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Goal: Decompose the edges of the circulant graph G = CIRC(n; S)
into pairwise isomorphic subgraphs.

• vertices are elements from Zn.

• S ⊆ Z \ {0} is the connection set.

• Require ` ∈ S ⇔ −` ∈ S.

• {x, y} is an edge just when x − y ∈ S.

• G is connected ⇔ S generates Zn.

gcd(n, `1, `2, . . . , `t) = 1

where S = {±`1,±`2, . . . ,±`t}

• There are n|S|
2

edges.

Example.
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G = CIRC(11; {±1,±2,±4,±5})
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A k-isofactorization is a partition of the edges into iso-
morphic subgraphs, each of size k. So k must divide
|E(G)| = n|S|/2.

Alspach Conjecture (1982): If k divides |E(G)| for a
circulant graph G, then G has a k-isofactorization.

0 1

2

3

4
56

7

8

9

10
0 1

2

3

4
56

7

8

9

10
0 1

2

3

4
56

7

8

9

10

Zig-zag path Star 4-Matching

Some 4-isofactorizations of G = CIRC(11; {±1,±2,±4,±5})
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k-matchings are k independent edges.

Lemma 1 (ADK) Let G be a regular graph of order n and va-
lency 1 or 2. If k is a proper divisor of |E(G)|, then G can be
decomposed into k-matchings except when n = 2k and at least
one component of G has odd order.

PROOF.

Valency 1: G is itself a n
2
-matching.

Valency 2:

Find a proper edge coloring with d =
n

k
colors so that each color

class has k edges. (k = 6, d = 3)
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Always possible unless d = 2 and there is an odd cycle.
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Theorem 2 (ADK) If G = CIRC(n;S) is connected, k is a proper
divisor of n, and k divides |E(G)|, then there is a decomposition
of G into k-matchings.

PROOF.

For k = n/2 use Stong’s result on the 1-factorization of Caley
graphs.

Otherwise each length ` ∈ S generates a 1 or 2-regular graph
and we use Lemma 1 to independently decompose each into
k-matchings.

Theorem 3 (ADK) Let X = CIRC(n;S) be a connected cir-
culant graph of order n. If k divides |S|/2 , then there is a k-
isofactorization of X into stars, i.e. K1,ks.

PROOF. Partition the
|S|

2
”positive” lengths into blocks of size k,

draw the stars and rotate.
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In general we prove:

Theorem 4 (ADK) Let X = CIRC(n;S) be a connected circu-
lant graph of order n. If k divides |E(X)| and either k properly
divides n or k divides |S|, then there is a k-isofactorization of X.

Notice the omission of the case k = n.
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n-Isofactorization of connected G = CIRC(n; S)

Here
|S|

2
=

n|S|/2

n
is an integer.

So if n is even, then n/2 /∈ S because n/2 ≡ −n/2 mod n
and |S| would be odd.

Theorem 5 (ADK) If |S|/2 divides n, then G has an n-isofactorization.
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A Hamilton decomposition is one type of n-isofactorization.

Alspach Conjecture (1985): Every connected circulant graph
of valency 2t has a decomposition into t edge-disjoint Hamilton
cycles.

The conjecture has been shown for the following circulant graphs:

• t = 1: the entire graph is one Hamilton cycle.

• Bermond, Favaron, and Maheon (1989): For connected
graphs when t = 2, i.e. valency 4.

• Dean (2006): For connected G = CIRC(n; S) with t = 3
when n is odd, or n is even and there exists some element
l ∈ S such that gcd(n, l) = 1.
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Theorem 6 (ADK) Partition S into 4-subsets, so that

S = {±l1,±l2} ∪ {±l3,±l4} ∪ · · · ∪ {±lt−1,±lt}

If, for each pair, the gcd(n, li, li+1) = 1, then G has an n-
isofactorization into Hamilton cycles.

Theorem 7 (ADK) If S = {±(l + i) : i = 0,1,2, . . . , t − 1}
where t is even, then there exists a Hamilton decomposition of
G.

(Here gcd(l, l + 1) = gcd(n, l, l + 1) = 1) for all l ∈ S)
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Valency 8: n-isofactorization for small lengths

Forward Edges: T ⊆ E(G) with S = {±l1,±l2, ...,±lj}.

• 0 < |li| < n/2, when we assume w.l.g. S = S+ ∪̇ S−

where

• S+ = {li : i = 1,2, . . . , j} and

• S− = {−li : i = 1,2, . . . , j}.

TV is the set of forward edges on the vertices in V :

TV = {{v, v + l} : l ∈ S+, v ∈ V }.

Note: TV =
⋃

x∈V

T{x}.

Example:S = {±1,±2,±4,±5}, n = 11

T{1,7} = {{1,2}, {1,3}, {1,5}, {1,6},

{7,8}, {7,9}, {7,0}, {7,1}}
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Theorem 8 (KW) The circulant graph G = CIRC(n;S) where,

• S = ±{l1, l2, l3, l4}

• n = 4x+p for p = 4,5,6,7

has an n-isofactorization when one of the following is true:

• n ≡ 0 mod 4

• 1 < li ≤ x for i = 1,2,3,4, x ≥ 5

• x = 1,2,3,4.

