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Abstract

We present a new method for solving the wave equation implic-
itly. Our approach is to discretize the wave equation in time, following
the method of lines transpose, sometimes referred to as the transverse
method of lines, or Rothe’s method. We differ from conventional meth-
ods that follow this approach, in that we solve the resulting system of
partial differential equations using boundary integral methods.

Our algorithm extends to higher spatial dimensions using an alter-
nating direction implicit (ADI) framework. Thus we develop a bound-
ary integral solution, that is competitive with explicit finite differ-
ence methods, both in terms of accuracy and speed. However, it pro-
vides more flexibility in the treatment of source functions, and complex
boundaries.

We provide the analytical details of our one-dimensional method
herein, along with a proof of the convergence of our schemes, in free
space and on a bounded domain. We find that the method is uncon-
ditionally stable, and achieves second order accuracy. A caveat of the
analysis is the derivation of a unique and novel optimal quadrature
method, which can be viewed as a Lax-type correction.

Keywords: Method of Lines Transpose, Tranverse Method of Lines,
Implicit Methods, Boundary Integral Methods, Alternating Direction
Implicit Methods, ADI schemes
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1 Introduction
The wave equation is an important hyperbolic partial differential equation
(PDE) that arises in acoustics, electromagnetics, and fluid dynamics. The
focus of this paper is to define and analyze a new method for computing
numerical solutions to the one dimensional wave equation

vtt = c2vxx, x ∈ [−L,L], t ≥ 0, (1)
v(x, 0) = f(x), vt(x, 0) = g(x), v(±L, t) = 0 or vx(±L, t) = 0.

We will consider the case of homogeneous boundary conditions however, these
ideas are easily extended to non-homogeneous Dirichlet and Neumann bound-
ary conditions. Extensions to higher dimensions are discussed in Section 7.1

There are well established approaches to compute a numerical solution to
the wave equation. One approach is to use separation of variables; that is,
we assume a time harmonic solution v(x, t) = ψ(x) exp (iωt), where ω is the
temporal frequency. Then the amplitude satisfies the (oscillatory) Helmholtz
equation (∂xx+k2)ψ = 0, where k is the wave number, and k2 = ω2/c2 is the
dispersion relation. Boundary integral solutions for the Helmholtz equation
in R2 and R3 can be computed efficiently using fast summation methods,
such as tree codes [10], or the fast multipole method [2, 5].

More generally, solutions are typically sought using the Method of Lines
(MOL), in which v(xi, t) is treated as a function of time at a set of discrete
spatial points xi, and the resulting initial value problems (IVP) are solved
in time. The spatial points are chosen according to some specific collocation
method, such as Galerkin, finite difference or finite volume methods. Be-
cause the spatial derivatives are turned into algebraic equations, the MOL
approach benefits from the extensive literature, and numerical libraries, for
ODE solvers. Furthermore, the accuracy and stability of the MOL discretiza-
tion for various families of PDEs has been thoroughly investigated and is well
understood, e.g., [9, 15].

In addition to the MOL method, we can also proceed by first discretizing
only in time, and finding a solution for the resulting Boundary Value Prob-
lems (BVPs). This approach is known as the Method of Lines Transpose
(MOLT ), or sometimes the transverse method of lines. It has been sparsely
considered [1, 3, 7, 8, 11, 13], in part because the numerical solution to BVPs
are more challenging, especially when the solution contains boundary layers.

However there are several advantages to the MOLT approach. For one,
the resulting boundary value problem for the semi discrete wave equation is
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now the modified (non-oscillatory) Helmholtz equation. The corresponding
Green’s function now exhibits exponential decay at ∞, rather than rapid
oscillations. Recently treecode [10] and FMM [4] algorithms have been de-
veloped for this kernel in R3, which is also known as the Yukawa or screened
Coulomb potential, reducing the cost of evaluation from O(N2) to O(N) or
O(N logN).

