13.
14.
15.

16.
17.

18.
19.
20.
21.
22.
23.

24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.

2X2X%X2x%

2X2x%x2x
2X2x%x2x
2X2x%x2x
2X2x%x2x

2X2x3x
2X2x%x3x

2X2x3x
2X2x3x
2X2x3x
2x2x4x
2x3x3x
2x3x3x

6//16, DFPE =4 :

1111222222221111
1122112222112211
1111111122222222
5566123455661234

7//16, DFPE = 0 : Colla
7//16, DFPE = 1 : Does
7//16, DFPE = 2 : Colla
8//16, DFPE =0 :

pse 15 via 12/12/12/12345676.
not exist by Theorem 5.
pse 15 via 12/12/12/12345677.

1111222222221111
1122112222112211
1111111122222222
1234567812345678

4//16, DFPE = 0 : Colla
4//16, DFPE = 1 :

pse 34 via 1234/1233/1221/1221

1122122122121112
1212112222211211
1111222233333333
1234123411223344

4//16, DFPE = 2 : Colla
4//16, DFPE = 3 : Does
4//16, DFPE = 4 : Colla
4//16, DFPE = 0 : Colla
4//16, DFPE = 0 : Colla
4//16, DFPE = 1 :

pse 23 via 12/123/112/1234

not exist by Theorem 6.

pse 34 via 1234/1233/1221/1212.
pse 34 via 1234/1234/1221/1221
pse 34 via 1234/1233/1233/1221

1122112222221111
1323233133121323
1111222233333333
1234123411223344

2x3x3x4//16, DFPE = 2 :
2x3x3x4//16, DFPE = 3 :
2x3x4x4//16, DFPE =0 :
2x4x4x4//16, DFPE =0 :
3x3x%x3x4//16, DFPE =0 :
3x3x3x4//16, DFPE =1 :
3x3x3x4//16, DFPE = 2:
3x3x3x4//16, DFPE = 3 :
3x3x4x4//16, DFPE =0 :
3x4x4x4//16, DFPE =0 :
4x4x4x4//16, DFPE=0:

Collapse 34 via 1234/1233/1231/1212.
Does not exist by Theorem 6.

Collapse 34 via 1234/1234/1233/1221
Collapse 34 via 1234/1234/1234/1221
Collapse 34 via 1234/1233/1233/1233.
Collapse 34 via 1234/1233/1231/1232.
Does not exist by Theorem 7

Does not exist by Theorem 6.

Collapse 34 via 1234/1234/1233/1233.
Collapse 34 via 1234/1234/1234/1233.
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35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.

47.
48.
49.

50.

51.
52.

53.

54.

2X2x3x
2XxX2x3x
2xX2%x3x%
2X2x%x3xX
2xX2%x3x%
2x3x3x
2x3x3x
2x3x3x
2x3x3x
2x3x3x
I3 X3 x3x
3x3x3x

3x3x3x
3x3x3x
3x3x3x
row 1.

2X2x%x2x

2X2X%X2x%
2X2X%X2X%

2X2X%X2x

2X2X2X

1342421324313124
1234214334124321
1234123412341234
1111222233334444

5//18, DFPE = 0 : Collapse 49 via 123/122/122/123454.
5//18, DFPE = 1 : Collapse 49 via 123/122/122/123455.
5//18, DFPE = 2 : Does not exist by Theorem 5.

5//18, DFPE = 3 : Collapse 49 via 123/122/122/123453.
6//18, DFPE = 0 : Collapse 49 via 123/122/122/123456.
5//18, DFPE = 0 : Collapse 49 via 123/123/122/123455.
5//18, DFPE = 1 : Collapse 46 via 123/123/122/12345.
5//18, DFPE = 2 : Does not exist by Theorem 5.

5//18, DFPE = 3 : Collapse 49 via 123/123/122/123453.
6//18, DFPE = 0 : Collapse 49 via 123/123/122/123456.
5//18, DFPE = 0 : Collapse 49 via 123/123/123/123455.
5//18, DFPE =1:
123123123123112233
231321312132121233
321132231312211233
111222333444555555

5//18, DFPE = 2 : Does not exist by Theorem 5.
5//18, DFPE = 3 : Collapse 49 via 123/123/123/123453.
6//18, DFPE = 0 : Juxtapose 7 and 7 with distinct symbols on

9//20, DFPE=10:

12121212121212121122
12121212212121212121
12211221122112211221
11223344556677889999

9//20, DFPE = 1 : Does not exist by Theorem 5.

