MA 4310: Abstact Algebra Homework Solutions

Donald L. Kreher

January 12, 2011

AATA: Chapter 1 exercises

1 Suppose that

$$
\begin{aligned}
& A=\{x: x \in \mathbb{N} \text { and } x \text { is even }\} \\
& B=\{x: x \in \mathbb{N} \text { and } x \text { is prime }\} \\
& C=\{x: x \in \mathbb{N} \text { and } x \text { is a multiple of } 5\}
\end{aligned}
$$

Describe each of the following sets.
(a) $A \cap B$
(c) $A \cup B$
(b) $A \cap C$
(d) $A \cap(B \cup C)$

Solution.

(a) $A \cap B=\{2\}$ the set of all natural numbers that are both even and prime.
(b) $B \cap C=\{5\}$ the set of all primes that are multiples of 5 .
(c) $A \cup B$ is the set of all natural numbers that are either even or prime.
(d) $A \cap(B \cup C)=\{2\}$. Because 2 is the only number that is both even and either a prime or multiple of 5 .

8 Prove $A \subset B$ if and only if $A \cap B=A$.

Proof. Suppose $A \subset B$ and let $a \in A$. Then $a \in b$ and thus $a \in A \cap B$. Hence $A \subset A \cap B$. Therefore $A \cap B=A$, because by definition $A \cap B \subset A$.

Conversly suppose $A \cap B=A$. By definition $A \cap B \subset B$. Hence $A=A \cap B \subset B$.

GTN: Chapter 1 exercises

