
Conditional, Probabilistic Planning: A Unifying Algorithm and
Effective Search Control Mechanisms

Nilufer Onder
Department of Computer Science

University of Pittsburgh
Pittsburgh, PA 15260

nilufer@cs.pitt.edu

Martha E. Pollack
Department of Computer Science
and Intelligent Systems Program

University of Pittsburgh
Pittsburgh, PA 15260
pollack@cs.pitt.edu

Abstract

Several recent papers describe algorithms for gener-
ating conditional and/or probabilistic plans. In this
paper, we synthesize this work, and present a unify-
ing algorithm that incorporates and clarifies the main
techniques that have been developed in the previous
literature. Our algorithm decouples the search-control
strategy for conditional and/or probabilistic planning
from the underlying plan-refinement process. A similar
decoupling has proven to be very useful in the analysis
of classical planning algorithms, and we show that it
can be at least as useful here, where the search-control
decisions are even more crucial. Previous probabilis-
tic/conditional planners have been severely limited by
the fact that they do not know how to handle failure
points to advantage. We show how a principled se-
lection of failure points can be performed within the
framework our algorithm. We also describe and show
the effectiveness of additional heuristics. We describe
our implemented system called Mahinur and experi-
mentally demonstrate that our methods produce effi-
ciency improvements of several orders of magnitude.

Introduction
Several recent papers describe algorithms for generat-
ing conditional and/or probabilistic plans. Unfortu-
nately, these techniques have not been synthesized into
a clear algorithm. In this paper, we present a unify-
ing algorithm that incorporates and clarifies the main
techniques that have been developed.

Our algorithm has three useful features. First, it de-
couples the search-control strategy for conditional prob-
abilistic planning from the underlying plan-refinement
process. A similar decoupling has proven to be very
useful in the analysis of classical planning algorithms
(Weld 1994), and we show that it can be at least as use-
ful here, where search-control decisions are even more
crucial. We achieve the decoupling by treating the pos-
sible failure points in a plan as flaws. By a failure point,
we mean a part of the plan that (a) involves a branching
action, i.e., one whose outcome is uncertain, and (b) re-
lies on a particular outcome of that action. Where clas-
sical planning algorithms consider open conditions and

Copyright (~)1999, American Association for Artificial
Intelligence (www.aaai.org). All rights reserved.

threats to be flaws, we add possible failure points into
this set. Decisions about whether and when to handle
each failure point can then be encoded as part of the
search-control strategy.

Second, we repair plan failures in a direct way, us-
ing three logically distinct techniques: (1) corrective
repair, originally introduced in the work on conditional
planning, which involves reasoning about what to do if
the desired outcome of a branching action does not oc-
cur; (2) preventive repair, originally introduced in the
work on probabilistic planning, which involves reason-
ing about how to help ensure that the desired outcome
of a branching action will occur; and (3) replacement,
implemented by backtracking in the planning literature,
which involves removing the branching action and re-
placing it with an alternative.

Finally, our planner can generate conditional plans
with merged branches: if two branches involve differ-
ent steps at the beginning but the final steps are the
same, the final part can be shared. This way the cost
of generating the same part twice can be avoided.

Previous probabilistic/conditional planners have
been severely limited by the fact that they do not know
how to handle failure points to advantage. For all but
very small domains, the search space explodes quickly
if plan failures are considered indiscriminantly. We
show how a principled selection of failure points can
be performed within the framework our algorithm. We
also describe and show the effectiveness of a few addi-
tional heuristics. We describe our implemented system,
called Mahinur, and experimentally demonstrate that
our methods produce efficiency improvements of sev-
eral orders of magnitude.

