Search algorithms

- Initial state
- Goal state
- b: branching factor

- m: max depth

Features of search algorithms

- Time complexity:
 - How long does it take the algorithm to find a goal that is at the frst right at level d?

- Optimality:
 - Is the algorithm guaranteed to find the optimal (lowest cost) goal?

- Space complexity:
 - Size of the frontier (or main storage)

DFS:
- $O(b^d)$

BFS:
- $O(b^d)$

DFS vs. BFS:
- DFS X
- BFS V

DFS = $b \times m$
BFS = b^d
Completeness: if the goal node is reachable from the start node, is the algorithm guaranteed to find the goal?

- BFS
 - yes
- DFS
 - loops \(\Rightarrow \) infinite search
 - \(\Rightarrow \) no

yes only if \(m \) is finite

DFS BFS 2
a) 1 1
b) 1 0
 4
c) 0 0
 2
d) 0

e) idle
f) I do care but not right now

g) still thinking

\[\text{an} \]
depth limited search

DFS with depth limit = l

a node cannot generate children if it is at level l

pick up where you left off

iterative deepening search (IDS)

for $l = 1$ to ∞

do DFS with depth limit l

time complexity

space complexity $b \times l$ ✓

optimality yes ✓

completeness yes ✓
\(\frac{1}{5} \)
\(\frac{1}{4} \)
\(\frac{1}{2} \)
\(\frac{1}{3} \)
\(\frac{1}{5} \)
\(\frac{1}{6} \)

\((b^d)! \)

\[b^1 + b^2 + b^3 + b^4 + b^5 \]

\[56^1 + 4b^2 + 3b^3 + 2b^4 + b^5 \]

run 5 times.

\[d(b) + (d-1)b^2 + \ldots + 1(b^d) \]

\[O(b^d) \sim O(b^d) \]

BFS

d = 5
b = 10

5 0 + 4 0 0 + 3 000 + 20,000
+ 100,000

= 123,450

10 + 100 + 1,000 + 10,000
+ 100,000

= 111,110
Read the solution up to parent?

store
- actions taken
- path cost

world only work for DFS