1. **(20+10+10 points)** Consider the following grammar G. Note that G was obtained by transforming the grammar $S \rightarrow aSa \mid bSb \mid a \mid b \mid \lambda$ to Chomsky Normal Form.

 $$
 S \rightarrow AR \mid BX \mid AA \mid BB \mid a \mid b \mid \lambda \\
 T \rightarrow AR \mid BX \mid AA \mid BB \mid a \mid b \\
 R \rightarrow TA \\
 X \rightarrow TB \\
 A \rightarrow a \\
 B \rightarrow b
 $$

 (a) Give the upper diagonal matrix produced by the CYK algorithm when run with G and the input string $abba$. **Show all your work.**

 (b) Is $abba \in L(G)$? Why? Provide the reason based on the upper diagonal matrix you constructed.

 (c) Is $abb \in L(G)$? Why? Provide the reason based on the upper diagonal matrix you constructed.

2. **(10 points)** Let M be the PDA in Example 7.1.3 on page 226. M accepts even length palindromes. Show the computation trees for the strings $aabbba$ and aba.

 $$
 M: \\
 b \, \lambda/B \\
 a \, \lambda/A \\
 b \, B/\lambda \\
 a \, A/\lambda
 $$

3. **(50 points)** Construct PDAs that accept each of the following languages.

 Explain how the PDA works: write the algorithm it follows, label the specific portions of the machine with the task performed (5 points for each machine).

 (a) $\{a^i b^j \mid 0 \leq i \leq j\}$

 (b) $\{a^i b^j c^k \mid i, j, k \geq 0 \text{ and } i + k = j\}$