10//24,DFPE =0 :
222222111121111111222222
111222121212222111211212
111111111111222222222222
123456789900123456789900

10//24,DFPE = 2 :

111111222222222222111111
111222111222222111221211
111111111111222222222222
123456789900123456789900

10//24,DFPE =4 :
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55.

96.

o7.

98.
59.

60.

61.
62.
63.
64.
65.

66.
67.
68.
69.
70.

71.
72.
73.
74.
75.
76.
77.
78.
79.
80.

112212111222221121222111
111111222222222222111111
111111111111222222222222
990012345678990012345678

2x2x4x5//24, DFPE = 0 : Juxtapose 4 and 16 with distinct symbols on
row 3.

2x2x4x5//24, DFPE = 1 : Juxtapose 4 and 17 with distinct symbols on
row 3.

2x2x4x5//24, DFPE = 2 : Juxtapose 4 and 18 with distinct symbols on
row 3.

2 x2x4x5//24, DFPE = 3 : Does not exist by Theorem 5.
2x2x4x5//24, DFPE = 4 : Juxtapose 4 and 20 with distinct symbols on
row 3.

2x2x4x6//24, DFPE = 0 : Juxtapose 4 and 21 with distinct symbols on
row 3.

2 x 2 x 5 x 5//25, DFPE = 0 : Collapse 90 via 12345/12345/12221/12221
2x3x4x5//25, DFPE = 0 : Collapse 90 via 12345/12344/12332/12221
2x3x4x5//25, DFPE = 1 : Collapse 90 via 12345/12344/12332/11222

2 x3x4x5//25, DFPE = 2 : Collapse 90 via 12345/12344/12331/11222
2x3x4x5//25, DFPE = 3 :

1122212212222112212112212
1223323132232133321332221
1111122222333334444444444
1234512345123451122334455

2x 3 x4 x5//25, DFPE = 4 : Does not exist by Theorem 6.

2 x3 x5 x5//25, DFPE = 0 : Collapse 90 via 12345/12345/12332/12221
2 x 4 x 4 x 5//25, DFPE = 0 : Collapse 90 via 12345/12344/12344/12122.
2 x 4 x 4 x 5//25, DFPE = 1 : Collapse 90 via 12345/12344/12344/12221
2x4x4x5//25, DFPE =2 :

1122211222222112222111212
1234434214241434413442312
1111122222333334444444444
1234512345123451122334455

2 x4 x4 x5//25, DFPE = 4 : Does not exist by Theorem 6.

2 x 4 x 5 x 5//25, DFPE = 0 : Collapse 90 via 12345/12345/12344/12221
2 x5 x5 x5//25, DFPE = 0 : Collapse 90 via 12345/12345/12345/12221
3 x3x4x5//25, DFPE = 0 : Collapse 90 via 12345/12344/12332/12332
3x3x4x5//25, DFPE = 1 :Collapse 90 via 12345/12344/12332/11233
3x3x4x5//25, DFPE = 2 :Collapse 90 via 12345/12344/12331/11223
3x3x4x5//25, DFPE = 4 :Does not exist by Theorem 6.

3 x3x5x5//25, DFPE = 0 : Collapse 90 via 12345/12345/12332/12332
3 x 4 x 4 x 5//25, DFPE = 0 : Collapse 90 via 12345/12344/12344/12332
3x4x4x5//25, DFPE = 1 :Collapse 90 via 12345/12344/12344/12233.
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81.
82.
83.
84.
85.
86.
87.
88.
89.
90.

91.
92.
93.
94.
95.
96.
97.
98.
99.
100.
101.
102.
103.
104.
105.
106.
107.
108.
109.
110.

111.

112.
113.

114.

115.
116.

3x4x4x5//25,
3x4x5x5//25,
3x5xb5x5//25,
4x4x4x5//25,
4x4x4x%x5//25,
4x4x4x5//25,
4x4x4x%x5//25,
4x4x5x5//25,
4x5x5x5//25,
5x5xb5x5//25,

DFPE =4 :
DFPE =0 :
DFPE =0 :
DFPE =0 :
DFPE = 1:
DFPE = 2 :
DFPE =4 :
DFPE =0 :
DFPE =0 :
DFPE =0 :

Does not exist by Theorem 6.
Collapse 90 via 12345/12345/12344 /12332
Collapse 90 via 12345/12345/12345/12332
Collapse 90 via 12345/12344/12344/12344.
Collapse 90 via 12345/12344/12344/12234.
Does not exist by Theorem 7
Does not exist by Theorem 6.
Collapse 90 via 12345/12345/12344/12344.
Collapse 90 via 12345/12345/12345/12344.

