Algorithm 4.6.1 — The CYK algorithm

input: context-free grammar \(G = (V, \Sigma, P, S) \)
string \(u = x_1x_2 \ldots x_n \in \Sigma^* \)

private:
\(X \): a table containing sets of variables
\(\text{step} \): the index of the “diagonal”, the main diagonal is 1, the one above it is 2, and so on.
\(i \): row index (the column index is calculated from it)
\(k \): split position in the string

// Initialize the entire table.
1. initialize all \(X_{i,j} \) to \(\emptyset \)

// Initialize the main diagonal from the rules that derive the terminals of the string.
// The main diagonal (diagonal 1) represents the length 1 substrings.
2. for \(i = 1 \) to \(n \)
 for each variable \(A \)
 if there is a rule \(A \rightarrow x_{i,i} \) then
 \(X_{i,i} := X_{i,i} \cup \{A\} \)

// Do for each “diagonal.”
// \(\text{Step} \) contains the diagonal number. Diagonal \(n \) represents the length \(n \) substrings.
3. for \(\text{step} = 2 \) to \(n \)
 // The cells start from \(i, i + \text{step} - 1 \).
 3.1 for \(i = 1 \) to \(n - \text{step} + 1 \)
 // \(i \) is the row index. It starts at 1. \(n - \text{step} + 1 \) is the last row in this diagonal.
 // For example, the diagonal 2 cells are: 1,2; 2,3; and 3,4.
 // The diagonal 3 cells are: 1,3; 2,4.
 // Do for each split position. \(k \) shows the split position.
 3.1.1 for \(k = i \) to \(i + \text{step} - 2 \)
 if there are variables \(B \in X_{i,k}, C \in X_{k+1,i+\text{step}-1} \), and a rule \(A \rightarrow BC \) then
 \(X_{i,i+\text{step}-1} = X_{i,i+\text{step}-1} \cup \{A\} \)

// If \(S \) is in the upper right corner, then the string is in the language. Otherwise, it is not.
4. if \(S \in X_{1,n} \) then
 return TRUE
else
 return FALSE