
Chapter 6 Constraint Satisfaction Problems

CS5811 - Artificial Intelligence

Nilufer Onder
Department of Computer Science
Michigan Technological University



Outline

CSP problem definition

Backtracking search for CSPs

Problem structure and problem decomposition



Constraint satisfaction problems (CSPs)

A constraint satisfaction problem consists of

I a finite set of variables, where each variable has a domain
Using a set of variables (features) to represent a domain is
called a factored representation.

I a set of constraints that restrict variables or combinations of
variables



CSP example: cryptarithmetic

T W O

T W O+

F O U R

Variables: F ,T ,U,W ,R,O,X1,X2,X3

Domains: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} (same domain for all)
Sample constraints:

alldif (F ,T ,U,W ,R,O)
or a binary constraint for all, e.g., F 6= T ,F 6= U.

A unary constraint: F 6= 0
An n-ary constraint: O + O = R + 10× X1

Can add constraints to restrict the Xi ’s to 0 or 1.



CSP example: solution

T W O

T W O+

F O U R

7 6 5

7 6 5+

1 5 3 0

A solution is an assignment to all the variables from their domains
so that all the constraints are satisfied.
For any CSP, there might be a single solution, multiple solutions,
or no solutions at all.



Real-world CSPs

I Assignment problems
e.g., who teaches what class

I Timetabling problems
e.g., which class is offered when and where?

I Hardware configuration

I Spreadsheets

I Transportation scheduling

I Factory scheduling

I Floorplanning

Notice that many real-world problems involve real-valued variables



CSPs with discrete variables

I Finite domains
O(dn) complete assignments are possible for
n variables and domain size d
e.g., Boolean CSPs, Boolean SATisfiability are NP-complete

I Infinite domains (integers, strings, etc.)
e.g., job scheduling
variables are start/end days for each job
StartJob1 + 5 ≤ StartJob3
linear constraints are solvable,
nonlinear constraints are undecidable



CSPs with continuous variables

I linear constraints solvable in polynomial time by
linear programming (LP) methods

I e.g., precise start/end times for Hubble Telescope observations
with astronomical, precedence, and power constraints



Representing CPSs as canonical search problems

I Standard search problem:
A state is a “black box”, i.e, any old data structure
that supports goal test, actions, result, etc.

I CSP:
I A state is defined by variables Xi with values from domains Di

e.g., assigned: {F = 1},
unassigned {T ,U,W ,R,O,X1,X2,X3}

I The goal test is that
all the variables are assigned
all the constraints are satisfied

I Simple example of a formal representation language

I Allows useful general-purpose algorithms with more power
than standard search algorithms:
Can develop domain-independent heuristics



Working example: map-coloring

QueenslandWestern

Australia

Northern

Territory

South

Australia New South

Wales

Victoria

Tasmania

Variables: WA, NT , Q, NSW , V , SA, T
Domains: Di = {red , green, blue}
Constraints: adjacent regions must have different colors
e.g., WA 6= NT (if the language allows this), or
(WA,NT ) ∈ {(red , green), (red , blue), (green, red), (green, blue), . . .}



A solution for the map-coloring example

QueenslandWestern

Australia

Northern

Territory

South

Australia New South

Wales

Victoria

Tasmania

This solution satisfies all the constraints.

{ WA = red ,NT = green,Q = red ,NSW = green,
V = red ,SA = blue,T = green}



Constraint graph

73

Western
Australia

Northern
Territory

South
Australia

Queensland

New�
South�
Wales

Victoria

Tasmania

WA

NT

SA

Q

NSW

V

T

(a) (b)

Figure 6.1 FILES: figures/australia.eps figures/australia-csp.eps. (a) The principal states and
territories of Australia. Coloring this map can be viewed as a constraint satisfaction problem (CSP).
The goal is to assign colors to each region so that no neighboring regions have the same color. (b) The
map-coloring problem represented as a constraint graph.

