CS5811 handout
The procedure to obtain the sampling distributions for MCMC

The probability of a variable given its Markov blanket is proportional to the probability of the variable given its parents times the probability of each child given its respective parents:

$$
P\left(x_{i}^{\prime} \mid m b\left(X_{i}\right)\right)=\alpha P\left(x_{i}^{\prime} \mid \text { parents }\left(X_{i}\right) \times \prod_{Y_{j} \in \text { children }\left(X_{i}\right)} P\left(y_{j} \mid \text { parents }\left(Y_{j}\right)\right)\right.
$$

Consider the query $\mathbf{P}(R \mid S, W)$. S is true from the evidence. Suppose that R is true in the state.

The Markov blanket of C is its parents (\emptyset), its children $(\{R, S\})$, and the other parents of its children (\emptyset). We use the following distributions to sample C.
$\mathbf{P}(C \mid M B(C))=\mathbf{P}(C \mid R, S)=\alpha \mathbf{P}(C) \mathbf{P}(S \mid C) \mathbf{P}(R \mid C)$
$=\alpha<0.5,0.5><0.1,0.5><0.8,0.2>$
$=\alpha<0.04,0.05>$
$=<\frac{4}{9}, \frac{5}{9}>$
For the states where R is false, $\mathbf{P}(C \mid \neg R, S)$ is calculated similarly .
The Markov blanket of R is its parents $(\{C\})$, its children $(\{W\})$, and the other parents of its children $(\{S\})$. We use the following distributions to sample R.
$\mathbf{P}(R \mid M B(R))=\mathbf{P}(R \mid C, S, W)=\alpha \mathbf{P}(R \mid C) \mathbf{P}(W \mid R, S)$
$=\alpha<0.8,0.2><0.99,0.90>$
$=\alpha<0.792,0.18>$
$=\alpha<\frac{0.792}{0.972}, \frac{0.18}{0.972}><\frac{22}{27}, \frac{5}{27}>$
$\mathbf{P}(R \mid \neg C, S, W)$ is calculated similarly.

