15 minute quiz at the beginning of class.
The Markov chain

With $Sprinkler = true$, $WetGrass = true$, there are four states:

Wander about for a while, average what you see
The probability of a variable given its Markov blanket is proportional to the probability of the variable given its parents times the probability of each child given its respective parents:

\[P(x_i | mb(X_i)) = \alpha P(x_i | parents(X_i)) \times \prod_{Y_j \in children(X_i)} P(y_j | parents(Y_j)) \]

Consider the query \(P(R | S = t, W = t) \).
\(S \) is true from the evidence. Suppose that \(R \) is true in the state.
We will be sampling for \(C \).

The Markov blanket of \(C \) is its parents (\(\emptyset \)), its children (\(\{ R, S \} \)), and the other parents of its children (\(\emptyset \)). We use the following distributions to sample \(C \).

\[P(C | MB(C)) = P(C | R = t, S = t) = \alpha \ P(C) \ P(S = t | C) \ P(R = t | C) \]
\[= \alpha < 0.5, 0.5 > < 0.1, 0.5 > < 0.8, 0.2 > \]
\[= \alpha < 0.04, 0.05 > \]
\[= < \frac{4}{9}, \frac{5}{9} > \]

For the states where \(R \) is false, \(P(C | \neg R, S) \) is calculated similarly.

\(S \) is true from the evidence. Suppose that \(C \) is true in the state.
We will be sampling for \(R \).

The Markov blanket of \(R \) is its parents (\(\{ C \} \)), its children (\(\{ W \} \)), and the other parents of its children (\(\{ S \} \)). We use the following distributions to sample \(R \).

\[P(R | MB(R)) = P(R | C = t, S = t, W = t) = \alpha \ P(R | C = t) \ P(W = t | R, S = t) \]
\[= \alpha < 0.8, 0.2 > < 0.99, 0.90 > \]
\[= \alpha < 0.792, 0.18 > \]
\[= \alpha < \frac{0.792}{0.972}, \frac{0.18}{0.972} > < \frac{22}{27}, \frac{5}{27} > \]

\(P(R | \neg C, S, W) \) is calculated similarly.