Consider the following sets for questions 1 and 2:

\[X = \{a, 2, \{a\}, [a, a], [a, \emptyset]\} \quad Y = \{a, 3, [a], [\emptyset, a], \emptyset\} \]

1. (10 points) Write out each of the sets listed below.

(a) \(X \cup Y\)
(b) \(X \cap Y\)
(c) \(X - Y\)
(d) \(P(X - \{[a, a], [a, \emptyset]\})\)
(e) \(\{a, 1\} \times \{a, [a, a], \emptyset\}\)

2. (20 points) State whether the following propositions are TRUE or FALSE.

(a) \(a \in X\)
(b) \(\{a\} \in X\)
(c) \(a \in Y\)
(d) \(\{a\} \in Y\)
(e) \(\emptyset \in X\)
(f) \(\emptyset \in Y\)
(g) \(\emptyset \subseteq Y\)
(h) \(\{\emptyset\} \subseteq X\)
(i) \(\{\emptyset\} \subseteq Y\)
(j) \(\{[a, a]\} \in X \times X\)

Please turn the page over for additional questions.
3. (20 points)

(a) Write the first 5 elements of the set S_1 defined recursively. Put the basis elements as the first members. Assume that the arithmetic computations defined in the recursive step will be performed to obtain the new elements of S_1.

(i) **Basis:** $[1, 1] \in S_1$

(ii) **Recursive step:** If $[n, m] \in S_1$, then $[n + 1, m + 2(n + 1) - 1] \in S_1$.

(iii) **Closure:** S_1 consists of exactly the elements that can be obtained by starting with the basis elements of S_1 and applying the recursive step finitely many times to construct new elements of S_1.

(b) Write the first 6 elements of the set S_2 defined recursively. Put the basis elements as the first members. The first member of the basis sequence is a number, and the second member is a string. The recursive step performs an arithmetic addition on the first member and string concatenation on the second member. The symbols a, b are characters, not variables.

(i) **Basis:** $[1, a] \in S_2$ and $[1, b] \in S_2$

(ii) **Recursive step:** If $[n, w] \in S_2$, then $[n + 2, awa] \in S_2$ and $[n + 2, bwb] \in S_2$.

(iii) **Closure:** S_2 consists of exactly the elements that can be obtained by starting with the basis elements of S_2 and applying the recursive step finitely many times to construct new elements of S_2.

4. (20 points) Give a recursive definition for the following sets. You may use addition and other operators to generate new integer elements. There are no restrictions on the conditions checked via an if statement. Explain the “pattern” you are using.

No points will be given to answers without an accompanying explanation.

(a) \{2, 8, 20, 44, \ldots\}

(b) \{2, 8, 20, 44, \ldots\} \cup \{1, 5, 9, 13, \ldots\}

There are additional questions on the next page.
5. (10 points) Consider the following infinite loop in pseudocode that fills out a set D. Note that $←$ is used as the assignment operator, k is a string, and “$+$” represents string concatenation.

```
D ← ∅
k ← "Ice cream is good, yum"
while (true) do {
    D ← D ∪ {k}
    k ← k + "m"
}
```

List the elements of set D after 0, 1, and 2 iterations of the loop.

6. (20 points)

Consider the following infinite loop in pseudocode that fills out a set C. Note that $←$ is used as the assignment operator, i is an integer, w is a string. "a" and "b" are characters (symbols) that are in the string.

"a"+w+b" means concatenate letter a to the left of w and concatenate letter b to the right of w. “$+$” represents addition for numbers and concatenation for strings.

```
C ← ∅
i ← 2
w ← "ab"
while (true) do {
    C ← C ∪ {i} ∪ {w}
    i ← i + 3
    w ← "$a$"+$w$+$b$"
}
```

(a) List the elements of set C after 0, 1, 2, and 3 iterations of the loop.

(b) Give a recursive definition for the set C. In the recursive definition, use awb rather than "a"+w+b".