Additionally, by formulating the problem as an integral solution, small
cells can be incorporated near non-Cartesian boundaries without any loss
of accuracy, or rise of instabilities. Finally, the inclusion of point sources at
arbitrary locations within the domain can be accurately computed, simply by
convolution with the Green’s function. These two latter points are distinct
advantages over MOL approaches, and in light of recent fast summation
algorithms, the MOLT approach is increasingly more appealing.

In this paper, we formulate an implicit integral solution to equation (1)
using MOLT and inverting the modified Helmholtz operator. Our method
will be based on the Yukawa potential in one spatial dimension, which is
simply an exponential function. Thus, we develop a fast algorithm for ob-
taining boundary integral solutions, which is competitive with implicit finite
difference methods in terms of computational complexity and accuracy, but
inherits the aforementioned properties of incorporating small cells, and arbi-
trary placement of sources. Furthermore, we can employ alternating direction
implicit (ADI) methods to extend our algorithm to higher dimensions; a 2
dimensional example is shown in Section 7, and we reserve further discussion
on this topic for another manuscript.

We begin in Section 2 by introducing the semi-discrete approximations
for the wave equation, utilizing the MOLT approach and deriving the bound-
ary integral solution. We will consider two classes of semi-discrete schemes
which arise: backward difference formulas (BDFs), which we will show intro-
duce numerical diffusion (i.e., dissipative schemes); and time centered (TC)
schemes, which are purely dispersive (i.e., non-dissipative schemes).

In Section 3 we will analyze these semi-discrete boundary integral so-
lutions, and prove their consistency with solutions to the wave equation.
Next, we present the fully discretized numerical algorithm in Section 4. We
find that when the midpoint or trapezoidal rules are applied to perform
quadrature on the boundary integral, then the leading order error term is
not O(∆x2 + ∆t2) as expected, but rather O(∆x2 + (∆x/∆t)2), so that as
the step size and mesh are refined for a constant CFL number, the error is
non-vanishing! Instead, we must have ∆t ∼ ∆x1−ε, for some small positive
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value of ε in order to achieve convergence. This difficulty is alleviated by
imposing a Lax-type correction to the leading order truncation error term,
resulting in a novel quadrature method (31), which is optimal for our prob-
lem, and ensures convergence without any coupling between ∆t and ∆x.

In order to prove convergence, we make use of the Lax-Richtmeyer equiv-
alence theorem, which states that any consistent stable numerical algorithm
will converge to the exact solution, provided the problem is Cauchy. Thus, in
Section 5 we use Von-Neumann stability analysis to prove stability of our al-
gorithm. We perform this analysis for both the free-space problem, as well as
on a bounded domain. The latter result is of great importance for a boundary
integral method, although stability proofs rarely address a bounded domain.

In addition to the discretization error, we analyze the phase error for
sinusoidal solutions to the wave equation in Section 6. This section highlights
the importance of the Lax-type correction, which dramatically reduces the
phase error, in comparison to the trapezoidal quadrature scheme.

In Section 7 we present some numerical examples, comparing our method
to other relevant and comparable methods for solving the wave equation. In
Section 7.1 we extend our method to two and three spatial dimensions using
ADI methods. In Section 8, we conclude the paper.

2 Boundary integral solutions using MOLT

We will begin by applying the MOLT to the wave equation (1). Below,
we reserve un = un(x) for the semi-discrete approximation to v(x, tn), the
continuous solution of (1). When we consider collocation of the Laplacian
term in various manners, two different classes of discretization schemes can
be considered: dissipative and non-dissipative schemes.

