From From t-wise balanced designs to orthogonal arrays

Don Kreher

Michigan Technological University

kreher@mtu.edu

C.J. Colbourn and D.L. Kreher, Concerning difference matrices, *Designs, Codes and Cryptography*, **9**, 61-70 (1996).

D.L. Kreher, Orthogonal arrays of strength 3, the Journal of Combinatorial Designs, 4 (1995).

$(s, v; \lambda)$ -Difference matrix based on the group G:

Example: (3, 3; 1)-difference matrix based on \mathbb{Z}_3

$$D = \begin{array}{cccc} 0 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 2 & 1 \end{array}$$

$\mathsf{OA}_\lambda(s,v)$ orthogonal Array:

 $(s,v;\lambda)$ -Difference matrix \Rightarrow OA $_{\lambda}(s,v+1)$

Problem: Given s and λ what is the maximal v for which a $(s, v; \lambda)$ -difference matrix exists?

Upper and lower bounds on \boldsymbol{v}

$\lambda \backslash s$	2	3	4	5	6
1	2	3	4	5	2
2	4	6	8	10	12 6
3	2	9	12	14 6	2
4	8	12	16	20	24 6
5	2	14 6	20 8	25	2
6	12	18	24 12	30 10	36 6
7	2	21 9	28 12	34 10	2
8	16	24	32	40 20	48 6
9	2	27	36	45 20	2
10	20	30	40 12	50	60 6

Data taken from forth coming book on orthogonal arrays by Hedayat, Sloane and Stufken.

An ℓ by w PBD (v, λ) is a pair (X, A) where

- X is a v-element set of points;
- \mathcal{A} is a w by ℓ array of subsets of X called *blocks*;
- \bullet every pair of points is in λ blocks; and
- ullet the columns of A are partitions of X.

An

Example: A 4 by 3 PBD(5,1)

1

5.

•2

4[•] 3

0	125		4 5		5		35		
1	3 4	ļ.	2 3	3	1	3	1 4		
2	Ø		1		2 4		2		
	1	0	2	1	•	1			
	2	0	1	2		2			
	3	1	1	1	-	0			
	4 1		0	2	2	1			
	5 0		0	C)	0			
$\underbrace{\widetilde{M}}$									

0	1	2	2					
0	2	1	1					
2	2	2	0					
2 0 1 2								
0 0 0 0								
	2.	\overline{M}						

Theorem 1 Let q be a prime power.

If there is an ℓ by w PBD (v,λ) with $w \leq q \leq \lfloor \frac{\ell}{\lambda} \rfloor$, then there exists a $(q,v;\ell-\lambda)$ -difference matrix.

Theorem

Theorem 2. If an $OA(n, k; \lambda)$ exist with λ constant rows, then over any group G of order n+1, a $(n+1, k; \lambda(n-1))$ -difference matrix exists.

Example. $G = \mathbb{Z}_4$

 $OA_1(3,4) \Rightarrow (4,4;2)$ -diff. matrix $\Rightarrow OA_2(4,5)$

Problem: Given s and λ what is the maximal v for which a (s, v, λ) -difference matrix exists?

Upper and lower bounds on $\boldsymbol{\mathit{v}}$

$\lambda \backslash s$	2	3	4	5	6
1	2	3	4	5	2
2	4	6	8	10	12 6
3	2	9	12	12 14 6 7	
4	8	12	16	16 20	
5	2	14 6 7	20 8	25	2
6	12	18	24 12		
7	2	21 9	28 12	34 10	2
8	16	24	32	40 20	48 6
9	2	27	36 45 20		2
10	20	30	40 12 13	50	60 6 11

Data taken from forth coming book on orthogonal arrays by Hedayat, Sloane and Stufken.

What's really going on?

- 1. We start with a matrix M with entries in \mathbb{F}_q
- 2. Multiply by the nonzeros

$$X \mapsto \alpha X$$

3. and then translate by all the elements of \mathbb{F}_q

$$X \mapsto \alpha X + \beta$$

But this is the affine group

$$\{X \mapsto \alpha X + \beta, \text{ where } \alpha, \beta \in \mathbb{F}_q, \alpha \neq 0\}$$

What'

This group has two orbits on order pairs namely:

$$(1) \qquad \{(x,x) : x \in \mathbb{F}_q\}$$

(2)
$$\{(x,y): x,y \in \mathbb{F}_q, x \neq y\}$$

Orthogonal array of size N, degree k, order s and strength 3: $OA_{\lambda}(3,k,s)$

Or

Example: An $OA_1(3, 4, 3)$

000000000111111111122222222 012012012012012012012012 012120201120201012201012120 012201120120012201201120012 Problem: Given s and λ what is the maximal k for which a $OA_{\lambda}(3, k, s)$ exists?

Existence results for orthogonal arrays of strength more than 2.

J. Bierbrauer and C.J. Colbourn, *Orthogonal arrays* of strength more than two, The CRC Handbook of Combinatorial Designs. C.J. Colbourn and J.H. Dinitz (Editors), CRC Press Boca Raton, 1996.