Background and Related Research
When a planning agent does not have complete knowl-
edge of the environment in which its plans will be
executed, it may have to create a conditional plan,
which includes observation steps to ascertain the un-
known conditions. Using an example from (Dearden 8z
Boutilier 1997), imagine a robot whose goal is to de-
liver coffee without getting wet; imagine further that
the robot does not know whether it is raining out-
side. A reasonable plan is to go to the window, observe

From: AAAI-99 Proceedings. Copyright © 1999, AAAI (www.aaai.org). All rights reserved.

whether it is dry, and if so, go to the cafe. Conditional
planning systems (Warren 1976; Peot & Smith 1992;
Etzioni et al. 1992; Goldman & Boddy 1994a; Pryor &
Collins 1996) generate plans that have branching ac-
tions, i.e., actions with multiple possible outcomes.1

When a branching action is initially inserted into a plan,
one of its outcomes (the desired outcome) will be linked
to a later step on the path to the goal, while the other(s)
(the undesired outcomes) will not. We will also refer to
an unlinked outcome as a dangling edge. In the cof-
fee example, the knowledge that it is dry outside is the
desired outcome, while knowledge that it is raining out-
side is the undesired outcome. The plan is guaranteed
to succeed if the desired outcomes of all its observation
actions occur; there is no such guarantee otherwise.

Intuitively, one way to improve such a plan is to fig-
ure out what to do if some step has an undesired out-
come. We will call this a corrective repair, since it in-
volves figuring out actions that can be taken to correct
the situation that results after the undesired outcome
occurs. For the above example, one corrective repair
might be to pick up an umbrella if it is raining. In
practice, conditional planners implement corrective re-
pairs by duplicating the goal state, and attempting to
find a plan that will achieve the (duplicated) goal state
without relying on the assumption that the branching
actions in the original plan have their desired outcomes.

A different approach is taken in probabilistic plan-
ners. Where conditional planners assume that agents
have no information about the probability of alterna-
tive action outcomes but will be able to observe their
environments during plan execution, probabilistic plan-
ners such as Buridan (Kushmerick, Hanks, & Weld
1995) make just the opposite assumption. They assume
that planning agents have knowledge of the probabili-
ties that their actions will have particular outcomes but
that they will be unable to observe their environment.
Typically, probabilistic planners model actions with a
finite set of tuples < ti,Pid,eid >, where the t~ are a
set of exhaustive and mutually exclusive triggers, and
pi,j represents the probability that the action will have
effect ei,j if ti is true at the time of the action’s exe-
cution. The triggers serve the role of preconditions in
standard causal-link planners. Suppose that the robot’s
hand might get wet while closing the umbrella before
entering the shop, and the coffee cup might slip if its
hand is wet. In the example plan fragment shown in
Fig. 1, the PICK-tW step has been inserted to achieve
the goal of holding the cup. The trigger for holding-cup
is hand-dry, and a DRY step has been inserted to proba-
bilistically make that true.

As can be seen, this plan is not guaranteed to suc-
ceed. If the hand is not dry, the step will not achieve
the desired outcome of holding the cup. To help pre-
vent this undesired outcome, a planner may increase

1To simplify presentation, we will focus here on actions
with two possible outcomes; generalization to a larger num-
ber of outcomes is straightforward.

0.8 { holding-cup }u.~

0"4/‘’/ { hand-dry 1- ~d~/~~

0.6~ {] -hand-dry ~. {}

Figure 1: Plan for picking up a part.

the probability that the hand is dry. One way to do
this would be to add a second DRY step prior to the
PICK-Ira. We can call this a preventive repair, since it
involves adding actions that help prevent the undesired
outcome.

It is only natural to combine the ideas of conditional
and probabilistic planning. The first combined con-
ditional, probabilistic planning system was C-Buridan
(Draper, Hanks, & Weld 1994). Interestingly, while
Buridan uses preventive repair to increase the probabil-
ity of success, it does not use corrective repair to gener-
ate conditional branches. Its branches are formed in a
somewhat indirect fashion: in performing a preventive
repair, it may add to the plan a step that conflicts with
some other step already in the plan. To resolve this con-
flict, C-Buridan will split the plan into two branches,
putting the conflicting steps on different branches. In
effect, C-Buridan identifies a new branch only after it
has been formed. Generating plans in this way has been
shown to be very inefficient, involving a rapid explosion
of the search space as branches are discovered haphaz-
ardly (Onder & Pollack 1997).

A more recent system that combines conditional and
probabilistic planning is Weaver (Blythe & Veloso 1997)
Weaver was built on top of a bidirectional planner
(Prodigy 4.0), and therefore uses a different set of ba-
sic plan generation operations than those described in
this paper. However, as in our approach, Weaver first
reasons about which actions to choose in order to most
quickly improve the likelihood of success (Blythe 1995)
and then uses both preventive and corrective repair.
Unlike most of the other planners, it also includes ex-
plicit mechanisms for dealing with external events. The
Plinth conditional-planning system was also expanded
to perform probabilistic reasoning (Goldman & Boddy
1994b). The focus of the Plinth project was on using
belief network to reason about correlated probabilities
in the plan.