1111122222333334444455555
1234512345123451234512345
1234523451345124512351234
15643221543321544321554321

2x2x3x7//27,
2x2x3x7//27,
2x2x3x7//27,
2x2x3x7//27,
2x2x3x7//27,
2x2x3x7//27,
2x2x3x7//27,
2x2x3x8//27,
2x2x3x8//217,
2x2x3x8//27,
2x2x3x8//21,
2x2x3x9//27,
2x3x3x7//27,
2x3x3x7//27,
2x3x3x7//27,
2x3x3x7//27,
2x3x3x7//217,
2x3x3x7//27,
2x3x3x7//217,
2x3x3x8//27,
row 4.

2x3x3x8//27,
row 4.

2x3x3x8//217,
2x3x3x8//27,
row 4.

2x3x3x9//27,
row 4.

3x3x3x7//21,
3x3x3IxT7//27,

DFPE =0 :
DFPE=1:
DFPE = 2 :
DFPE = 3 :
DFPE =4 :
DFPE =5 :
DFPE = 6 :
DFPE =0 :
DFPE=1:
DFPE = 2 :
DFPE = 3 :
DFPE =0 :
DFPE =0 :
DFPE = 1:

DFPE = 2 :
DFPE = 3 :
DFPE =4 :
DFPE =5 :

DFPE = 6 :
DFPE =0 :

DFPE =1:

DFPE = 2 :
DFPE = 3 :

DFPE =0:

DFPE =0 :
DFPE = 1:

Collapse 126 via 112/122/123/123456775.
Collapse 126 via 122/122/123/123456777.
Collapse 126 via 121/122/123/123456773.
Collapse 126 via 122/122/123/123456776.
Collapse 126 via 121/122/123/123456776.
Does not exist by Theorem 5.

Collapse 126 via 122/122/123/123456756.
Collapse 126 via 121/122/123/123456788.
Collapse 126 via 122/122/123/123456788.
Does not exist by Theorem 5.

Collapse 126 via 122/122/123/123456786.
Collapse 126 via 122/122/123/123456789.
Collapse 126 via 122/123/123/123456777.
Collapse 126 via 121/123/123/123456773.
Collapse 126 via 123/122/123/123456733.
Collapse 126 via 122/123/123/123456776.
Collapse 126 via 121/123/123/123456753.
Does not exist by Theorem 5.

Collapse 126 via 122/123/123/123456756.

Juxtapose 6 and 40 with distinct symbols on

Juxtapose 6 and 41 with distinct symbols on

Does not exist by Theorem 5.

Juxtapose 6 and 43 with distinct symbols on

Juxtapose 6 and 44 with distinct symbols on

Collapse 126 via 123/123/123/123456777.
Collapse 126 via 123/123/123/123456773.
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117.
118.
119.
120.
121.
122.

123.

124.
125.

126.

127.

128.
129.

130.
131.

132.

133.
134.
135.

136.

137.

138.
139.
140.
141.
142.
143.
144.

145.
146.

3x3x3xT7//21,
3x3x3IxT//21,
3x3x3x7//21,
3x3x3IxT//21,
3x3x3x7//21,
3x3x3x8//21,
row 4.

3x3x3x8//27,
row 4.

3x3x3x8//21,
3x3x3x8//21,
row 4.

3x3x3x9//27,
row 4.

2x2x4x7//32,
row 1.

2x2x4x17//32,
2x2x4x7//32,
row 1.

2x2x4x7//32,
2x2x4x17//32,
row 1.

2x2x4x8//32,
row 1.

2x3x4x%x6//32,
2x3x4x6//32,
2x3x4x6//32,
row 2.

2x3x4x6//32,
row 2.

2x3x4x6//32,
row 2.

2x3x4x6//32,
2x3x4x6//32,
2x3x4x6//32,
2x3x4x6//32,
2x3x4x7//32,
2x3x4x7//32,
2x3x4x17//32,
row 3.

