Exam on Thursday Nov. 29, 2018 6:00-8:00

topics: Point Algebra
Quantitative temporal networks
Ch. 13
Ch. 14

Ch. 16 will be a "mini" exam after this

week M T W Th F
12
13
14 prro prro prro

6:00-7:00 6:00-7:00

all presentations during the 14th week

two extra classes:
Tuesday: Dec. 11 6:00-7:00
Thursday: Dec. 13 6:00-7:00

No report on the presentation.
I'll adjust the percentages.
\[P(C | MB(c)) = <n_1, n_2> \]

sample C from this.
The probability of a variable given its Markov blanket is proportional to the probability of the variable given its parents times the probability of each child given its respective parents:

\[
P(x_i | mb(X_i)) = \alpha P(x_i | \text{parents}(X_i)) \prod_{Y_j \in \text{children}(X_i)} P(y_j | \text{parents}(Y_j))
\]

Consider the query \(P(R | S = t, W = t) \).

\(S \) is true from the evidence. Suppose that \(R \) is true in the state.

We will be sampling for \(C \).

The Markov blanket of \(C \) is its parents (\(\emptyset \)), its children (\(\{R, S\} \)), and the other parents of its children (\(\emptyset \)). We use the following distributions to sample \(C \).

\[
P(C | MB(C)) = P(C | R = t, S = t) = \alpha P(C) P(S = t | C) P(R = t | C)
\]

\[
= \alpha < 0.5, 0.5 > < 0.1, 0.5 > < 0.8, 0.2 >
\]

\[
= \alpha < 0.04, 0.05 >
\]

\[
= \frac{1}{9}
\]

For the states where \(R \) is false, \(P(C | \neg R, S) \) is calculated similarly.

\(S \) is true from the evidence. Suppose that \(C \) is true in the state.

We will be sampling for \(R \).

The Markov blanket of \(R \) is its parents (\(\{C\} \)), its children (\(\{W\} \)), and the other parents of its children (\(\{S\} \)). We use the following distributions to sample \(R \).

\[
P(R | MB(R)) = P(R | C = t, S = t, W = t) = \alpha P(R | C = t) P(W = t | R, S = t)
\]

\[
= \alpha < 0.8, 0.2 > < 0.99, 0.90 >
\]

\[
= \alpha < 0.792, 0.18 >
\]

\[
= \alpha < \frac{0.792}{0.972}, \frac{0.18}{0.972} > < \frac{22}{27}, \frac{5}{27} >
\]

\(P(R | \neg C, S, W) \) is calculated similarly.
Chapter 16
Making Simple Decisions

↓
one shot

- information on the present situation (state)
 - fully observable

- some information about the future
 - probabilities
 - the preference for the future states