Intelligent Agents

Chapter 2
Outline

- Agents and environments
- Rationality
- PEAS (Performance measure, Environment, Actuators, Sensors)
- Environment types
- Agent types
Agents include humans, robots, softbots, thermostats, etc.
The *agent function* maps from percept histories to actions:

\[f : \mathcal{P}^* \rightarrow \mathcal{A} \]

The *agent program* runs on the physical *architecture* to produce \(f \)
Vacuum-cleaner world

Percepts: location and contents, e.g., \([A, Dirty]\)

Actions: \(Left, Right, Suck, NoOp\)
A vacuum-cleaner agent

<table>
<thead>
<tr>
<th>Percept sequence</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>[A, Clean]</td>
<td>Right</td>
</tr>
<tr>
<td>[A, Dirty]</td>
<td>Suck</td>
</tr>
<tr>
<td>[B, Clean]</td>
<td>Left</td>
</tr>
<tr>
<td>[B, Dirty]</td>
<td>Suck</td>
</tr>
<tr>
<td>[A, Clean], [A, Clean]</td>
<td>Right</td>
</tr>
<tr>
<td>[A, Clean], [A, Dirty]</td>
<td>Suck</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

What is the right function? Can it be implemented in a small agent program?
A vacuum-cleaner agent

function REFLEX-VACUUM-AGENT [location, status]
returns an action
if status = Dirty then return Suck
else if location = A then return Right
else if location = B then return Left

What is the right function?
Can it be implemented in a small agent program?
Fixed *performance measure* evaluates the environment sequence
- one point per square cleaned up in time T?
- one point per clean square per time step, minus one per move?
- penalize for $> k$ dirty squares?

rational agent chooses whichever action maximizes the *expected* value of the performance measure *given the percept sequence to date*

Rational \neq omniscient Rational \neq clairvoyant
Rational \neq successful

Rational \implies exploration, learning, autonomy
To design a rational agent, we must specify the task environment.

Consider, e.g., the task of designing an automated taxi:

- Performance measure:
- Environment:
- Actuators:
- Sensors:
To design a rational agent, we must specify the **task environment**

Consider, e.g., the task of designing an automated taxi:

- **Performance measure**: safety, destination, profits, legality, comfort, . . .
- **Environment**: US streets/freeways, traffic, pedestrians, weather, . . .
- **Actuators**: steering, accelerator, brake, horn, speaker/display, . . .
- **Sensors**: video, accelerometers, gauges, engine sensors, keyboard, GPS, . . .
Internet shopping agent

- Performance measure:
- Environment:
- Actuators:
- Sensors:
Environment types

<table>
<thead>
<tr>
<th>Observable??</th>
<th>Deterministic??</th>
<th>Episodic??</th>
<th>Static??</th>
<th>Discrete??</th>
<th>Single-agent??</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internet</td>
<td>Solitaire</td>
<td>Backgammon</td>
<td>shopping</td>
<td>Taxi</td>
<td></td>
</tr>
</tbody>
</table>

Fully Observable: access to the complete (relevant) state of the world
Partially Observable: missing information
Environment types

<table>
<thead>
<tr>
<th>Observable??</th>
<th>Deterministic??</th>
<th>Episodic??</th>
<th>Static??</th>
<th>Discrete??</th>
<th>Single-agent??</th>
<th>Internet</th>
<th>Solitaire</th>
<th>Backgammon</th>
<th>Shopping</th>
<th>Taxi</th>
</tr>
</thead>
<tbody>
<tr>
<td>yes (?)</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>

Deterministic: the next state is completely determined by the current state and the action

Stochastic: Changes not known

Strategic: Deterministic except for the actions of the other agents
Environment types

