Informed Search and Exploration

Sections 3.5 and 3.6

Nilufer Onder
Department of Computer Science
Michigan Technological University

- Best-first search
- A* search
- Heuristics, pattern databases
- IDA* search
- (Recursive Best-First Search (RBFS), MA* and SMA* search)

Best-first search

- Idea: use an evaluation function for each node
- The evaluation function is an estimate of "desirability"
- Expand the most desirable unexpanded node
- The desirability function comes from domain knowledge
- Implementation:

The frontier is a queue sorted in decreasing order of desirability

- Special cases:
- greedy best first search
- A* search

Romania with step costs in km

Sample straight line distances to Bucharest:
Arad: 366, Bucharest: 0, Sibiu: 253, Timisoara: 329.

Greedy best-first search

- Evaluation function $h(n)$ (heuristic) = estimate of cost from n to the closest goal
- E.g., $h_{\mathrm{SLD}}(n)=$ straight-line distance from n to Bucharest
- Greedy best-first search expands the node that appears to be closest to goal

Greedy best-first search example

Arad

After expanding Arad

After expanding Sibiu

After expanding Fagaras

The goal Bucharest is found with a cost of 450 . However, there is a better solution through Pitesti ($h=418$).

Properties of greedy best-first search

- Complete No - can get stuck in loops

For example, going from lasi to Fagaras, Iasi \rightarrow Neamt \rightarrow Iasi \rightarrow Neamt $\rightarrow \ldots$
Complete in finite space with repeated-state checking

- Time $O\left(b^{m}\right)$, but a good heuristic can give dramatic improvement (more later)
- Space $O\left(b^{m}\right)$-keeps all nodes in memory
- Optimal No
(For example, the cost of the path found in the previous slide was 450. The path Arad, Sibiu, Rimnicu Vilcea, Pitesti, Bucharest has a cost of $140+80+97+101=418$.)
- Idea: avoid expanding paths that are already expensive
- Evaluation function $f(n)=g(n)+h(n)$
- $g(n)=$ exact cost so far to reach n
- $h(n)=$ estimated cost to goal from n
- $f(n)=$ estimated total cost of path through n to goal
- A^{*} search uses an admissible heuristic i.e., $h(n) \leq h^{*}(n)$ where $h^{*}(n)$ is the true cost from n. (Also require $h(n) \geq 0$, so $h(G)=0$ for any goal G.)
- Straight line distance $\left(h_{\text {SLD }}(n)\right)$ is an admissible heuristic because it never overestimates the actual road distance.

A* search example

$366=0+366$

After expanding Arad

After expanding Sibiu

After expanding Rimnicu Vilcea

After expanding Fagaras

Remember that the goal test is performed when a node is selected for expansion, not when it is generated.

After expanding Pitesti

Optimality of \mathbf{A}^{*} for trees

Theorem: A* search is optimal.
Note that, A^{*} search uses an admissible heuristic by definition.
Suppose some suboptimal goal G_{2} has been generated and is in the queue. Let n be an unexpanded node on a shortest path to an optimal goal G_{1}.

Optimality of \mathbf{A}^{*} for trees (cont'd)

$$
\begin{aligned}
& f(n)=g(n)+h(n) \\
& f\left(G_{1}\right)=g\left(G_{1}\right) \\
& f\left(G_{2}\right)=g\left(G_{2}\right) \\
& f(n) \leq f\left(G_{1}\right) \\
& f\left(G_{1}\right)<f\left(G_{2}\right) \\
& f(n)<f\left(G_{2}\right)
\end{aligned}
$$

by definition because h is 0 at a goal because h is 0 at a goal because h is admissible (never overestimates) because G_{2} is suboptimal combine the above two
Since $f(n)<f\left(G_{2}\right)$, A * will never select G_{2} for expansion.

Progress of \mathbf{A}^{*} with an inconsistent heuristic

Note that h is admissible, it never overestimates.

Progress of \mathbf{A}^{*} with an inconsistent heuristic

The root node was expanded. Note that f decreased from 6 to 4 .

Progress of \mathbf{A}^{*} with an inconsistent heuristic

The suboptimal path is being pursued.

Progress of \mathbf{A}^{*} with an inconsistent heuristic

Goal found, but we cannot stop until it is selected for expansion.

Progress of \mathbf{A}^{*} with an inconsistent heuristic

The node with $f=7$ is selected for expansion.

Progress of \mathbf{A}^{*} with an inconsistent heuristic

The optimal path to the goal is found.

Consistency

A heuristic is consistent if

$$
h(n) \leq c\left(n, a, n^{\prime}\right)+h\left(n^{\prime}\right)
$$

If h is consistent, we have

$$
\begin{aligned}
f\left(n^{\prime}\right) & =g\left(n^{\prime}\right)+h\left(n^{\prime}\right) \\
& =g(n)+c\left(n, a, n^{\prime}\right)+h\left(n^{\prime}\right) \\
& \geq g(n)+h(n) \\
& =f(n)
\end{aligned}
$$

I.e., $f(n)$ is nondecreasing along any path.