AIMA3e c
 2008 by Russell and Norvig. DRAFT---DO NOT DISTRIBUTE

I In a binary CSP, each constraint relates at most two variables

I A binary CSP can be represented as a contraint graph

I In the graph, the nodes are variables, the arcs show constraints

I General-purpose CSP algorithms use the graph structure to
speed up search.
E.g., Tasmania is an independent subproblem



Working with the standard search process

Start with the straightforward approach, then fix it
States are defined by the values assigned so far

Initial state: the empty assignment, ∅
Actions: Pick an unassigned variable,
assign a value that does not conflict with the current assignments
If no assignment is possible, the path is a dead end
Goal test: all the variables have assignments



Working with the standard search process (cont’d)

I For a problem with n variables, every solution appears at
depth n

I Depth-first search is a good choice

I A node that satisfies the goal test has the complete solution
the path is not needed

I However, the branching factor is unnecessarily large
(b = (n − l)d at depth l)

I The search tree gets lots of redundant paths that represent
the same solution but the order of assignment is different:
n!dn leaves are produced



Backtracking search

I Variable assignments are commutative, i.e.,
WA = red then NT = green is the same as
NT = green then WA = red

I We only need to consider assignments to a single variable at
each level
b = d and there are dn leaves

I Depth-first search for CSPs with single-variable assignments is
called backtracking search

I Backtracking search is the basic uninformed algorithm for
CSPs

I Can solve n-queens for n ≈ 25



Backtracking search algorithm (1/2)

function Backtracking-Search (csp)
returns a solution, or failure
return Backtrack({ }, csp)



Backtracking search algorithm (2/2)

function Backtrack (assignment, csp)
returns a solution, or failure
if assignment is complete then return assignment
var ← Select-Unassigned-Var(csp)
for each value in Order-Domain-Values(var, assignment, csp) do
if value is consistent with assignment then

add { var = value } to assignment
inferences ← Inference(csp, var, value)
if inferences 6= failure then

add inferences to assignment
result ← Backtrack (assignment, csp)
if result 6= failure then return result

remove { var = value } and inferences from assignment

return failure



Backtracking example



Backtracking example



Backtracking example



Backtracking example



Improving backtracking efficiency

General-purpose methods can give huge gains in speed:

1. Which variable should be assigned next?

2. In what order should its values be tried?

3. Can we detect inevitable failure early?

4. Can we take advantage of problem structure?



Most constrained variable strategy

Most constrained variable:
choose the variable with the fewest legal values



Most constraining variable strategy

Tie-breaker among most constrained variables
Most constraining variable:
choose the variable with the most constraints on the remaining
variables



Least constraining value strategy

Given a variable, choose the least constraining value:
the one that rules out the fewest values in the remaining variables

Allows 1 value for SA

Allows 0 value for SA

Combining these heuristics makes 1000 queens feasible



Forward checking

Idea: Keep track of remaining legal values for unassigned variables
Terminate search when any variable has no legal values

WA NT Q NSW V SA T



Forward checking

Idea: Keep track of remaining legal values for unassigned variables
Terminate search when any variable has no legal values

WA NT Q NSW V SA T



Forward checking

Idea: Keep track of remaining legal values for unassigned variables
Terminate search when any variable has no legal values

WA NT Q NSW V SA T



Forward checking

Idea: Keep track of remaining legal values for unassigned variables
Terminate search when any variable has no legal values

WA NT Q NSW V SA T



Constraint propagation

Forward checking propagates information from assigned to
unassigned variables, but doesn’t provide early detection for all
failures:

WA NT Q NSW V SA T

NT and SA cannot both be blue!
Constraint propagation repeatedly enforces constraints locally



Arc consistency (1/4)

Simplest form of propagation makes each arc consistent

X → Y is consistent iff
for every value x of X there is some allowed y from Y

WA NT Q NSW V SA T



Arc consistency (2/4)

Simplest form of propagation makes each arc consistent

X → Y is consistent iff
for every value x of X there is some allowed y from Y

WA NT Q NSW V SA T



Arc consistency (3/4)

Simplest form of propagation makes each arc consistent

X → Y is consistent iff
for every value x of X there is some allowed y from Y

WA NT Q NSW V SA T

If X loses a value, neighbors of X need to be rechecked



Arc consistency (4/4)

Simplest form of propagation makes each arc consistent

X → Y is consistent iff
for every value x of X there is some allowed y from Y

WA NT Q NSW V SA T

If X loses a value, neighbors of X need to be rechecked
Arc consistency detects failure earlier than forward checking
Can be run as a preprocessor or after each assignment



