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t-wise balanced designs
Let X = {x1, x2, . . . , xv} be a set of v-points and let 0 < t < v
be a positive integer.

Can we find a collection

B = {B1,B2, . . . ,Bb}

of subsets of X so that every t-element subset of X is
contained in exactly one of them?



t-wise balanced designs
Let X = {x1, x2, . . . , xv} be a set of v-points and let 0 < t < v
be a positive integer.

Can we find a collection

B = {B1,B2, . . . ,Bb}

of subsets of X so that every t-element subset of X is
contained in exactly one of them?

Example:

t = 2

X = {1,2,3,4,5,6,7}

B =

{
{1,2,3}, {1,4,5}, {1,6,7}, {2,4,6},

{2,5,7}, {3,4,7}, {3,5,6}

}

Every pair is in exactly one of the chosen subsets.
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Orbits
Let G be a possible automorphism group.

Orbit of
t-element
subsets
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Let G = 〈(1,3,5)(2,6,4)(7), (1,3)(6,4)(7)〉

=

{
I, (1,3,5)(2,6,4), (1,5,3)(2,4,6)
(1,3)(6,4), (1,5)(2,6), (2,4)(3,5)

}
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Formal definition ...
A t-wise balanced design with parameters t-(v ,B, λ) is a pair
(X ,B) where X is a set of v points and B is a collection of
subsets of X called blocks such that

if B ∈ B, then |B| ∈ K ;
t , v /∈ B; and
if T ⊂ X , with |T | = t , then there exactly λ blocks B ∈ B
that contain T .

For example:

X = {1,2,3,4,5,6}

B =

{
{1,2,3}, {1,4,5}, {2,4,6}, {3,5,6},
{1,3,4,6}, {1,2,5,6}, {2,3,4,5}

}

is a 2-(6, {3,4},2) design.

Find or classify all t-designs.

Well ... at least the interesting ones.



Graphical designs
Points: X = edges of Kn the complete graph.

K6 =

1

2

34
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6

X =

{
12,13,14,15,16,23,24,

25,26,34,35,36,45,46,56

}

Blocks are subgraphs!
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= {15,16,56,24}



Graphical designs
Group: Sn the automorphism group of Kn

=







1

2

34

5

6 1

2

34

5

6

1

2

34

5

6 1

2

34

5

6

1

2

34

5

6 1

2

34

5

6

1

2

34

5

6 1

2

34

5

6

1

2

34

5

6 1

2

34

5

6

This is an orbit!
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gives a 2-(15,3,1) design.

gives a 2-(15, {3,5},1) design.
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gives a 3-(10,4,1) design.



Theorem (Chouinard,Kramer,Kreher 1983)

A complete list of graphical t-(v ,K,1) designs.

1-(6,2,1) n = 4

2-(15,3,1) n = 6

2-(15, {3,5},1) n = 6

3-(10,4,1) n = 5

4-(15, {5,7},1) n = 6



Two key ideas for graphical t-(
(n

2

)
,B, 1) designs

A. Let B be a block and
let g be an automorphism.

Then |B ∩ g(B)| ≥ t ⇒ B = g(B). t
B:

g(B):

g



Example
If n ≥ t + 3 a block B cannot have a path of length t + 1.

t + 1

Get spanning cycle..

Repeat... and get Kn — a contradiction.
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Two key ideas for graphical t-(
(n

2

)
,B, 1) designs

A. Let B be a block and
let g be an automorphism.

Then |B ∩ g(B)| ≥ t ⇒ B = g(B). t
B:

g(B):

g

B. If t ≥ n − 1, then the derived design

of a t-(
(

n
2

)

,B,1) on Kn

with respect to a star K1,n−1 is a

(t − n + 1)-(
(

n − 1
2

)

,B′,1) on Kn−1.
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The proof

1. Get a list of small graphical designs.

2. Use A to show that if t < (n − 1), then it appears on the
list.

3. Use B to show that if t ≥ (n − 1), then it is the extension of
a design on the list.

4. Find all extensions.



Bigraphical designs
A t–wise balanced design (X ,B) of type t–(m · n,B, λ) is
bigraphical if X is the set of edges of the complete bipartite
graph Km,n and whenever B is a block and α is an
automorphism of Km,n (that fixes the independent sets), then
α(B) is also a block.



Theorem. (Hoffman and Kreher 1994) The bigraphical t-designs of index 1.

D1:
2 ≤ m ≤ n

1−(mn, n, 1)
K1,n

D2:
2 ≤ m ≤ n

1−(mn, m, 1) Km,1

D3:
m = n = 2

1−(4, 2, 1)

D4:
m = n = 3

2−(9, 3, 1) . .

D5:
m = 2, n = 4

3−(8, 4, 1)

D6:
m = 2, n = 4

3−(8, 4, 1)

D7:
m = n = 4

3−(16, 4, 1)

D8:
m = n = 4

3−(16, {4, 6}, 1)

D9:
m = n = 4

5−(16, {6, 8}, 1)



The 5–(16, {6, 8}, 1) design



The 5–(16, {6, 8}, 1) design
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The 8-element blocks are the 3–dimensional affine subspaces.

A 6-element set { ~x1, . . . , ~x6} is a block ⇐⇒ ~x1 + · · ·+ ~x6 = ~0.



The 5–(16, {6, 8}, 1) design
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The 8-element blocks are the 3–dimensional affine subspaces.

A 6-element set { ~x1, . . . , ~x6} is a block ⇐⇒ ~x1 + · · ·+ ~x6 = ~0.

This vector space construction is due to R.M. Wilson.



Mulitgraphical designs

K r
n = Kn,n,n, . . . ,n

︸ ︷︷ ︸
r

When n = 1 theses are the graphical designs.
There are 4 of them, with t ≥ 2.

(Chouinard, Kramer and Kreher 1983)

When r = 2 theses are bigraphical designs.
There are 7 of them, with t ≥ 2.

(Hoffman and kreher 1994)
When n > 1 and r > 2 there are 2 more.

(Olsen and Kreher 1998)
A 2-(12, {3, 4}, 1) design:

A 2-(24, {3, 4}, 1) design:



Open questions

◮ t = 6
◮ Other graphs or incidence structures.
◮ A general result such as:

Let (Xn, En) be a family of incidence structures with with
automorphism groups Gn.
Show that if |Gn| is sufficiently large with respect to |En|,
then there are only finitely many designs w.r.t. this group
action.



◮ Slides: www.math.mtu.edu/∼kreher/ABOUTME/talk.html
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