A different approach to planning under uncertainty
is called conformant planning, and involves generating
plans that achieve the goals in all the possible cases
without using observation actions(Goldman & Boddy
1996). The work on Markov Decision Process (MDP)
based planners focuses on finding "policies," which are
functions from states to actions. To do this in an
efficient way, MDP-based planners rely on dynamic
programming and abstraction techniques(Dearden
Boutilier 1997). The DRIPS system (Haddawy, Doan,
& Goodwin 1995) interleaves plan expansion and deci-
sion theoretic :assessment but uses a previously formed

PLAN (|nit, goal, T)
plans 6- { make-init-plan (init, goal)
while plan-time < T and plans is not empty do
CHOOSE (and remove) a plan P from plans
SELECT a flaw f from P.
add all refinements of P to plans:

plans ~--plans U new-step (P, f)
step-reuse (P, f)

if f is an open condition,
plans 4---plans U demote(P,f) t) promote (P,

confront(P, f) U constrain-to-branch(P, f)
if f is a threat.

plans +--plans U corrective-repair(P, f)
preventive-repair (P, f)

if f is a dangling-edge.
return (plans)

preventive-repair (plan, f)
open-conditions-of-plan #- open-conditions-of-plan U
triggers for the desired outcomes of the
action in f.

return (plan)

corrective-repair (plan, f)
top-level-goabnodes-of-plan +-- top-level-goal-nodes-of-plan

U new-top-level-goal-node labeled not to depend
on the desired outcomes of the action in f.

return (plan)

Figure 2: Conditional probabilistic planning algorithm.

plan tree (HTN-style) rather than generating plans us-
ing operator descriptions. Recent work by Weld et
al. extends Graphplan to handle uncertainty (1998).
The Just-In-Case scheduling algorithm (Drummond,
Bresina, & Swanson 1994) involves creating an ini-
tial schedule and building contingent schedules for the
points that are most likely to fail.

Algorithm

Our algorithm (Fig. 2) rests on the observation that
conditional, probabilistic planning involves repairing
plan flaws (closing an open precondition or resolving
a threat) and repairing dangling edges (corrective re-
pair or preventive repair). The input is a set of initial
conditions, a set of goal conditions, and a time limit T.
The output is a set of plans. The algorithm is a plan-
space search, where, as usual, the nodes in the search
space represent partial plans. We assume that actions
are encoded using the probabilistic action representa-
tion described in the previous section.

Normal flaws--threats and open conditions--are re-
paired in the usual way. To achieve an open condi-
tion c, the planner will find an action that includes a
branch < ti,pij,ei,j >, such that one of the elements
of ei,j unifies with c. The relevant trigger ti will then
become a new open condition. Note that a condition
c remains "open" only so long as it has no incoming
causal link; once an action a has been inserted to (prob-
abilistically) produce c, it is no longer open, even if

has only a small chance of actually achieving c.2 A
threat is resolved by step ordering (demote, promote),
committing to desired outcomes (confront), or separat-
ing the steps into branches (constrain-to-branch). For
"dangling-edge flaws", we assume that preventive re-
pair is achieved by reintroducing the triggers for desired
effects into the set of open conditions, as done in Buri-
dan; we assume corrective repair is achieved by adding
new, labeled copies of the goal node as in CNLP. Correc-
tive repairs form new branches in the plan that indicate
alternative responses to different observational results.
Preventive repairs do not introduce new branches.

Consistent with the prior literature, we use SELECT
to denote a non-deterministic choice that is not a back-
track point, and CHOOSE for a backtrack point. As
usual, node selection, but not flaw selection, is subject
to backtracking.