2x3x4x7//32,
2x3x4x7//32,

DFPE = 2:
DFPE = 3 :
DFPE — 4 :
DFPE = 5 :
DFPE — 6 :
DFPE = () :
DFPE = 1:
DFPE = 2:
DFPE = 3 :
DFPE = () :
DFPE =0 :
DFPE = 1:
DFPE = 2:
DFPE — 3 :
DFPE = 4 :
DFPE =0 :
DFPE =0 :
DFPE =1:
DFPE = 2 :
DFPE — 3 :
DFPE — 4 :
DFPE = 5 :
DFPE — 6 :
DFPE =7 :
DFPE — 8 :
DFPE = () :
DFPE=1:
DFPE = 2:
DFPE = 3 :
DFPE — 4 :

Collapse 126 via 123/123/123/123456723.
Collapse 126 via 123/123/123/123456776.
Collapse 126 via 123/123/123/123456753.
Does not exist by Theorem 5.

Collapse 126 via 123/123/123/123456756.
Juxtapose 7 and 45 with distinct symbols on

Juxtapose 7 and 46 with distinct symbols on

Does not exist by Theorem 5.
Juxtapose 7 and 48 with distinct symbols on

Juxtapose 7 and 49 with distinct symbols on
Juxtapose 12 and 12 with distinct symbols on

Collapse 158 via 12/1234/1221/1234567
Juxtapose 12 and 14 with distinct symbols on

Does not exist by Theorem 5.
Juxtapose 14 and 14 with distinct symbols on

Juxtapose 15 and 15 with distinct symbols on

Collapse 199 via 1234/1233/1221 /1234562
Collapse 199 via 1234/1233/1221/1234566
Juxtapose 22 and 24 with distinct symbols on

Juxtapose 23 and 24 with distinct symbols on
Juxtapose 24 and 24 with distinct symbols on

Collapse 158 via 12/1234/1232/1123456
Collapse 168 via 112/123/1234/123456.

Does not exist by Theorem 5.

Collapse 171 via 123/112/1234/123456
Collapse 199 via 1234/1233/1221/1234567
Collapse 158 via 12/1234/1232/1234567
Juxtapose 24 and 26 with distinct symbols on

Does not exist by Theorem 5.
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147.

148.
149.
150.
151.
152.
153.

154.

155.
156.
157.
158.

159.
160.
161.
162.

163.

164.

165.

166.

167.
168.

11112222111122222222111122221111
11223333333311222211333333332211
11111111222222223333333344444444
12345677123456771234567712345677

2 x 3 x4 x8//32, DFPE = 0 : Juxtapose 26 and 26 with distinct symbols on

row 3.

2x4x4x6//32,
2x4x4x%x6//32,
2x4x4x6//32,
2x4x4x6//32,
2x4x4x6//32,
2x4x4x%x6//32,

DFPE =0 :
DFPE = 1:
DFPE = 2 :
DFPE = 3 :
DFPE = 4 :
DFPE =5 :

Collapse 199 via 1234/1234/1221/1234562
Collapse 199 via 1234/1234/1221/1234566
Collapse 201 via 1234/1234/1221/1234566
Collapse 158 via 12/1234/1234/1234565
Collapse 196 via 1234/1234/1221/123456

11112222111212222212211122221111
11223344334141222243141344132231
11111111222222223333333344444444
55661234556612345566123455661234

2x4x4x6//32,

DFPE = 6 :

11112222111122222222111122221111
11223344334411222213441344132231
11111111222222223333333344444444
55661234556612345566123455661234

2x4x4x6//32,
2x4x4x6//32,
2x4x4x7//32,
2x4x4x7//32,

DFPE = 7 :
DFPE = 8 :
DFPE =0 :
DFPE=1:

Does not exist by Theorem 5.
Collapse 201 via 1234/1234/1122/1234556
Collapse 199 via 1234/1234/1221/1234567

11112222111122222222111122221111
11223344334412122213441344312123
11111111222222223333333344444444
12345677123456771234567712345677

2x4x4x7//32,
2x4x4x7//32,
2x4x4x7//32,
2x4x4x8//32,
row 2.

3x3x4x6//32,
row 1.

3x3x4x6//32,
row 1.

3x3x4x6//32,
row 1.

3x3x4x6//32,
3x3x4x6//32,
3x3x4x6//32,

DFPE = 2 :
DFPE = 3 :
DFPE =4 :
DFPE =0 :

DFPE = ( :

DFPE=1:

DFPE = 2:

DFPE = 3 :

DFPE — 4 :
DFPE = 5 :

Collapse 201 via 1234/1234/1221/1234567
Does not exist by Theorem 5.