2.1 Dissipative schemes

To construct the dissipative schemes, we first observe that the one-sided first,
and second order finite difference approximations to vn+1

tt = vtt(x, t
n+1) are:

vn+1
tt =

vn+1 − 2vn + vn−1

∆t2
+O(∆t), (2)

vn+1
tt =

2vn+1 − 5vn + 4vn−1 − vn−2

∆t2
+O(∆t2). (3)
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If we evaluate the Laplacian term at time tn+1, and make the substitution
(2), we have a backward difference formula (BDF) scheme

un+1 − 2un + un−1

∆t2
= c2un+1

xx . (4)

It will be shown in Section 3 that equation (4), along with the analogous
approximation arising from the second order approximation (3) produces
numerical dissipation. This effect may be desirable, for instance, when con-
sidering asymptotic preserving methods, for which c → ∞ (here, c is scaled
by some characteristic time and length scale), and the hyperbolic nature of
the equation transitions to an elliptic form.

2.2 Purely dispersive schemes

An alternative implicit formulation follows from time-centering the derivative
term. For example, if we use

vnxx = ∂xx

(
vn+1 + vn−1

2

)
+O(∆t2),

then a second order accurate semi-discrete approximation to equation (1) is

un+1 − 2un + un−1

(c∆t)2
= ∂xx

(
un+1 + un−1

2

)
. (5)

In Section 3 we show this symmetric formulation removes numerical dissi-
pation. Such purely dispersive schemes are more favorable for long time
simulations, which circumvent the spurious effects of numerical diffusion.

2.3 Boundary integral solution

This work differs from other MOLT methods, in that we consider integral so-
lutions to the boundary value problem, rather than utilizing finite difference
or finite elements methods for the spatial derivatives. Specifically, we solve
the resulting BVP by obtaining the free space Green’s function [6, 8, 11], and
applying Green’s theorem to obtain a boundary integral equation.

Observe that in both the dissipative (4) and non-dissipative (5) schemes,
the modified Helmholtz equation is obtained, although it may act on un+1
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alone, or some combination of un+1, un, and un−1. We therefore define the
general Helmoltz operator

Lβ[w](x) :=
(
∂xx − α2

)
w(x), α =

√
β

c∆t
, (6)

and the corresponding Helmholtz equation

Lβ[w](x) = −fβ(x), (7)

where fβ(x) represents a general source function parameterized by β.
Equation (7) can be formally solved by inverting the Helmholtz operator.

Using Green’s theorem, the integral solution is obtained as the sum of a
particular and a homogeneous solution, which incorporates boundary data

w(x) =L−1
β [−fβ(x)] = wp(x) + wh(x) (8a)

wp(x) =

∫ L

−L
fβ(y)G(x|y)dy, (8b)

wh(x) = [fβ(y)∂yG(x|y)− ∂yfβ(y)G(x|y)]L−L . (8c)

For the first order dissipative scheme (4) we set w = un+1, so that

un+1(x) = L−1
1

[
−α2

(
2un(x)− un−1(x)

)]
. (9)

The second order purely dispersive scheme (5) (with w = un+1 + un−1) is

un+1(x) + un−1(x) = L−1
2

[
−2α2un(x)

]
. (10)

Other schemes can be derived in a similar fashion. In R1, the free space
Green’s function for the modified Helmholtz equation is

G(x|y) = −e
−α|x−y|

2α
. (11)

Notice that in both dissipative and non-dissipative schemes, the right hand
side of the Helmholtz equations (9) and (10) are proportional to α2. Hence,
we need only to consider the quadrature of an infinite or finite convolution
integral

I[u](x) = α

∫ ∞
−∞

u(y)e−α|x−y|dy, J [u](x) = α

∫ L

−L
u(y)e−α|x−y|dy, (12)

where u represents a linear combination of un, and un−1, according to either
(4) or (5). It follows that

wp(x) = J

[
−fβ(x)

α2

]
.
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2.4 Homogeneous boundary conditions

The homogeneous term wh can be understood as a correction to enforce the
boundary conditions. In one dimension, it can be written as a linear com-
bination of the homogeneous solutions to the modified Helmholtz equation.
Thus, we replace (8c) with the ansatz

wh(x) = c1e
−α(L−x) + c2e

−α(L+x), (13)

and find c1 and c2 upon imposing given boundary conditions.
Specifically for homogeneous Dirichlet conditions, we have

0 = w|x=±L = (wp + wh) |x=±L.