It is important to note that in prior algorithms such
as CNLP and C-Buridan, observation actions do not dif-
ferentiate between the conditions that are true in the
world (state conditions) and the conditions that repre-
sent the agent’s state of knowledge (information condi-
tions). In CNLP, the outcomes of an observation action
are state conditions, thus observation actions are in-
serted through standard backchalning. In C-Buridan,
the outcomes of actions are information conditions. C-
Buridan has no concept of corrective repair; instead it
inserts observation actions only during threat resolu-
tion, when conflicting actions are constrained to be in
different branches. During this process, C-Buridan will
consider every possible observation action. It is thus
complete in the sense that it wilt find a relevant observa-
tion action whenever one exists, even if the correlation
between the observation and the condition in question
has not been made explicit. However, C-Buridan’s in-
direct method of inserting observation actions is very
inefficient: it has no notion of the source and potential
impact of any plan failure, and thus cannot prioritize
the failures it chooses to work on (Onder & Pollack
1997).

For the sake of practicality, we have taken a middle
road. We require that the connection be made explicit
between an observation action and any information and
state conditions it affects. Fig. 3 illustrates the act of
directly observing whether it is raining outside. The
observation may be inaccurate: with 0.10 probability,
it will provide a false negative. The connection between
the belief that it is not raining (the "report") and the
fact of the matter of rain (the "subject") is explicit
the representation.

Consequently, our algorithm does need to insert ob-
servation actions by backchaining or for threat resolu-
tion. Instead, we can directly reason about which step
S will have the greatest impact if it fails--i.e., does not
achieve desired outcome c. Corrective repair can then
be performed, directly inserting after S an observation

2A sensible heuristic is to select actions where the rele-
vant pi.j is as high as possible.

OBSERVE-WEATHER) < Action name

(nofmeant to be achieved)
May have triggers

/ ~ RAIN/ /RAIN/ /RAIN/ ~ Report

Figure 3: Observing whether it is raining.

action that reports on c, along with a subject linkfrom S
to the new observation action. The trade-off is that the
algorithm is less complete than C-Buridan, because it
will not discover observation actions whose connection
to some condition are not explicitly encoded. Because
the in-principle complete algorithms are ~oo inefficient
to be in-practice complete, we are willing to make this
trade-off, and rely on the operator designer to encode
explicitly the connections between information condi-
tions and state conditions.

We implemented this algorithm in a planning system
called Mahinur. In refining a plan, Mahinur first repairs
the normal flaws until the plan is complete, i.e., has no
open conditions or threats. It then selects a dangling
edge and then works only on normal flaws until the
plan is once again complete. This strategy reduces the
amount of bookkeeping required to keep track of nested
contexts when multiple corrective repairs are being per-
formed. It also allows Mahinur to readily produce in-
termediate solutions throughout the planning process,
because complete plans are potential solutions to the
planning problem.

We assume that the top-level goals have additive
scalar values assigned to them. Thus, the expected value
of a plan is the sum of the products of the final prob-
ability of each top-level goal and its scalar value. We
approximate the final probability of any goal by a pro-
cess of simulation, in which we start with an initial state
distribution, and simulate the execution of each step in
the plan, updating the state distribution accordingly.
We refer to the state distribution after the execution
of step i as sdi. Because the focus of our work is on
search control, we finesse the issue of efficient plan as-
sessment (i.e., calculation of the expected value) and
use a random total ordering of the steps.

Efficient Corrective Repair

While the algorithm above captures the ideas inher-
ent in the prior work on both conditional and the
probabilistic planning, it also inherits a major prob-
lem: if applied without strong heuristics, it can be
extremely inefficient. In particular, the time required
to generate a plan with two branches can be expo-
nentially greater than the sum of the times required
to generate two separate plans, each identical to one
of the branches. We illustrate this with the run-
ning example. If we ignore the possibility of rain,
a simple solution is a plan with four steps, G0-CAFE;

BUY-COFFEE; G0-0FFICE; DELIVER-COFFEE, which can be
generated by Mahinur in 0.24 CPU seconds using
40 plan nodes. When we re-introduce the possi-
bility of rain, the solution has two branches be-
cause if is is raining, the robot needs to get an
umbrella: SEE-IF-RAINING; if raining (GET-UMBRELLA;

G0-CAFE; BUY-COFFEE; G0-0FFICE; DELIVER-COFFEE);

if not raining (GO-CAFE; BUY-COFFEE; G0-0FFICE;

DELIVER-COFFEE). The two branches are similar to one
another, but it takes Mahinur 27.66 CPU seconds and
6902 plan nodes to generate the branching plan.3