Collapse 201 via 1234/1234/1122/1234567
Juxtapose 27 and 27 with distinct symbols on
Juxtapose 28 and 28 with distinct symbols on
Juxtapose 28 and 29 with distinct symbols on
Juxtapose 29 and 29 with distinct symbols on
Collapse 188 via 123/1233/1234/1234566.

Collapse 177 via 123/123/1234/12345664.
Collapse 177 via 123/123/1234/12345644.
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169.

170.
171.
172.

173.

174.
175.
176.
177.

178.

179.
180.
181.
182.
183.

184.

185.
186.
187.

188.
189.
190.
191.
192.

193.

3x3x4x6//32,

DFPE — 6 :

11223333221133333333112233332211
11332233232333113211332333321123
11111111222222223333333344444444
12345566123455661234556612345566

3x3x4x6//32,
3x3Ix4x6//32,
I3x3x4x7//32,
row 3.

3x3x4x7//32,
row 3.

3x3x4x7//32,
3x3x4x7//32,
3x3Ix4x17//32,
3x3x4x8//32,
row 3.

I3x4x4x6//32,
row 1.

I3x4x4x6//32,
3x4x4x6//32,
3x4x4x6//32,
3x4x4x6//32,
3x4x4x6//32,

DFPE = 7 :
DFPE = 8 :
DFPE = 0 :

DFPE=1:

DFPE = 2 :
DFPE = 3 :
DFPE =4 :
DFPE = ( :

DFPE =0 :

DFPE = 1:
DFPE = 2 :
DFPE = 3 :
DFPE = 4 :
DFPE =5 :

Does not exist by Theorem 5.
Collapse 177 via 123/123/1234/12345634.
Juxtapose 28 and 32 with distinct symbols on

Juxtapose 29 and 32 with distinct symbols on

Collapse 188 via 123/1233/1234/1234567.
Does not exist by Theorem 5.

Collapse 177 via 123/123/1234/12345674.
Juxtapose 32 and 32 with distinct symbols on

Juxtapose 32 and 32 with distinct symbols on

Collapse 187 via 123/1234/1234/1234526.
Collapse 187 via 123/1234/1234/1234565.
Collapse 201 via 1234/1231/1234 /1234566
Collapse 191 via 123/1234/1234/1234566.

11232333223333113312123333311322
12123344414122332323441134341122
11111111222222223333333344444444
12345566123455661234556612345566

3x4x4x6//32,

DFPE = 6 :

11332233223311333312331233213312
12123344212144333434112243432211
11111111222222223333333344444444
12345566123455661234556612345566

3x4x4x6//32,
3x4x4x%x6//32,
3x4x4x7//32,
row 2.

I3x4x4x7//32,
3x4x4x17//32,
I3x4x4x7//32,
3x4x4x17//32,
3x4x4x8//32,
row 2.

4x4x4x%x6//32,

DFPE =T7:
DFPE — 8 :
DFPE =0 :

DFPE = 1:
DFPE = 2 :
DFPE = 3 :
DFPE =4 :
DFPE = ( :

DFPE = ( :

Does not exist by Theorem 5.
Collapse 191 via 123/1234/1234/1234536.
Juxtapose 32 and 33 with distinct symbols on

Collapse 200 via 1233/1234/1234/1234567.
Collapse 201 via 1234/1234/1232/1234567
Does not exist by Theorem 5.

Collapse 192 via 123/1234/1234/12345674.
Juxtapose 33 and 33 with distinct symbols on

Juxtapose 27 and 34 with distinct symbols on
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194.
195.
196.
197.
198.
199.

200.

201.

202.
203.
204.
205.
206.
207.
208.

209.

210.
211.

212.
213.
214.
215.
216.

217.

row 1.

4x4x4x%x6//32, DFFE=1:
4x4x4x%x6//32, DFFE=2:
4x4x4x%x6//32, DFPE =4 :
4x4x4x%x6//32, DFFE=T7":
4x4x4x%x6//32, DFPE = 8§ :
4x4x4x%x7//32, DFPFE=0:
row 1.

Collapse 199 via 1234/1234/1234/1234566.
Collapse 200 via 1234/1234/1234/1234564.
Collapse 204 via 1234/1234/1234/12345664.
Does not exist by Theorem 5.