If n ≡ 1 mod 4 or x = 1,2,3,4, then we may also include
1 ∈ S.

If n ≡ 0 mod 4, then 4 =
|S|

2
divides n. This has an n-

isofactorization by Alspach, Dyer, and Kreher. (Theorem 5)
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Sample construction for n ≡ 1 mod 4 (n = 4x + 5)

Let G = CIRC(25; ±{2,3,4,6}). Here x = 5.

Partition the vertices:

Z25 = U ∪̇ V0 ∪̇ V1 ∪̇ V2 ∪̇ V3,

where U = {0,1, x+2,2x+3,3x+4} = {0,1,7,13,19} and

V0 = {2,3, . . . , x+1} = {2,3,4,5,6},
V1 = {x+3, x+4, . . . ,2x+2} = {8,9,10,11,12},
V2 = {2x+4,2x+5, . . . ,3x+3} = {14,15,16,17,18},
V3 = {3x+5,3x+6, . . . ,4x+4} = {20,21,22,23,24}.

Xi = 〈TVi
〉, the subgraph induced by TVi

.
As |Vi| = x and each Vi consists of consecutive vertices, X0, X1, X2,
and X3 are pairwise isomorphic, each having 20 edges.

3x + 4 x + 2

2x + 3

0 1

V0

V1V2

V3
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T{8,9,10,11,12}

T{14,15,16,17,18}

T{20,21,22,23,24}
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We now distribute the 20 forward edges (TU = T{0,1,7,13,19})
preserving isomorphism.

Adjoin a single edge and a pair of 2-paths to each subgraph.

Without loss:
adjoin {0, l1} = {0,2} and {0, l2} = {0,3} to X1,
adjoin {0, l3} = {0,4} and {0, l4} = {0,6} to X2.

{1, l1} /∈ E(G) (otherwise l1 − 1 ∈ S). If {1, l2} ∈ E(G) adjoin
it to X2. If {1, l2} /∈ E(G) ⇒ ∃ at least one edge, call it {1, k}
where k /∈ {x + 2, l3, l4} = {7,4,6}. Adjoin {1, k} to X2.

As {1, l2} = {1,3} ∈ E(G), adjoin it X2.

Thus ∃ {1, s}, {1, t} ∈ E(G) where s, t 6= {k, x + 2, l1, l2}.
Without loss, adjoin {1, s} = {1,4} to X1.

Finally, adjoin {1, t} = {1,5} and {1, x + 2} = {1,7} to X0.
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To preserve isomorphism:

Adjoin to X1:
{x+2,2t+1} = {7,11}
{x+2, (x+2)+(x+1)} = {x+2,2x+3} = {7,13}.

Adjoin to X2:
{2x+3,3t+2} = {13,17}
{2x+3, (2x+3)+(x+1)} = {2x+3,3x+4} = {13,19}.

Adjoin to X3:
{3x+4,4t+3} = {19,23}
{3x+4, (3x+4)+(x+1)} = {3x+4,0} = {19,0}.

There now exist only 6 forward edges left to distribute.

Two from each of U \ {0,1} = {7,13,19}.
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Remaining forward edges to distribute to X0 and X3:

{x + 2, y1} = {7,9}
{x + 2, z1} = {7,10}

}

cannot adjoin to X0

{2x + 3, y2} = {13,15}
{2x + 3, z2} = {13,16}

}

can adjoin to either X0 or X3.

{3x + 4, y3} = {19,21}
{3x + 4, z3} = {19,22}

}

cannot adjoin to X3

Adjoin {19,21} and {19,22} to X0.

Adjoin {7,9} and {7,10} to X3.

Without loss of generality,

Adjoin {13,16} to X0.
Adjoin {13,15} to X3.

The 25-isofactorization of G = CIRC(25;±{2,3,4,6}) is com-
plete.
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An adaption of this construction allows:

Theorem 9 (KW) The circulant graph G = CIRC(n; S) where,

• n = 4x + 5 for x ≥ 5

• S = ±{1, l2, l3, l4})

has an n-isofactorization when 1 < l2 < l3 < l4 ≤ x.
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1 + lt

x + 2

x + 2 + l2

x + 2 + l3

0 s

2x + 3 2x + 3 + li

2

0
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x + 3

TV1
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3x + 4 + l4
4x + 4

V3
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10 4x + 4 + l4

3x + 4 + l2
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3x + 4 + l3

2x + 3 2x + 3 + lj
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For CIRC(n; S) with n = 4x + p (p = 4,5,6,7) and x =
1,2,3,4, we use separate constructions for each case:

Example: p = 6

x n Possible connection set S
1 10 ±{1,2,3,4}
2 14 S+ ⊂ {1,2,3,4,5,6}
3 18 S+ ⊂ {1,2,3,4,5,6,7,8}
4 22 S+ ⊂ {1,2,3,4,5,6,7,8,9,10}

n = 10: has a 10-isofactorization as S+ contains four consec-
utive integers.

n = 14 = 2 ·7 and n = 22 = 11 ·2 as 7,11 ≡ 3 mod 4, we
are guaranteed Hamilton decompositions by Alspach’s result.

n = 18: if S+ contains two or three elements co-prime with 18
⇒ Hamilton decomposition by Alspach, Dyer, and Kreher.