The problem results from the backwards-chaining ap-
proach taken by Mahinnr and other planning systems.
When a new step is inserted into the pla~, it is not
part of any branch; it is put into a branch (by the
constrain-to-branch procedure in Mahinur) only after
threat is detected between two steps that should be in
separate branches. However, in addition to constrain-
ing, the planner needs to consider several other methods
of threat resolution, resulting in exponential explosion
of the search space. The intuitive solution is to prefer
constraining a new step to be in a new branch when a
conditional branch is being formed, i.e., corrective re-
pairs are being performed. This can be implemented
easily as a heuristic in the framework of our algorithm:
while generating a new branch following observe step
I, if a newly inserted step threatens a step in the first
branch, prefer to resolve the threat by placing the new
step into the new branch of I if it is consistent to do so.

We illustrate the proportionality of our heuristic’s ef-
fect on variations of the BUY COFFEE problem. The first
problem is the basic problem, including the possibility
of rain; there are five steps in the new branch. In the
second problem, we added a new step (GET-CREAM)
the problem, increasing the number of the steps in the
new branch to 6. In the third problem, we also added
the GET-SUGAR step. In Fig. 4, we tabulate the run time
and the number of plans created while generating con-
ditional plans with and without the threat resolution
heuristic. (We terminated the experiment marked with
"--" after 24 hours and 350000 plan nodes.) As ex-
pected, the search space is reduced significantly when
the heuristic is used to control the search, and the re-
duction is proportional to the number of steps in the
new branch. This heuristic proved to be very effective
enabling us to generate plans with tens of steps and
conditional branches in just a few seconds.

Selecting Contingencies

A plan is composed of many steps that establish con-
ditions to support the goals and subgoals, but repairs
for the failure of conditions are usually not expected
to have equal contributions to the overall success of

3Unfortunately, benchmark problems and implemented
systems for comparison of probabilistic conditional planners
are not available. However, the examples given in the lit-
erature suggest that other conditional planners suffer from
similar exponential explosion of the search space.

Run time (sec.) Plans created
Problem with without with without
coffee 1.35 27.66 105 6902
coffee,cream 1.81 687.13 178 57912
coffee,cream,sugar 2.73 398 >350000

Figure 4: Effects of the threat resolution heuristic.

the plan. With the notable exception of (Feldman
Sproul 1977), the decision theoretic prioritization of re-
pair points has not been a focus of recent systems. To
identify the best repair points, we focus on two facts:
first, contingencies in a plan may have unequal proba-
bility of occurrence; second, a plan may have multiple
goals, each of which has some associated value. Let us
leave the probability of failure aside for a moment, and
consider the robot in the the previous examples and a
plan involving two goals: mailing a document at the
post office and delivering coffee to the user. The value
of achieving the former goal may be significantly higher
than the latter. Consequently, the conditions that sup-
port only the former goal (e.g., having envelopes) con-
tribute more to the overall success of the plan than
the conditions that support only the latter (e.g., hav-
ing sugar). Conditions that support both goals (e.g.,
keeping the robot dry) will have the greatest impor-
tance. This suggests that it may be most important
to have a contingency plan to handle the possibility of
rain; almost as important to have a contingency plan
in case there are no envelopes in the office; and less im-
portant to have a contingency plan in case there is no
sugar. While performing this reasoning, we can fold the
probability of failure back in as a weighing factor.

Of course, in reality the importance of having contin-
gency plans will also depend on the likely difficulty of
replanning "on-the-fly" for particular contingencies; it
may be worth reasoning in advance about contingencies
that are difficult to plan for. Another factor influencing
the choice of a contingency is the difficulty of executing
a contingent plan if not considered in advance. These
types of information concern the plan that has not yet
been generated, which suggests that they might have to
be coded as part of the domain information, based on
past experience.