Collapse 204 via 1234/1234/1234/12345634.
Juxtapose 33 and 34 with distinct symbols on

4 x4 x4x7//32, DFPE = 1 First an 4x4x4x4//32 OMEP was constructed
by juxtaposing 2 pairs of MOLS(16) and then a 4x4x4x8//32 OMEP was
obtained by changing the symbols of the the last square to be disjoint from
the other three. Then the last row was collapsed to 7 symbols.

4x4x4x7//32, DFPE = 2 :

11223344221144333434121243432112
11223344334411224213243124314231
11111111222222223333333344444444
12345677123456771234567712345677

4x4x4x7//32, DFPE =3 :
4x4x4x%x7//32, DFFE=4:
4x4x4x%x8//32, DFPE=0:
row 1.
2x2x3x10//36,DFPE =0 :
row 4.
2x2x3x10//36,DFPE =1 :
row 4.
2x2x3x10//36,DFPE = 2 :
row 4.
2x2x3x10//36,DFPE = 3 :
row 4.
2x2x3x10//36,DFPE =4 :
row 4.
2x2x3x10//36,DFPE =5 :
2x2x3x10//36,DFPE = 6 :
row 4.
2x2x5x6//36, DFPE =0 :
2x2x5x6//36, DFPE = 1:
2x2x5x6//36, DFPE =2 :
2x2x5x6//36, DFPE =3 :
2x2x5x6//36, DFPE =4 :

Does not exist by Theorem 5.

Collapse 204 via 1234/1234/1234/12345674.
Juxtapose 34 and 34 with distinct symbols on
Juxtapose 35 and 35 with distinct symbols on
Juxtapose 35 and 36 with distinct symbols on
Juxtapose 36 and 36 with distinct symbols on
Juxtapose 35 and 38 with distinct symbols on

Juxtapose 36 and 38 with distinct symbols on

Does not exist by Theorem 5.
Juxtapose 38 and 38 with distinct symbols on

Collapse 247 via 12/123456/123455/122211
Collapse 247 via 12/123456/123455/122112
Collapse 247 via 12/123456/123455/112221
Collapse 247 via 12/123456/123451/122121

111222112122111222221211222222111111
111222112212222111112122222211121211
111111222222333333444444555555555555
123456123456123456123456112233445566

2x2x5x6//36, DFPE =5 :

Does not exist by Theorem 6.
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218.

219.
220.

221.

222.

223.

224.

225.
226.

227.
228.
229.
230.
231.
232.
233.

234.
235.
236.
237.
238.
239.
240.
241.
242,
243.
244.
245.
246.
247.

2x2x5x6//36, DFPE =6 :

111222111222112221221112222222111111
111222122112122112222111221111222211
111111222222333333444444555555555555
123456123456123456123456112233445566

2x2x6x6//36, DFPE = 0 : Collapse 247 via 12/123456/123456/122211

2 x 3 x 3 x10//36,DFPE = 0 : Juxtapose 40 and 40 with distinct symbols on
row 4.

2 x 3 x 3 x10//36,DFPE = 1 : Juxtapose 40 and 41 with distinct symbols on
row 4.

2 x 3 x 3 x10//36,DFPE = 2 : Juxtapose 41 and 41 with distinct symbols on
row 4.

2 x 3 x 3 x10//36,DFPE = 3 : Juxtapose 40 and 43 with distinct symbols on
row 4.

2 x 3 x 3 x10//36,DFPE = 4 : Juxtapose 41 and 43 with distinct symbols on
row 4.

2 x 3 x 3 x10//36,DFPE = 5 : Does not exist by Theorem 5.

2 x 3 x 3 x10//36,DFPE = 6 : Juxtapose 43 and 43 with distinct symbols on
row 4.

2x3x5x6//36, DFPE = 0 :Collapse 294 via 12345/123456/123321/122121
2x 3 x5x6//36, DFPE = 1 : Collapse 247 via 12/123456/123455/122331
2x3x5x6//36, DFPE = 2 :Collapse 294 via 12345/123456/123321/122211
2x 3 x5 x6//36, DFPE = 3 : Collapse 266 via 123/1221/12345/123456
2x3x5x6//36, DFPE = 4 :Collapse 275 via 123/123456/123455/122211
2x3x5x6//36, DFPE = 5 : Does not exist by Theorem 6.
2x3x5x6//36, DFPE =6 :