Optimality of \mathbf{A}^{*} for graphs

- Lemma: A* expands nodes in order of increasing f value
- Gradually adds " f-contours" of nodes (cf. breadth-first adds layers)
Contour i has all nodes with $f=f_{i}$, where $f_{i}<f_{i+1}$
- With uniform-cost search (A^{*} search with $\left.h(n)=0\right)$ the bands are "circular".
With a more accurate heuristic, the bands will stretch toward the goal and become more narrowly focused around the optimal path.

F-contours

Performance of \mathbf{A}^{*}

- The absolute error of a heuristic is defined as

$$
\Delta \equiv h^{*}-h
$$

- The relative error of a heuristic is defined as $\epsilon \equiv \frac{h^{*}-h}{h^{*}}$
- Complexity with constant step costs: $O\left(b^{\epsilon d}\right)$
- Problem: there can be exponentially many states with $f(n)<C^{*}$ even if the absolute error is bounded by a constant

Properties of \mathbf{A}^{*}

- Complete Yes, unless there are infinitely many nodes with $f \leq f(G)$
- Time Exponential in
(relative error in $h \times$ length of solution)
- Space Keeps all nodes in memory
- Optimal Yes-cannot expand f_{i+1} until f_{i} is finished
- A^{*} expands all nodes with $f(n)<C^{*}$
- \mathbf{A}^{*} expands some nodes with $f(n)=C^{*}$
- A^{*} expands no nodes with $f(n)>C^{*}$

Admissible heuristics

E.g., for the 8-puzzle:
$h_{1}(n)=$ number of misplaced tiles
$h_{2}(n)=$ total Manhattan distance
(i.e., no. of squares from desired location of each tile)

Start State

Goal State
$h_{1}(S)=? ?$
$h_{2}(S)=? ?$

Dominance

If $h_{2}(n) \geq h_{1}(n)$ for all n (both admissible) then h_{2} dominates h_{1} and is better for search

Typical search costs:
$d=14 \quad$ IDS $=3,473,941$ nodes
A ${ }^{*}\left(h_{1}\right)=539$ nodes
A ${ }^{*}\left(h_{2}\right)=113$ nodes
$d=24 \quad$ IDS $\approx 54,000,000,000$ nodes
A* $\left(h_{1}\right)=39,135$ nodes
A $^{*}\left(h_{2}\right)=1,641$ nodes

Effect of Heuristic on Performance

The effect is characterized by the effective branching factor (b^{*})

- If the total number of nodes generated by A^{*} is N and
- the solution depth is d,
- then b is branching factor of a uniform tree, such that $N+1=1+b+(b)^{2}++(b)^{d}$
A well designed heuristic has a b close to 1 .

Using relaxed problems to find heuristics

- Admissible heuristics can be derived from the exact solution cost of a relaxed version of the problem
- If the rules of the 8-puzzle are relaxed so that a tile can move anywhere, then $h_{1}(n)$ gives the shortest solution
- If the rules are relaxed so that a tile can move to any adjacent square, then $h_{2}(n)$ gives the shortest solution
- Key point: the optimal solution cost of a relaxed problem is no greater than the optimal solution cost of the real problem

Relaxed problems (cont'd)

Well-known example: travelling salesperson problem (TSP) Find the shortest tour visiting all cities exactly once

Minimum spanning tree can be computed in $O\left(n^{2}\right)$ and is a lower bound on the shortest (open) tour

Pattern databases

- Admissible heuristics can also be generated from the solution cost of sub- problems.
- For example, in the 8-puzzle problem a sub-problem of getting the tiles $2,4,6$, and 8 into position is a lower bound on solving the complete problem.
- Pattern databases store the solution costs for all the sub-problem instances.
- The choice of sub-problem is flexible: for the 8 -puzzle a subproblem for $2,4,6,8$ or $1,2,3,4$ or $5,6,7,8, \ldots$. could be created.

Iterative Deepening A* (IDA*)

- Idea: perform iterations of DFS. The cutoff is defined based on the f-cost rather than the depth of a node.
- Each iteration expands all nodes inside the contour for the current f-cost, peeping over the contour to find out where the contour lies.

Iterative Deepening A* (IDA*)

function IDA* (problem) returns a solution sequence
inputs: problem, a problem
local variables:
f-limit, the current f-Cost limit
root, a node
root \leftarrow Make-Node(Initial-State[problem])
f-limit $\leftarrow f$-Cost(root)
loop do
solution, f-limit \leftarrow DFS-Contour(root, f-limit)
if solution is non-null then return solution
if f-limit $=\infty$ then return failure

Iterative Deepening A* (IDA*)

function DFS-Contour (node, f-limit) returns a solution sequence and a new f-Cost limit
inputs: node, a node
f-limit, the current f-Cost limit
local variables:
next-f, the f-Cost limit for the next contour, initally ∞
if f - $\operatorname{Cost}[$ node $]>f$-limit then return null, f - $\operatorname{Cost}[$ node $]$
if Goal-Test[problem](State%5Bnode%5D) then return node, f-limit
for each node s in Successors(node) do
solution, new- $f \leftarrow$ DFS-Contour(s, f-limit)
if solution is non-null then return solution, f-limit
$n e x t-f \leftarrow \operatorname{Min}(n e x t-f, n e w-f)$
return null, next-f

How would IDA* proceed?