Even if this type of domain information is not avail-
able, we can use the upper bound of the expected value
of repairing a failure point as a good estimate for se-
lecting contingencies. Suppose that a step Si is used to
establish a condition c, and the probability of that c will
be false right after Si is executed is p > 0. Then, the
best the planner can do is to add a new branch that
will make the top-level goals true even when c is not
true. What is the value of adding such a branch? In
computing this, we need to consider only the probabil-
ity that immediately after executing Si, both c and the
top-level goals will be false: if a top-level goal is true
anyway after executing Si, then there is no benefit to
establishing it. We also need to factor in the probabil-

ity that Si will be executed in the first place. (If it is
downstream from another branch point, it may never
be executed.) The upper bound on the expected value
of performing a corrective repair on Si in the case in
which desired outcome c may fail is defined as follows:

EVCR(Si, c)

~geo P[{-c,-g) U Sci]sdo, < S1,... ,Si >] x V(g),
where P[{Xl,..., xn}]sdo, < S1,..., Si >] denotes the
probability that {Xl,. ¯., xn) all hold in the state distri-
bution resulting from the execution of the steps through
Si starting with the initial state distribution sd0. Sci is
the context of the step, i.e., the conditions under which
the step will be executed3 That is, for each top-level
goal g in G, we compute the probability that immedi-
ately after performing step Si, c and g will both fail to
hold while all the effects of Si except c hold. We then
weight the value of g (V(g)) by this probability, and
finally sum all the weighted values. As noted, this is
an upper bound; the actual value of corrective repair
of si might be less if the repair only probabilistically
establishes g, or if there are other steps in the original
plan that achieve g without using c in sdi. Our strategy
for selecting contingencies is to use the formula above
to compute EVCR for each failure point and then to
select the one with the highest value.

In order to illustrate the importance of this process,
we have designed a synthetic domain with several top-
level goals all of which have unit value (Fig. 5).
then ran experiments in which we started with an ini-
tial plan where each goal is achieved by a single step
that has no preconditions, and achieves the goal with
some probability (Fig 5a). In addition to the opera-
tors in the initial plan, we designed a set of alternative
operators each of which achieves a goal with certainty.
(Imagine that the probabilistic operator in the initial
plan is cheaper to execute, and it is preferable to try
it first and use the alternative only if it fails). In or-
der to establish a baseline case, we designed the alter-
native operators to have the minimal planning effort,
i.e., performing a corrective repair involves forming a
branch with one step to establish the goal. This also
made the corrective repair effort to be uniform for each
failure point: each can be repaired by generating a one-
step plan. We implemented our strategy for selecting
contingencies and ran several experiments by increas-
ing the user-specified expected value threshold. In one
condition--~rdered selection--we selected the contin-
gency with the highest expected value for corrective re-
pairs; and in another condition--random selection--we
selected a contingency randomly (ordered selection al-
ways selects steps A1, B1 ... I1). In Fig. 6, we plot
the time required to meet the threshold with and with-
out ordering contingencies. As expected, by ordering

4Actually, the probability of Sci should be computed
for the state that obtains just prior to the execution of Si.
However, for simplicity in the formula we compute it in the
state that obtains after S~ is executed; this does not affect
the result because a step cannot change its own context.

INITIAL PLAN:

GOALS: A B C D E F G H I

(a)

Alternative actions:

v

F~

(b)

Figure 5: A synthetic domain for experiments.

’2o
o~z~o~: ~140

.-
_

120

i 100 /

0 0,1 0,2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Th"es/~d

Figure 6: Time required to generate a plan that meets
the threshold.

contingencies, the planner can produce better plans in
shorter time. Note that, the two lines converge to the
same point because once all the failures are repaired,
the total expected value of the plan is the same and the
total cost of repairing all the failures is the same.

A similar strategy can be used for estimating the ex-
pected value of performing preventive repairs, but we
omit discussion due to space limitations.

Generating Plans with Joined Branches

The efficiency of performing corrective repairs can be
further improved by sharing the final parts of two
branches if they are the same. CNLP-style conditional
planners cannot generate plans with joined branches be-
cause they duplicate the top-level goals and re-generate
every step even if they are the same as the existing
branch. However, branches can be joined by nondeter-
ministically choosing and duplicating a subgoal rather
than a top-level goal. Suppose that the delivery robot
has a detailed plan to go back to the office after picking
up the coffee, and is generating contingency plans for
the possible failures regarding coffee pick up. In such
a situation, it might be more efficient to focus on the
subgoal of getting coffee rather than revising the whole

-t

Figure 7: Corrective repairs with branch joining.