111222111222111222222111222222111111
112233123123323121312231223311331122
111111222222333333444444555555555555
123456123456123456123456112233445566

2x3x6x6//36, DFPE = 0 :Collapse 275 via 123/123456/123456/122211

2 x 4 x 5 x 6//36, DFPE = 0 : Collapse 294 via 12345 /123456 /123443 /122211
2 x 4 x 5 x 6//36, DFPE = 1 : Collapse 288 via 1234/123456/123454/112221
2 x 4 x 5 x 6//36, DFPE = 2 :Collapse 294 via 12345/123456/123344/122211
2x4x5x6//36, DFPE = 3 :Collapse 289 via 11212/12324/12345/123456
2 x 4 x 5 x 6//36, DFPE = 4 :Collapse 294 via 12345 /123456 /123344 /121221
2 x4 x5x6//36, DFPE = 5 : Does not exist by Theorem 6.

2 x 4 x 6 x 6//36, DFPE = 0 : Collapse 288 via 1234/123456/123456/122211
2 x5 x5 x6//36, DFPE = 0 :Collapse 294 via 12345/123456/123455/122211
2x5x5x6//36, DFPE = 1 : Collapse 247 via 12/123456,/123455/123445
2x5x5x6//36, DFPE = 2 :Collapse 294 via 12345/123456/123455/121221
2 x5 x5 x6//36, DFPE = 5 : Does not exist by Theorem 6.

2 x 5 x 6 x 6//36, DFPE = 0 :Collapse 294 via 12345/123456 /123456 /122211
2x6x6x6//36, DFPE =0 :
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248.

249.

250.

251.

252.

253.
254.

255.

256.

257.

258.

259.

260.
261.

262.

263.
264.
265.
266.

267.
268.
269.
270.

111222112122121122212211221211222111
123456214563435612362145546231651324
111111222222333333444444555555666666
123456123456123456123456123456123456

3 x 3 x3x10//36,DFPE = 0 : Juxtapose 45 and 45 with distinct symbols on

row 4.

3 x 3 x3x10//36,DFPE = 1 : Juxtapose 45 and 46 with distinct symbols on

row 4.

3x3x3x10//36,DFPE = 2 :

row 4.

3x3x3x10//36,DFPE = 3 :

row 4.

3x3x3x10//36,DFPE =4 :

row 4.

3x3x3x10//36,DFPE =5 :
3x3x3x10//36,DFPE = 6 :

row 4.
3x3x5x6//36,
row 1.
3x3x5x6//36,
row 1.
3x3x5x6//36,
row 1.
3x3x5x6//36,
row 1.
3x3x5x6//36,
row 1.
3x3x5x6//36,
3x3x5x6//36,
row 1.
3x3x6x6//36,
row 1.
3x4x5x6//36,
3x4x5x6//36,
3x4x5x6//36,
3x4x5x6//36,

DFPE =0 :

DFPE = 1:

DFPE = 2 :

DFPE = 3 :

DFPE — 4 :

DFPE — 5 :
DFPE = 6 :

DFPE =0 :

DFPE =0 :
DFPE = 1:
DFPE = 2:

DFPE =3 :

Juxtapose 46 and 46 with distinct symbols on
Juxtapose 45 and 48 with distinct symbols on
Juxtapose 46 and 48 with distinct symbols on

Does not exist by Theorem 5.
Juxtapose 48 and 48 with distinct symbols on

Juxtapose 44 and 49 with distinct symbols on
Juxtapose 45 and 46 with distinct symbols on
Juxtapose 46 and 46 with distinct symbols on
Juxtapose 45 and 48 with distinct symbols on
Juxtapose 46 and 48 with distinct symbols on

Does not exist by Theorem 6.
Juxtapose 48 and 48 with distinct symbols on

Juxtapose 49 and 49 with distinct symbols on
Collapse 294 via 12345/123456/123443 /123321

Collapse 288 via 1234/123456/123454/112332
Collapse 294 via 12345/123456/123344,/123231

112233112233231312231321332233111212
123344213344434132434213334412443231
111111222222333333444444555555555555
123456123456123456123456112233445566

3 x4 x5x6//36, DFPE = 4 :Collapse 294 via 12345/123456/123344 /121233
3x4x5x6//36, DFPE = 5 : Does not exist by Theorem 6.

3x4x6x6//36, DFPE = 0 : Collapse 288 via 1234/123456/123456/123321
3 x5x5x6//36, DFPE = 0 :Collapse 294 via 12345/123456/123455/123321
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271.