Arc consistency algorithm

function AC-3 (csp)
returns false if an inconsistency is found and true otherwise
inputs: csp, a binary CSP with components (X ,D,C )
local variables: queue, a queue of arcs, initially all the arcs in csp

while queue is not empty do
(Xi ,Xj) ← Remove-First(queue)
if Revise(csp, Xi ,Xj) then
if size of Di = 0 then return false
for each Xk in Xi .Neighbors-{Xj} do

add (Xk ,Xi ) to queue
return true



Arc consistency algorithm (cont’d)

function Revise (csp, Xi ,Xj)
returns true iff we revise the domain of Xi

revised ← false
for each x in Di do
if no value y in Dj allows (x , y) to satisfy the
constraint between Xi and Xj

then delete x from Di

revised ← true
return revised

O(n2d3), can be reduced to O(n2d2)
But cannot detect all failures in polynomial time



Problem structure

73

Western
Australia

Northern
Territory

South
Australia

Queensland

New�
South�
Wales

Victoria

Tasmania

WA

NT

SA

Q

NSW

V

T

(a) (b)

Figure 6.1 FILES: figures/australia.eps figures/australia-csp.eps. (a) The principal states and
territories of Australia. Coloring this map can be viewed as a constraint satisfaction problem (CSP).
The goal is to assign colors to each region so that no neighboring regions have the same color. (b) The
map-coloring problem represented as a constraint graph.

AIMA3e c
 2008 by Russell and Norvig. DRAFT---DO NOT DISTRIBUTE

Tasmania and mainland are independent subproblems
Identifiable as connected components of constraint graph



Problem structure (cont’d)

Suppose each subproblem has c variables out of n total
Worst-case solution cost is n/c · dc ,linear in n
E.g., n = 80, d = 2, c = 20

280 = 4 billion years at 10 million nodes/sec
4× 220 = 0.4 seconds at 10 million nodes/sec



Tree-structured CSPs

A

B

C

D

E

F

Theorem: if the constraint graph has no loops, the CSP can be
solved in O(n d2) time
Compare to general CSPs, where worst-case time is O(dn)
This property also applies to logical and probabilistic reasoning:
an important example of the relation between syntactic restrictions
and the complexity of reasoning.



Algorithm for tree-structured CSPs

1. Choose a variable as root, order variables from root to leaves
such that every node’s parent precedes it in the ordering

A

AB

C

D

E

F

B C D E F

2. For j from n down to 2, apply
Make-Arc-Consistent(Parent(Xj),Xj)
(will remove inconsistent values)
3. For i from 1 to n, assign Xi consistently with Parent(Xi )



Algorithm for tree-structured CSPs (cont’d)

function Tree-CSP-Solver (csp)
returns a solution, or failure
inputs: csp, a binary CSP with components (X ,D,C )

n ← number of variables in X
assignment ← an empty assignment
root ← any variable in X
X ← TopologicalSort(X , root)
for j = n down to 2 do
Make-Arc-Consistent(Parent(Xj),Xj)
if it cannot be made consistent then return failure
for i = 1 to n do
assignment [Xi ] ← any consistent value from Di

if there is no consistent value then return failure
return assignment



Nearly tree-structured CSPs

Conditioning: instantiate a variable, prune its neighbors’ domains

NT

NSW

WA
Q

SA

V

T

NT

NSW

WA
Q

V

T



Nearly tree-structured CSPs (cont’d)

Cutset conditioning: instantiate (in all ways) a set of variables such
that the remaining constraint graph is a tree

Cutset size c =⇒ runtime O(dc · (n− c)d2), very fast for small c



Summary

I CSPs are a special kind of problem: states defined by values
of a fixed set of variables goal test defined by constraints on
variable values

I Backtracking = depth-first search with one variable assigned
per node

I Variable ordering and value selection heuristics help
significantly

I Forward checking prevents assignments that guarantee later
failure



Summary (cont’d)

I Constraint propagation (e.g., arc consistency) does additional
work to constrain values and detect inconsistencies

I The CSP representation allows analysis of problem structure

I Tree-structured CSPs can be solved in linear time

I (Iterative min-conflicts is usually effective in practice)



Sources for the slides

I AIMA textbook (3rd edition)

I AIMA slides (http://aima.cs.berkeley.edu/)

I Bartak, Roman. ICAPS-04 Tutorial on Constraint Satisfaction
for Planning and Scheduling. 2004.


	CSP problem definition
	Backtracking search for CSPs
	Problem structure and problem decomposition