1. Bose-Bush (1952):
$$k \leq \left\lceil \frac{\lambda s^2 - 1}{s - 1} \right\rceil + 1$$

- 2. An $OA_{\lambda}(t, k, s)$ is a $OA_{s\lambda}(t 1, k, s)$.
- 3. A $OA_{\lambda}(t-1, k-1, s)$ can be obtained from a $OA_{\lambda}(t, k, s)$ by first selecting all columns that contain a fix symbol x in a given row i and then deleting row i.
- 4. Bush (1952): If s > t is a prime power, then an $OA_1(t, s + 1, s)$ exists.
- 5. Bush (1952): If s > 3 is a power of 2, then an $OA_1(3, s + 2, s)$ exists.

- 6. Bush (1952): If $OA_{\lambda_1}(t, k, s_1)$ and $OA_{\lambda_2}(t, k, s_2)$ exists, then an $OA_{\lambda_1\lambda_2}(t, k, s_1s_2)$ also exists.
- 7. Atsumi (1983): If t is even, then any $OA_{\lambda}(t, k, 2)$ implies the existence of an $OA_{\lambda}(t+1, k+1, 2)$. In particular an $OA_n(3, 4n, 2)$ exists whenever there is a Hadamard matrix of order 4n.
- 8. Bierbrauer-Mukhopadhyay (1995,1981):

If $m,n\geq 0$ are integers and p is a prime, then a $OA_{p^{n(t-1)}}(t,p^{m+n}+1,p^m)$ exists for all $t\geq 3$ and an $OA_{p^{n(t-2)-m}}(t,pm+n,p^m)$ exists for all $t>p^n$.

9. Mukhopadhyay (1981):

If p is a prime and an $OA_{\lambda}(3, k, p^m)$ exists, then a $OA_{\lambda p^{2(m+n)}}(3, kp^{m+n}, p^m)$ exists for all integers $n \geq 0$.

10. Mukhopadhyay (1981): If an $OA_{\lambda}(3, r, s)$ exists, so does an $OA_{s\lambda}(3, 2r, s)$.

A resolvable 3- (wk, k, λ) design is a pair (X, A) where

- X is a wk-element set of *points*;
- \mathcal{A} is a ℓ by w array of k-subsets of X called *blocks*;
- \bullet every pair of points is in λ blocks; and
- ullet the rows of A are partitions of X.

Example: A resolvable 3-(8, 4, 1)

1248	2358	3468	4578	5618	6728	7138
3567	4671	5712	6123	7234	1345	2456

Example: A resolvable 3-(9,3,1)

789	781	782	783	784	785	786	715	726	739	741	752	763	794	
124	235	346	459	561	692	913	826	839	841	852	863	894	815	[
563	694	915	126	239	341	452	943	154	265	396	419	521	632	

_	723	734	745	756	769	791	712	746	759	761	792	713	724	735
• • •	845	856	869	891	812	823	834	925	136	249	351	462	593	614
_	916	129	231	342	453	564	695	813	824	835	846	859	861	892

Let
$$\Omega = \{\omega_1, \omega_2, \dots, \omega_{n+1}\}$$
, with $n+1 \ge w$.

ω_1	789	781	782	783	784	785	786	715	726	739	
ω_2	124	235	346	459	561	692	913	826	839	841	
ω_3	563	694	915	126	239	341	452	943	154	265	-
					1						-
1	ω_2	ω_1	ω_3	ω_3	ω_2	ω_3	ω_2	ω_1	ω_3	ω_2	F
2	ω_2	ω_2	ω_1	ω_3	ω_3	ω_2	ω_3	ω_2	ω_1	ω_3	
3	ω_3	ω_2	ω_2	ω_1	ω_3	ω_3	ω_2	ω_3	ω_2	ω_1	
4	ω_2	ω_3	ω_2	ω_2	ω_1	ω_3	ω_3	ω_3	ω_3	ω_2	[
5	ω_3	ω_2	ω_3	ω_2	ω_2	ω_1	ω_3	ω_1	ω_3	ω_3	
6	ω_3	ω_3	ω_2	ω_3	ω_2	ω_2	ω_1	ω_2	ω_1	ω_3	
7	ω_1										
8	ω_1	ω_2	ω_2	ω_2	[

M

 ω_3

Let G be a group acting 3-transitively on Ω

$$G = \{g_1, g_2, \dots, g_{|G|}\}$$

$$|G| = m(n+1)n(n-1) = m(n^3 - n).$$

$$M^G = [M^{g_1}, M^{g_2}, \dots, M^{g_{|G|}}]$$

C = each constant column repeated x times. (v by x(n+1) matrix)

The number of blocks containing a pair of points disjoint from a third is $b_2^1 = \binom{v-3}{k-2} \lambda / \binom{v-t}{k-1}$.

 $\underline{\mathsf{Claim}}\ [M^G,C]$ is an orthogonal array.