272.
273.
274.
275.

276.
277.
278.
279.
280.
281.
282.
283.
284.
285.
286.
287.
288.

289.

290.

291.

3 x5 xHx

3 X5 XHX
3xbxbHx
3XHX6X
3X6x%x6x

6//36, DFPE = 1:

112233112233223311231312332313112212
123455214355551234535142345452551231
111111222222333333444444555555555555

123456123456123456123456112233445566

6//36, DFPE = 2 :Collapse 294 via 12345/123456 /123455/121332

6//36, DFPE = 5 : Does not exist by Theorem 6.

6//36, DFPE = 0 :Collapse 294 via 12345/123456 /123456 /123321

6//36, DFPE =0 :

112233112233223311223311331122331122
123456214365561234652143345612436521
111111222222333333444444555555666666
123456123456123456123456123456123456

4x4x5x%x6//36, DFPE =0 :
4x4x5x%x6//36, DFPE=1:
4x4x5x%x6//36, DFPE = 2 :
4x4x5x6//36, DFPE = 3 :
4x4x5x%x6//36, DFPE=4:
4x4x5x6//36, DFPE =5 :
4x4x6x6//36, DFPFE=0:
4x5x5x6//36, DFPE =0 :
4x5%x5x%x6//36, DFFE=1:
4x5x%x5x%x6//36, DFPE = 2 :

Collapse 294 via 12345/123456/123443 /123443
Collapse 288 via 1234/123456/123454 /112344
Collapse 294 via 12345/123456/123344/123244
Collapse 289 via 11234/12324/12345/123456
Collapse 291 via 12314/12334/12345/123456
Does not exist by Theorem 6.

Collapse 288 via 1234/123456/123456/123443
Collapse 294 via 12345123456 /123455123443
Collapse 290 via 12345/12345/12334 /123456
Collapse 294 via 12345/123456/123455/121344

4x5x5Hx
4x5x%x6x
4x6x6 X

HXHxHx

5 XbHxHx

S5 XHxHx

6//36, DFPE = 5 : Does not exist by Theorem 6.

6//36, DFPE = 0 :Collapse 294 via 12345/123456/123456,/123443

6//36, DFPE =0 :

123344213344341423342413434231434132
123456341265516342635124254613462531
111111222222333333444444555555666666
123456123456123456123456123456123456

6//36, DFPE =0 :

123455214355345512435521555512123434
123455341255552134554312241355554213
111111222222333333444444555555555555
123456123456123456123456112233445566

6//36, DFPE =1:

123455215534341525452153553545231412
123455342155455312235541555114522334
111111222222333333444444555555555555
123456123456123456123456112233445566

6//36, DFPE = 2 :
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292.
293.
294.

295.

296.

297.

298.

299.
300.
301.

153524452531545213515342322314415555
545231535142452513351524212143435555
111111222222333333444444555555555555
123456123456123456123456112233445566

5 x5 x5 x6//36, DFPE = 5 : Does not exist by Theorem 6.
5x5x6x6//36, DFPE = 0 :Collapse 294 via 12345/123455/123456 /123456
5x6x6x6//36, DFPE =0 :

123455214355351524452513535142545231
123456341265516342635124264531452613
111111222222333333444444555555666666
123456123456123456123456123456123456

6 X6 x6x6//36, DFPE = 0 This would corresponds to a pair of orthogonal
Latin squares of order 6, which Does not exist.

2 x2x4x9//40, DFPE = 0 : Juxtapose 50 and 50 with distinct symbols on
row 1.

2x2x4x9//40, DFPE = 1:

1111122222111122221222222111112222111112
1111122222222211112111112222122222211111
1111111111222222222233333333334444444444
1234567899123456789912345678991234567899

2x2x4x9//40, DFPE = 2 :

1111122222111112222222222111112222211111
1111122222222221111111112222122222111112
1111111111222222222233333333334444444444
1234567899123456789912345678991234567899

2 x2x4x9//40, DFPE = 3 : Does not exist by Theorem 5.
2 x 2 x 4 x 9//40, DFPE = 4 : Collapse 301 via 12/12/1234/1234567898.
2x2x4x10//40,pFPE =0 :

1122221111222211112222111122221111222211
1212212112122121121221211212212112122121
1234123412341234123412341234123412341234
1111222233334444555566667777888899990000
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