<table>
<thead>
<tr>
<th></th>
<th>Solitaire</th>
<th>Backgammon</th>
<th>Internet shopping</th>
<th>Taxi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observable??</td>
<td>yes (?)</td>
<td>yes</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Deterministic??</td>
<td>yes</td>
<td>no</td>
<td>partly</td>
<td>no</td>
</tr>
<tr>
<td>Episodic??</td>
<td>yes</td>
<td>no</td>
<td>partly</td>
<td>no</td>
</tr>
<tr>
<td>Static??</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Discrete??</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single-agent??</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Episodic: task divided into atomic episodes
Sequential: Current decision may affect all future decisions
Environment types

<table>
<thead>
<tr>
<th></th>
<th>Solitaire</th>
<th>Backgammon</th>
<th>Internet shopping</th>
<th>Taxi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observable??</td>
<td>yes (?)</td>
<td>yes</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Deterministic??</td>
<td>yes</td>
<td>no</td>
<td>partly</td>
<td>no</td>
</tr>
<tr>
<td>Episodic??</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Static??</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Discrete??</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Single-agent??</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>

Static: the world does not change while the agent is thinking

Dynamic: changes

Semidynamic: does not change but the performance is affected as time passes
Environment types

<table>
<thead>
<tr>
<th></th>
<th>Solitaire</th>
<th>Backgammon</th>
<th>Internet shopping</th>
<th>Taxi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observable??</td>
<td>yes (?)</td>
<td>yes</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Deterministic??</td>
<td>yes</td>
<td>no</td>
<td>partly</td>
<td>no</td>
</tr>
<tr>
<td>Episodic??</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Static??</td>
<td>yes</td>
<td>semi</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Discrete??</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single-agent??</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Discrete: time, percepts, and actions are discrete
Continuous: time, percepts, and actions are continuous over time
Environment types

<table>
<thead>
<tr>
<th></th>
<th>Solitaire</th>
<th>Backgammon</th>
<th>Internet shopping</th>
<th>Taxi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observable??</td>
<td>yes (?)</td>
<td>yes</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Deterministic??</td>
<td>yes</td>
<td>no</td>
<td>partly</td>
<td>no</td>
</tr>
<tr>
<td>Episodic??</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Static??</td>
<td>yes</td>
<td>semi</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Discrete??</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>Single-agent??</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
</tr>
</tbody>
</table>

Single-agent: one agent

Multi-agent: competitive or cooperating agents
Environment types

<table>
<thead>
<tr>
<th>Observable??</th>
<th>Deterministic??</th>
<th>Episodic??</th>
<th>Static??</th>
<th>Discrete??</th>
<th>Single-agent??</th>
</tr>
</thead>
<tbody>
<tr>
<td>yes (?)</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>yes (?)</td>
</tr>
<tr>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>semi</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>no</td>
<td>partly</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>

The environment type largely determines the agent design.

The real world is (of course) partially observable, stochastic, sequential, dynamic, continuous, multi-agent.
Agent types

- Four basic types in order of increasing generality:
 - simple reflex agents
 - reflex agents with state
 - goal-based agents
 - utility-based agents

- All these can be turned into learning agents
Simple reflex agents

Agent

Sensors

What the world is like now

Condition-action rules

What action I should do now

Actuators

Environment
Reflex agents with state

- **Agent**
 - State
 - How the world evolves
 - What my actions do
 - Condition-action rules

- **Environment**
 - Sensors
 - What the world is like now
 - What action I should do now
 - Actuators
Goal-based agents

Agent

Environment

Sensors

State

Goals

What action I should do now

What the world is like now

How the world evolves

What it will be like if I do action A

What my actions do

Actuators

Intelligent Agents – p.21/25
Utility-based agents

Agent

Environment

Sensors

State

How the world evolves

What my actions do

Utility

What the world is like now

What it will be like if I do action A

How happy I will be in such a state

What action I should do now

Actuators

How happy I will be in such a state
Learning agents

Performance standard

Agent

Environment

Critic

Sensors

feedback

changes

knowledge

Learning element

Problem generator

Performance element

Actuators

learning goals

feedback

changes

knowledge

Problem generator

Learning element

Performance element

Actuators

Environment

Critic

Sensors