Consider any three rows

Т у р е	in M	in M^G	in C	Total
$egin{array}{c} x \\ x \\ x \end{array}$	λ	$\frac{ G }{n+1}\lambda$	x	$x+mn(n-1)\lambda$
$egin{array}{c} x \ x \ y \ \end{array}$	b_2^1	$\frac{ G }{(n+1)n}b_2^1$	0	$mb_2^1(n-1)$
$\begin{bmatrix} x \\ y \\ x \end{bmatrix}$	b_2^1	$\frac{ G }{(n+1)n}b_2^1$	0	$mb_2^1(n-1)$
$egin{array}{c} y \ x \ x \end{array}$	b_2^1	$\frac{ G }{(n+1)n}b_2^1$	0	$mb_2^1(n-1)$
$egin{array}{c} x \ y \ z \ \end{array}$	$r-\lambda-3b_2^1$	$\frac{ G (r-\lambda-3b_2^1)}{(n+1)n(n-1)}$	0	$m(r-\lambda-3b_2^1)$

Choose n and x so that

1.
$$m(r - \lambda - 3b_2^1) = mb_2^1(n-1)$$

- **2.** $n + 1 \ge w$.
- 3. $x + mn(n-1)\lambda = mb_2^1(n-1)$

Choose

Theorem. Let G act 3-transitively on the (n+1)-set Ω and let $m(n^3-n)$ be the order of G. If a resolvable 3- (wk, k, λ) design (X, \mathcal{B}) exists such that

1.
$$n = (r - \lambda)/b_2^1 - 2$$

2.
$$n + 1 \ge w$$

3.
$$n \le b_2^1/\lambda$$
,

then an $OA_{mb_2^1(n-1)}(3, wk, n+1)$ also exists.

Use G = PGL(2,q) on $\Omega = \mathbb{F}(q) \cup \{\infty\}$ and resolvable SQS(3q+5)'s.

Corollary A.

Let q be a prime power, $q \equiv 1, 5, 9 \pmod{12}$. Then there exists an

$$OA_{(3q+1)(q-1)/2}(3,3q+5,q+1),$$

except possibly for q = 197 or 773.

Use

Use G = PGL(2,q) on $\Omega = \mathbb{F}(q) \cup \{\infty\}$ and resolvable 3-(2q+4,3,1).

Corollary B.

Let q be a prime power, $q \equiv 1 \pmod{3}$. Then there exists an

$$OA_{(2q+1)(q-1)}(3,2q+4,q+1).$$

We don't need 3-designs!

All that is required is a resolvable set-system (X, \mathcal{B}) such that

- 1. The number of blocks containing three points x,y,z is a constant λ that does not depend on the choice of x,y,z
- 2. The number of blocks containing two points x, y and disjoint from a third point $z \in X$, is a constant b_2^1 that does not depend on the choice of x, y, z

W

Do they exist? Can they be resolvable?

Example: The 1-factorization of the complete graph is a resolvable near 3-design with

$$\lambda = 0$$
 and $b_2^1 = 1$

Example:

The revised theorem is:

Theorem: Let G act 3-transitively on the (n+1)-element set Ω and let $m(n^3-n)$ be the order of G. If a resolvable near 3-design (X,\mathcal{B}) exists such that $n=(r-\lambda)/b_2^1-2$ with $w-1\leq n\leq b_2^1/\lambda$, then a resolvable $OA_{mb_2^1(n-1)}(3,|X|,n+1)$ also exists.

Example:

Corollary: Let q be an odd prime power. Then there exists an $OA_{q-1}(3, q+3, q+1)$.

Proof: Use 1-factorization of K_{q+3} and $GL_2(q)$.

The same methods can be used to construct covering arrays.

A Covering array of size N, degree k, order v and strength 3: CA(N, 3, k, v)

Example: Use a 1-factorization of K_6 and the group S_3 to obtain an optimal covering array: CA(33,3,6,3).

01221	12002	20110	02112	10220	21001012
12210	20021	01102	21120	02201	10012012
22101	00212	11020	11202	22010	00121012
21012	02120	10201	12021	20102	01210012
10122	21200	02011	20211	01022	12100012
00000	11111	22222	00000	11111	2222012

We also obtain a CA(88,3,8,4) from a 1-factorization of K_8 and the group A_4 . This is best known, but may not be optimal.

This is work in progress with: M.A. Chateauneuf and C.J. Colbourn

FUNDAMENTALS OF COMBINATORIAL MATHEMATICS

1. What is combinatorial mathematics? Combinatorial mathematics also referred to as combinatorial analysis or combinatorics, is a mathematical discipline that began in ancient times. According to legend the Chinese Emperor Yu (c. 2200 B.C.) observed the magic square

$$\begin{bmatrix}
8 & 1 & 6 \\
3 & 5 & 7 \\
4 & 9 & 2
\end{bmatrix}$$

on the shell of a divine turtle. ...

- H.J. Ryser, Combinatorial Mathematics, C.M. 14 (1963).

$$\begin{bmatrix} 8 & 1 & 6 \\ 3 & 5 & 7 \\ 4 & 9 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} + \begin{bmatrix} 1 & 0 & 2 \\ 2 & 1 & 0 \\ 0 & 2 & 1 \end{bmatrix} + 3 \begin{bmatrix} 2 & 0 & 1 \\ 0 & 1 & 2 \\ 1 & 2 & 0 \end{bmatrix}$$