plan.
We have implemented this method in Mahinur in the

following way: consider the plan in Fig. 7 and suppose
that STEP-T can fail to establish i for STEP-J and this
failure point has been selected for corrective repairs.
Then, rather than duplicating the top level goal, the
planner duplicates just STEP-J’s triggers--i--and tries
to find a conditional branch that establishes i with-
out using support from ST£P-I. The remainder of the
plan (STEP-J and STEP-K) remains the same, and does
not have to be regenerated. If the planner fails to find
a plan for i, it backtracks and tries to duplicate the
triggers of the next step that is connected by a causal
link to the step it has just tried--the next step in the
causal link path is STEP-K in this example. Imagine
that the planner first tries to find alternative ways of
getting coffee and then tries another beverage if this
fails. Backtracking stops when a top-level goal needs
to be duplicated: Note that our work focuses on gen-
erating plans with joined branches rather than merging
already formed branches.

The step whose triggers are duplicated is called a
branch join point (e.g., STEP-J in Fig. 7). No steps
are necessary if STEP-I succeeds, and alternative step
(S-ALTEI~) will be executed if STF.P-I fails. The remain-
der of the plan is shared by the two branches.

We conducted a set of experiments to show the
possible benefits of branch joining. In these experi-
ments, we used a set of coffee domain problems analo-
gous to the ship-reject problem in C-Buridan (Draper,
Hanks, & Weld 1994). In these problems, the robot
asks whether decaffeinated coffee is available and gets
it. If not available, it gets regular coffee. Both
have the same price, so the steps to pay for the

2.4

2.2

2

1.8

1.6

1.4

1.2

t

0.8

0.6

0.4 0

Web bra,’~,J<~n" ing --
W’,~c~l brand1 J~ing

i
_

ri
8

Figure 8: The CPU time required with and without
branch joining to solve planning problems of increasing
complexity.

coffee and to go back to the office can be shared.
Without branch joining, the solution conditional plan
is: ASK; if available (GET-DECAF; PAY; GO-OFFICE;
DELIVER-COFFEE); if not available (GET-REGULAR;
PAY; G0-0FFICE; DELIVER-COFFEE). If branch joining is
performed during corrective repairs, the last three steps
of each branch can be shared.

If branch joining is used, the planner saves some of
the effort of generating the sequence of steps after the
branch join point. In order to demonstrate this, we
designed a set of 9 problems based on the above prob-
lem. We made the plan generation process harder by
putting more alternative steps into the domain descrip-
tion: In the first problem, there are no alternatives to
the final three steps; in the second problem, each can
be performed in two ways; and in the ninth problem,
each can be performed in nine ways. For each prob-
lem, we plotted the CPU time required to generate the
conditional branch with and without branch joining in
Fig. 8. As expected, the planning effort does not in-
crease when branch joining is used because the plan
after the branch join point is reused while forming the
new branch. When branch joining is not used, it takes
the planner longer to generate the same plan because
the part after the branch join point needs to be gener-
ated from scratch.

On the other hand, the planner needs to backtrack
if it cannot find a plan with joined branches. In our
implementation, when branch joining is enabled, the
planner first duplicates the triggers of the first action
that is supported by the condition which may fail. If
no plan is found, it tries the next step in the path
of causal links and continues until a top-level goal is
reached. (We do not consider re-opening every set of
possible subgoals because once the top-level goals are
re-opened, an entirely new plan can be found). Obvi-
ously, if the planner spends too much time trying to
find a plan with joined branches when none exists, its

performance will be worse than directly duplicating the
top-level goals. As a result, domain-dependent tuning
may be required to determine whether branch joining
will be attempted and to select the step to be used as a
branch join point. Nonetheless, the results are promis-
ing and we are optimistic about the effectiveness of our
method because the savings obtained by branch joining
can be significant and a strategy for branch joining can
be determined by compiling typical problem instances
in a domain. Branch joining is useful because it lets
the planner focus on the steps that are in the vicinity
of the possible failure rather than the top-level goals.

