Exam tomorrow at 6:00pm

Nov 28, 2018 Thursday

Topic: Bayesian networks inference

exact sampling

second part of exam 2: Friday 12/7

class time

next assignment (Ch 16) due

Tuesday 12/4 11:59 pm

Friday 11/30 no class

Monday 12/3 no class

Wednesday 12/5 (optional, review)

Friday 12/7 second part of exam

<table>
<thead>
<tr>
<th>M</th>
<th>Tu</th>
<th>We</th>
<th>Th</th>
<th>Fri</th>
</tr>
</thead>
<tbody>
<tr>
<td>11/05</td>
<td>6:05</td>
<td>11:05</td>
<td>6:05</td>
<td>11:05 presentations</td>
</tr>
<tr>
<td>12/10</td>
<td>12/11</td>
<td>12/12</td>
<td>12/13</td>
<td>12/14</td>
</tr>
</tbody>
</table>

Last day of classes
CS5811 In class exercise - Value of information

- n blocks, C worth of oil in exactly one block, each block C/n dollars

- A seismologist offers the company the results of a survey of block number 3, which indicates definitely whether the block contains oil.

- How much should the company be willing to pay for the information?

```
Expected value of buying the survey:
```
CS5811 In class exercise - Value of information

- n blocks, C worth of oil in exactly one block, each block C/n dollars
- A seismologist offers the company the results of a survey of block number 3, which indicates definitely whether the block contains oil.
- How much should the company be willing to pay for the information?

![Diagram of decision process]

The expected value (profit) for buying the survey for block 3:

$$
\frac{1}{n} \times \frac{(n-1)C}{n} + \frac{(n-1)}{n} \times \frac{1}{(n-1)} \times \frac{(n-1)C}{n} + \frac{(n-1)}{n} \times \frac{(n-2)}{(n-1)} \times \frac{-C}{n}
$$

$$
= \frac{(n-1)C}{n^2} + \frac{(n-1)C}{n^2} + \frac{(n-2) \times (-C)}{n^2}
$$

$$
= \frac{C(n-1 + n-1 - n + 2)}{n^2} = \frac{Cn}{n^2} = \frac{C}{n}.
$$