

Using Situational Simulations to Collect and Analyze Dynamic Construction Management Decision-Making Data

Matt Watkins, Amlan Mukherjee, Nilufer Onder Michigan Technological University

WSC'08: December 8, 2008, Miami, FL

presented by: Nilufer Onder

Overview

- ICDMA (Interactive Construction Decision Making Aid)
 - Features
 - ICDMA as a microworld
- Experimental Discipline
 - Designing experiments
 - Collecting data
 - Mining data

ICDMA

- Matt Watkins' M.Sc. Thesis (August 2008)
- Interactive Construction Decision Making Aid
- Construction management simulator
 - User takes role of managing construction projects
 - Complicating factors (rain, sickness, etc.)
- The user is the decision maker
 - Labor management
 - Material management

Dynamic Task Environment

- Construction management is a dynamic task environment
 - Events occur with time
 - Management decisions update the system status
- Complex yet confined
 - Number of possible decisions is very large
 - Major factors which can influence construction projects are present

Construction Management

- ICDMA starts with a plan
- Plan changes due to events
 - External
 - Internal
- Manager must make decisions to mitigate damages

Example Project

- Steel frame building
- Hoisting, bolting, and decking activities for each floor
- Activity constraints (e.g., bolting cannot begin until hoisting is complete)
- A delay in one activity can cause a cascading delay in other activities

Schedule

Cost

Activities

Labor Management

Week: 6 Remaining: 34	6/21/2008	Sim Step
Schedule Cost All Activities Resources Labor Crews Assigned Labor Crane Crew Labor Type Needed Hired Steel Crew Struct. Stee 1 Welder Crew 2 Struct. Stee 3 Crane Oper 1 Equipment 1 Equipment O 0 Welder Fore 0 Welder O	Hire Hire Hire Hire Hire Hire	Fire Fire Fire Fire Fire

Microworld view

- Enable experimental research
- Relatively simple but has essential characteristics
- Can lead to generalizable results

Microworld aspects

- Dynamics: high
 Both autonomous and user initiated changes
- Complexity: moderate
 Number of variables and coupling
- Opaqueness: high
 Invisible external events
- Dynamic complexity: high Side effects and ripple effects

Experimental Procedure

- Design project scenario
- Add problems for the subject to solve
- Educate on the use of ICDMA
- Provide subject with project background information
- Let the subject try to complete the project
 Record the environment values and decisions

Graph analysis

Desired features

- Flexibility in designing experiments
 - Can enter projects in the database
 - Copy and transform projects
- Rich constraints
- Fuzzy boundaries for microworld aspects

Decision Making

Experimental Design

- SUSP: Single User Single Project
- MUSP: Multiple User Single Project
- SUMP: Single User Multiple Project
- MUMP: Multiple User Multiple Project

Mining for patterns

- Capturing expertise
- Response to various levels of information
- Prediction capability (on/off)
- Patterns
 - Simple rules
 - Graphical models
 - Probabilistic models

Conclusion and Summary

- A discrete event simulator for construction projects
- The decision maker is situated outside the simulation environment
- External events are coded in an opaque manner
- Assistance in predicting the future
- Future: Adjustable "cognitive load"
- Future: Education system

Using Situational Simulations to Collect and Analyze Dynamic Construction Management Decision-Making Data

Matt Watkins, Amlan Mukherjee, Nilufer Onder Michigan Technological University

Supported by: NSF grant SES 0624118 to Amlan Mukherjee

presented by: Nilufer Onder