Conclusion
In real-world environments, planners must deal with
the fact that actions do not always have certain out-
comes, and that the state of the world will not always
be completely known. Good plans can nonetheless be
formed if the agent has knowledge of the probabilities
of action outcomes and/or can observe the world. In-
tuitively, if an agent does not know what the world will
be like at some point in its plan, there are two things it
can do: (i) it can take steps to increase the likelihood
that the world will be a certain way, and (ii) it can plan
to observe the world, and then take corrective action if
things are not the way the should be. These basic ideas
have been included, in different ways, in the prior lit-
erature on conditional and probabilistic planning. The
focus of this paper has been to synthesize this prior
work in a unifying algorithm that cleanly separates the
control process from the plan refinement process. Us-
ing our framework, contingencies can be handled selec-
tively and heuristics that depend on the type of repair
being performed can be used. This control is an im-
portant condition for applying conditional probabilistic
planning to real world problems. We have obtained
promising early results in a realistic domain(Desimone
& Agosta 1994), and we will make the Mahinur system
and the domain encoding publicly available.

Acknowledgments
This work has been supported by a scholarship from the
Scientific and Technical Research Council of Turkey, by
the Air Force Office of Scientific Research (F49620-98-
1-0436), and by the National Science Foundation (IRI-
9619579). We thank the anonymous reviewers for their
comments.

References
Blythe, J., and Veloso, M. 1997. Analogical replay
for efficient conditional planning. In Proe. 15th Nat.
Conf. on AI, 668-673.
Blythe, J. 1995. The footprint principle for heuristics
for probabilistic planners. In Proc. European Work-
shop on Planning.

Dearden, R., and Boutilier, C. 1997. Abstraction and
approximate decision theoretic planning. Artificial In-
telligence 89(1):219-283.

Desimone, R. V., and Agosta, J.M. 1994. Spill
response system configuration study--final report.
Technical Report ITAD-4368-FR-94-236, SRI Interna-
tional.
Draper, D.; Hanks, S.; and Weld, D. 1994. Proba-
bilistic planning with information gathering and con-
tingent execution. In Proc. 2nd Int. Conf. on AI Plan-
ning Systems, 31-36.
Drummond, M.; Bresina, J.; and Swanson, K. 1994.
Just-in-case scheduling. In Proc. 12$h Nat. Conf. on
AI.
Etzioni, O.; Hanks, S.; Weld, D.; Draper, D.; Lesh, N.;
and Williamson, M. 1992. An approach to planning
with incomplete information. In Proc. 3rd Int. Conf.
on Principles of Knowledge Repr. and Reasoning, 115-
125.
Feldman, J. A., and Sproul, R. F. 1977. Decision the-
ory and AI II: The hungry monkey. Cognitive Science
1:158-192.
Goldman, R. P., and Boddy, M. S. 1994a. Condi-
tional linear planning. In Proc. 2nd Int. Conf. on AI
Planning Systems, 80-85.
Goldman, R. P., and Boddy, M. S. 1994b. Epsilon-safe
planning. In Proc. lOth Conf. on Uncertainty in AI,
253-261.
Goldman, R. P., and Boddy, M. S. 1996. Expressive
planning and explicit knowledge. In Proc. 3rd Int.
Conf. on AI Planning Systems, 110-117.
Haddawy, P.; Doan, A.; and Goodwin, R. 1995. Effi-
cient decision-theoretic planning: Techniques and em-
pirical analysis. In Proc. 11th Conf. on Uncertainty in
AL

Kushmerick, N.; Hanks, S.; and Weld, D. S. 1995. An
algorithm for probabilistic planning. Artificial Intelli-
gence 76:239-286.

Onder, N., and Pollack, M. E. 1997. Contingency
selection in plan generation. In Proc. European Conf.
on Planning, 364-376.

Peot, M. A., and Smith, D. E. 1992. Conditional non-
linear planning. In Proc. 1st Int. Conf. on AI Planning
Systems, 189-197.

Pryor, L., and Collins, G. 1996. Planning for con-
tingencies: A decision based approach. Journal of AI
Research 4:287-339.
Warren, D. H. 1976. Generating conditional plans
and programs. In Proc. AISB Summer Conference,
344-354.
Weld, D. S.; Anderson, C. R.; and Smith, D. E. 1998.
Extending graphplan to handle uncertainty and sens-
ing actions. In Proc. 16th Nat. Conf. on AI, 897-904.

Weld, D. S. 1994. An introduction to least commit-
ment planning. AI Magazine 15(4):27-61.