If G = CIRC(18;±{2,4,6,8}) ⇒ G is isomorphic to two copies
of G∗ = CIRC(9;±{1,2,3,4}). As G∗ is Hamilton-decomposable,
pair up eight 9-isofactors to achieve an 18-isofactorization of G.

Remaining cases were found Hamilton-decomposable by ran-
dom computer search or previous theorems.
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Valency 2t: The n-isofactorization for small lengths

Using a similar construction for valency 8, we can generalize to
valency 2t where n ≡ 0,1,2 mod t:

Theorem 10 (KW) The circulant graph G = CIRC(n;S) where

• n = tx + t + p for p = 0,1,2

• S = ±{l1, l2, . . . , lt}

has an n-isofactorization when n ≡ 0 mod t or when t is even
and

• t ≥ 6 if p = 1

• t ≥ 8 if p = 2

• 1 < l1 < l2 < · · · < lt ≤ x for all i = 1,2, . . . , t − 1.

Example: Let n = 6x + 7. Here t = 6, p = 1, valency 12.

Partition

V (G) = Zn = V ∪ V0 ∪ V1 ∪ · · · Vt−1,

where

V = {0,1, x + 2,2x + 3,3x + 4,4x + 5,5x + 6}.

V0 = {2,3, . . . , x, x + 1}.

Vj = {v + j(x + 1) : v ∈ V0}, j = 1,2, . . . , t − 1.
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Let Xi = 〈TVi
〉 for i = 0, . . . , t − 1. Because |Vi| = x ∀ i

and all forward edges have been chosen ⇒ Xi
∼= Xj, where

|E(Xi)| = 6x. The remaining 42 edges of G are TV .

Let,

I = {v ∈ V0 : {1, v}, {0, v} ∈ E(G)},

L = {v ∈ V0 : {1, v} ∈ E(G), {0, v} /∈ E(G)}.

0 and 1 cannot share more than five other vertices in V0 as com-
mon neighbors.

In particular, the 2-path {0, l1,1} cannot exist, otherwise 11 −
1 ∈ S.

Obviously the 2-path {0,1 + l6,1} cannot exist otherwise 1 +
l6 ∈ S.

If I 6= ∅, and |I| = j ⇒ j ∈ {1,2,3,4,5}.

Example: j = 5.

10

I

V0
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If |I| = k where 0 ≤ k ≤ 4, (the case k = 5 is simpler) then let
L′ ⊆ L be any set of 4 − k vertices from L.

Let E({1}) = {{1, v} : v ∈ I ∪̇ L′}.

Clearly, |E({1})| = 4, relabeled as:

E({1}) = {{1, y1}, {1, y2}, {1, y3}, {1, y4}}.

For v ∈ V \ {0,1}, let E({v}) =

{{v, v + (yi − 1)} : yi ∈ {1, yi} ∈ E({1}), v ∈ V \ {0,1}}.

Adjoin accordingly:

E({1}) → X0

E({x + 2}) → X1

E({2x + 3}) → X2

E({3x + 4}) → X3

E({4x + 5}) → X4

E({5x + 6}) → X5

{0, l1}, {0, l2} → X2

{0, l3}, {0, l4} → X3

{0, l5}, {0, l6} → X4

As v ≤ (x + 1) ∀ v ∈ V0 and

(x + 1) + l6 ≤ (x + 1) + x = 2x + 1 /∈ V2,

we have no edges of the form, {{v, v′} : v ∈ V0, v′ ∈ V2}.

In general, there are no edges of the form,

{{v, v′} : v ∈ Vi, v′ ∈ Vi+2},

(subscript addition i + 2 is modulo 6.)
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Conclusions and Further Research Problems

M. Dean’s result for valency 6 is limited to odd order or even order
circulants providing there exists l ∈ S such that gcd(l, n) = 1.

Open Problem: Complete results for valency 6.

Valency 8: Complete results when n = 4x + p, and l ≤ x for all
l ∈ S+, but not H-decomposable when x ≥ 5.

Open Problem: Hamilton-decompositions of the valency 8 cir-
culant graphs where x ≥ 5.

Open Problem: Develop appropriate constructions to allow for
1 ∈ S.

Valency 2t: Complete results when n = tx + t + p, where
1 < l < x for all l ∈ S+, p = 0,1,2, and even t ≥ 6 if p = 1,
or even t ≥ 8 if p = 2.

Open Problem: Hamilton-decompositions of the valency 2t cir-
culants.

Open Problem: Resolve conjecture that every circulant of order
2p (p is prime) has a Hamilton decomposition.
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