Solving the resulting linear system for the unknowns c1 and c2 gives

wDh (x) =− sinh (α(L− x))

sinh (2αL)
wp(−L)− sinh (α(L+ x))

sinh (2αL)
wp(L). (14)

Alternatively for homogeneous Neumann conditions, we have

0 = w′|x=±L =
(
w′p + w′h

)
|x=±L.

Solving the resulting linear system for the unknowns c1 and c2 gives

wNh (x) =
cosh (α(L− x))

sinh (2αL)

w′p(−L)

α
− cosh (α(L+ x))

sinh (2αL)

w′p(L)

α
. (15)

The hyperbolic functions appearing in the coefficients can vary by several
orders of magnitude, and so we rescale them to avoid potential numerical
instabilities. If we neglect terms that are less than e−2αL in magnitude, then
the Dirichlet conditions take on a simpler form

wDh (x) ≈− e−α(L+x)wp(−L)− e−α(L−x)wp(L). (16)

Likewise, homogeneous Neumann conditions are given approximately by

wNh (x) ≈ e−α(L+x)
w′p(−L)

α
− e−α(L−x)

w′p(L)

α
. (17)

These simpler boundary conditions will be accurate to order ε provided
c∆t ≤ 2L/ log (1/ε). For double precision computations, we may safely use
equations (16) or (17) provided that a wave traveling with speed c does not
traverse the domain in less than 20 time steps. In computations of prac-
tical interest, this is usually not a limitation, and so we use these effective
boundary conditions without reservation.
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3 Analysis of the semi-discrete solution
We begin by establishing consistency for the semi-discrete integral solutions
presented in Section 2. We obtain results for the general free-space problem,
and then a specific result for homogeneous boundary conditions. Hence we
prove the following

Lemma 1. Let un+1(x) be the semi-discrete MOLT solution (9). Then
un+1(x) will be consistent of O(∆t). If un+1(x) is the semi-discrete MOLT
solution (10), then it will be consistent of O(∆t2).

3.1 Consistency in free space

Let v be the the exact solution satisfying to (1) on an infinite domain. The
global truncation error for the semi-discrete non-dissipative scheme (5) is

τn(x) =
vn+1 − 2vn + vn−1

(c∆t)2
− ∂xx

(
vn+1 + vn−1

2

)
=
−5∆t2

12c2
vtttt(x, ζ).

We now show that this agrees to leading order with the truncation error for
the integral solution in free space (5),

un+1(x) = I[un](x)− un−1(x),

where I[un](x) is as in equation (12). We define a modified truncation error

τ̃n(x) =
vn+1 + vn−1 − I[vn](x)

(c∆t)2
, (18)

which depends on the nature of the integral solution.

Lemma 2. For u ∈ C2p(R),

I[u](x) = 2

p−1∑
k=0

(
1

α

)2k

∂2k
x u(x) +

2

α2p
∂2p
x u(ξ). (19)

Proof. We note that

I[u](x) = −2α2

∫
G(x|y)u(y)dy, ∂xxG(x|y) = α2G(x|y) + δ(x− y).
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Thus

∂xxI[u](x) = −2α2

∫
∂2
xxG(x|y)u(y)dy

= −2α2

∫ (
α2G(x|y) + δ(x− y)

)
u(y)dy = α2I[u](x)− 2α2u(x).

Performing integration by parts twice (and making use of the fact that G
vanishes at infinity),

∂xxI[u](x) = I[uxx](x).

Equating both expressions,

I[u](x) = 2u(x) +
1

α2
I[uxx](x).

This argument can be iterated up to order 2p, and applying the integral mean
value theorem, we obtain the desired result.