The blue nodes are the ones A* expanded. For IDA*, they define the new f-limit.

Properties of IDA*

- Complete Yes, similar to A*.
- Time Depends strongly on the number of different values that the heuristic value can take on. 8-puzzle: few values, good performance TSP: the heuristic value is different for every state. Each contour only includes one more state than the previous contour. If A^{*} expands N nodes, IDA* expands $1+2+\ldots+N=O\left(N^{2}\right)$ nodes.
- Space It is DFS, it only requires space proportional to the longest path it explores. If δ is the smallest operator cost, and f^{*} is the optimal solution cost, then IDA* will require $b f^{*} / \delta$ nodes.
- Optimal Yes, similar to A^{*}

Recursive Best-First Search (RBFS)

- Idea: mimic the operation of standard best-first search, but use only linear space
- Runs similar to recursive depth-first search, but rather than continuing indefinitely down the current path, it uses the f-limit variable to keep track of the best alternative path available from any ancestor of the current node.
- If the current node exceeds this limit, the recursion unwinds back to the alternative path. As the recursion unwinds, RBFS replaces the f-value of each node along the path with the best f-value of its children. In this way, it can decide whether it's worth reexpanding a forgotten subtree.

RBFS Algorithm

function Recursive-Best-First-Search (problem) returns a solution or failure return RBFS(problem, Make-Node(problem.Initial-State), ∞)

RBFS Algorithm (cont'd)

function RBFS (problem, node, f-limit)
returns a solution or failure and a new f-cost limit
if problem.Goal-Test(node.State) then return Solution(node) successors $\leftarrow[]$ for each action in problem.Actions(node.State) do
add Child-Node(problem, node, action) into successors
if successors is empty then return failure, ∞ for each s in successors do
/* update f with value from previous search, if any */
$s . f \leftarrow \max (s . g+s . h$, node.f $))$
loop do
best \leftarrow the lowest f-value in successors if best. $f>f$-limit then return failure, best.f
alternative \leftarrow the second lowest f-value among successors result, best. $f \leftarrow$ RBFS (problem, best, min(f-limit,alternative)) if result \neq failure then return result

Progress of RBFS

- Stage (a): The path via Rimnicu Vilcea is followed until the current best leaf (Pitesti) has a value that is worse than the best alternative path (Fagaras).
- Stage (b): The recursion unwinds and the best leaf value of the forgotten subtree (417) is backed up to Rimnicu Vilcea; then Fagaras is expanded, revealing a best value of 450 .
- Stage (c): The recursion unwinds and the best value of the of the forgotten subtree (450) is backed up to Fagaras; then Rimnicu Vilcea is expanded. This time, because the best alternative path through Timisoara costs at least 447, the expansion continues to Bucharest.

Properties of RBFS

- Complete Yes, similar to A*.
- Time The time complexity is difficult to characterize: it depends both on the accuracy of the heuristic function and on how often the best path changes as nodes are expanded. Each mind change corresponds to an iteration of IDA*, and could require many reexpansions of forgotten nodes to recreate the best path and extend it one more node. RBFS is somewhat more efficient than IDA*, but still suffers from excessive node regeneration.

Properties of RBFS (cont'd)

- Space IDA* and RBFS suffer from using too little memory. Between iterations, IDA* retains only a single number: the current f-cost limit. RBFS retains more information in memory, but only uses $O(b d)$ memory. Even if more memory is available, RBFS has no way to make use of it.
- Optimal Yes, similar to A*.
- Idea: use all the available memory IDA* remembers only the current f-cost limit RBFS uses linear space
- Proceeds just like A^{*}, expanding the best leaf until the memory is full. When the memory if full, drops the worst leaf node.

Summary

- The evaluation function for a node n is: $f(n)=g(n)+h(n)$
- If only $g(n)$ is used, we get uniform-cost search
- If only $h(n)$ is used, we get greedy best-first search
- If both $g(n)$ and $h(n)$ are used we get best-first search
- If both $g(n)$ and $h(n)$ are used with an admissible heuristic we get A^{*} search
- A consistent heuristic is admissible but not necessarily vice versa

Summary (cont'd)

- Admissibility is sufficient to guarantee solution optimality for tree search
- Consistency is required to guarantee solution optimality for graph search
- If an admissible but not consistent heuristic is used for graph search, we need to adjust path costs when a node is rediscovered
- Heuristic search usually brings dramatic improvement over uninformed search
- Keep in mind that the f-contours might still contain an exponential number of nodes