We now make use of this result, and truncate at p = 2, to give

I[vn](x) = 2vn(x) +
2

α2
vnxx(x) +

2

α4
vnxxxx(ξ)

The truncation error (18) then becomes

τ̃n =
1

(c∆t)2

(
vn+1 + vn−1 − I[vn]

)
=

1

(c∆t)2

(
vn+1 + vn−1 − 2vn

)
− 1

(c∆t)2

(
2

α2
vnxx(x) +

2

α4
vnxxxx(ξ)

)
=

1

c2

(
vtt +

∆t2

12
vtttt(x, η)

)
−
(
vxx +

(c∆t)2

2
vxxxx(ξ, tn)

)
=

∆t2

12c2
vtttt(x, η)− ∆t2

2c2
vtttt(ξ, tn) =

−5∆t2

12c2
vntttt(ξ, ζ)

where we have expanded the terms vn±1 in a Taylor series about tn, and that

vtttt = c2vxxtt = c4vxxxx.

The same ideas may now be applied to the first order dissipative free space
solver (4). However, the expansion is now about tn+1, and the semi-discrete
solution is given by

un+1(x) = I

[
un − 1

2
un−1

]
(x)
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while the truncation error is

τn+1 =
1

(c∆t)2

(
vn+1 − I

[
vn − 1

2
vn−1

])
. (20)

Using Lemma 1 (with p = 1), a Taylor expansion about tn+1 gives,

τn+1 =
1

(c∆t)2

(
vn+1 − 2vn + vn−1 − (c∆t)2∂xx(2v

n − vn−1)(ξ)
)

=
1

c2

(
vn+1
tt −∆tvn+1

ttt

)
− vn+1

xx +O(∆t2) = −∆t

c2
vn+1
ttt (x, ζ),

and thus the integral solution is first order in time.

3.2 Consistency with boundary conditions

Now we consider the consistency of the semi-discrete solution when homoge-
neous Dirichlet conditions are implemented. For the purely dispersive solver
(5), the truncation error is

τn =
1

(c∆t)2

(
vn+1 + vn−1 − J [vn](x)

)
,

where

J [vn](x) = (−2α2)

∫ L

−L
GD(x|y)vn(y)dy.

The Green’s function GD, which satisfies homogeneous Dirichlet boundary
conditions, is found by expanding the definitions of wp(±L), so that

GD(x|y) =
e−α|x−y|

−2α
+

sinh(α(L+ x))e−α(L−y) + sinh(α(L− x))e−α(L+y)

2α sinh(2αL)
.

(21)
Note that written in this manner, the boundary integrals vanish identically,
since both GD and v vanish at x = ±L. We omit the truncation error anal-
ysis for the homogeneous Neumann problem, but record the corresponding
Green’s function

GN(x|y) =
e−α|x−y|

−2α
+

cosh(α(L+ x))e−α(L−y) − cosh(α(L− x))e−α(L+y)

2α sinh(2αL)
.

(22)
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We also observe that at x = ±L, vn and all even spatial derivatives vanish,

lim
x→±L

∂2m
x v(x, t) = lim

x→±L

(
1

c
∂t

)2m

v(x, t) =

(
1

c
∂t

)2m

v(±L, t) = 0.

The order of the limits and the derivatives can be swapped as long as the
2m-th derivatives of vn exist and are continuous.

We proceed as before with repeated use of integration by parts. In analog
to the free space problem, we have the following

Lemma 3. Suppose u(x) ∈ C2p([−L,L]) satisfies ∂2k
x u(x = ±L) = 0, for

k = 0, 1, . . . p. Then

J [u](x) = 2

p−1∑
k=0

(
1

α

)2k

∂2k
x u(x) +

2

α2p
q(x)∂2p

x u(ξ), (23)

where q(x) = 1
2

∫ L
−LGD(x|y)dy.

Proof. If we take the Laplacian of J [u](x), we find

∂xxJ [u](x) =− 2α2

∫ L

−L
∂xxGD(x|y)u(y)dy

=− 2α2

∫ L

−L

(
α2GD(x|y) + δ(x− y)

)
u(y)dy = α2J [u](x)− 2α2u(x).

Integrating by parts gives ∂xxJ [u](x) = J [uxx](x) for x ∈ (−L,L), Hence,

J [u](x) = 2u(x) +
1

α2
J [uxx](x).

Upon iterating this argument up to order 2p, we obtain the desired result.
The last remainder term involving q(x) is an application of the integral mean
value theorem.

The global truncation error can now be obtained:

τn =
1

(c∆t)2

(
vn+1 + vn−1 − J [vn]

)
=

1

(c∆t)2

(
vn+1 + vn−1 −

[
2vn + (c∆t)2vnxx + q(x)

(c∆t)4

2
vnxxxx(ξ)

])
=

1

c2

(
vntt +

∆t2

12
vntttt +O(∆t4)

)
− vnxx − q(x)

(c∆t)2

2
vnxxxx(ξ)

=
(1− 6q(x))(c∆t)2

12
vxxxx(ξ, η). (24)
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A rather involved calculation gives

q(x) =
1

2

∫ L

−L
GD(x, y)dy = 1− sinh(α(L+ x))

sinh(2αL)
− sinh(α(L− x))

sinh(2αL)
.

Notice that q(±L) = 0 and q(x) ≈ 1 away from the boundary, whenever αL
is large. This is to be expected, as the error term should vanish identically
at the boundary (the function is imposed exactly there), and approximately
recover the free space solution in the interior of the domain. Hence, the
semi-discrete dissipative scheme on a finite domain is second order accurate
in time, and is very similar to that found for the free space problem.

Similar proofs will hold for homogeneous Neumann boundary conditions,
as well as for the first order dissipative scheme.

4 One-dimensional formulation
In this section we detail our numerical approach in one spatial dimension.
In Section 7.1 we will extend this approach to higher dimensions using ADI
splitting.

The proceeding analysis will be used to prove the convergence of our
numerical scheme, which will follow from the Lax-Richtmeyer equivalence
theorem. Specifically, we prove the following

Theorem 4. Let v(xj, tn+1) be the continuous solution at (xj, tn+1) to the
wave equation (1) with homogeneous Dirichlet, or Neumann boundary con-
ditions. If un+1

j (x) is the discrete first order dissipative MOLT solution (33),
with the corresponding Dirichlet (40) or Neumann (42) boundary conditions,
and the optimal quadrature rule (31) is applied, then un+1

j will be accurate
with v(xj, tn+1) of O(∆t + ∆x2). If the second order non-dissipative MOLT
scheme (34) is used instead, then un+1

j will be accurate with v(xj, tn+1) of
O(∆t2 + ∆x2). Both methods for obtaining a numerical solution are stable
for 0 ≤ t ≤ T , T > 0, and thus convergent.

4.1 Fully discrete solution

Consider the spatial discretization of the particular (8b) and homogeneous
(8c) solutions in our boundary integral solution (8a). We first develop a
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quadrature rule for (12). Next we apply it to homogeneous Dirichlet and
Neumann conditions.

Let the real line be partitioned into subintervals of length ∆x, and define
xj = j∆x. Evaluating both u(x) and I[u] at the midpoint values x = xj−1/2

yields

I[u](xj−1/2) = α

∫ ∞
−∞

u(y)e−α|y−xj−1/2|dy ≈
∞∑

i=−∞

ui−1/2

(
α

∫ xi

xi−1

e−α|y−xj−1/2|dy

)
.

The remaining integral can be evaluated analytically. Hence,

Ij−1/2 = 2a0ui−1/2 + 2a1

∑
i 6=j

e−|j−i|νui−1/2,

where ν = α∆x, and

a0 = 1− e−
ν
2 , a1 = sinh

(ν
2

)
. (25)

Similarly, we may use the trapezoidal rule to obtain a quadrature, with
u(x) and I[u] bot evaluated at the values x = xi. Upon replacing u with a
linear interpolant and evaluating the resulting integrals analytically we find

Ij = 2a0uj + 2a1

∑
i 6=j

e−|j−i|νui, (26)

where now
a0 = 1− 1− e−ν

ν
, a1 =

2

ν
sinh2

(ν
2

)
. (27)

In both quadrature rules, there is a relation between a0 and a1,

a0 = 1− 2a1

eν − 1
, (28)

which is implied by insisting that the rule be exact for constant functions u.
The quadrature error can be found by expanding u(x) in a Taylor series
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about xj (or xj−1/2 for the midpoint rule). We utilize (28), and obtain

Ij =2uj + 2a1

∞∑
k=1

e−kν(uj+k + uj−k − 2uj)

=2uj + 4a1

∞∑
k=1

e−kν
(

(k∆x)2

2
u′′j +

(k∆x)4

24
u(4)(ξ)

)

=2uj + a1

(
4
∞∑
k=1

k2e−kν

)
∆x2

2
u′′j + a1

(
4
∞∑
k=1

k4e−kν

)
∆x4

24
u(4)(ξ)

=2uj + ã1

(
∆x2

2
u′′j +

(
1 +

3

sinh2
(
ν
2

)) ∆x4

24
u(4)(ξ)

)
,

where
ã1 =

a1

tanh
(
ν
2

)
sinh2

(
ν
2

) . (29)

Comparing with (19), the quadrature error is

I[u](xj)− Ij =

(
1

α2
− ã1

∆x2

2

)
u′′j +O

(
∆x4 +

(
1

α4

))
. (30)

This quadrature error appears as a an additional term in the truncation
error (24), which is subsequently scaled by a factor of (c∆t)2; thus the fully
discrete truncation error contains a term that is O(∆x2/(c∆t)2) = O(ν2).
We emphasize that this error term will remain O(1) whenever ∆t = O(∆x),
even if the time step is refined.

4.2 A Lax-type correction

In order to overcome this difficulty, we apply a Lax-type correction, which
will raise the accuracy of the quadrature rule, and eliminate this term from
the truncation error. For simplicity, we treat the parameters a0 and a1 from
equation (26) as free parameters, rather than defining them using a quadra-
ture rule. We now impose (28) as before, but use the remaining free parame-
ter to impose that the leading order term of the quadrature error (30) vanish.
In doing so, we find a quadrature rule of the form (26), with

a0 = 1− 2

eν + 1

(
2

ν
sinh

(ν
2

))2

, a1 =

(
2

ν
sinh

(ν
2

))2

tanh
(ν

2

)
. (31)
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We will refer to this quadrature rule as an optimal two-parameter quadrature
rule for the integrals (12) in the sense that it uniquely reduces the size of the
truncation error (20).

Lemma 5. The fully discrete solution unj , obtained by applying the midpoint
and trapezoidal rules to equation (8) will be accurate of order O(∆tβ + ν2),
where β = 1 if equation (9) is solved, and β = 2 if (10) is solved. The
optimal quadrature (31) obtains accuracy of O(∆tβ + ∆x2).

4.3 Discrete treatment of boundary conditions

Returning the focus of the discussion to a finite domain, we examine the
sum (26), and incorporate the boundary conditions. Let xj = −L+ j∆x for
j = 0, . . . N , where ∆x = 2L/N . On a finite domain, the quadrature rule
takes the form

Jj = a0

(
2uj − u0d

j − uNdN−j
)

+ 2a1

(
j∑

k=1

dkuj−k +

N−j∑
k=1

dkuj+k

)
, (32)

where d = e−α∆x, and the new terms are due to endpoint corrections. Define
the solution vector ūn = [un(x0), . . . , un(xN)]T . An analogous vector will be
defined for the midpoint rule, collocated at the semi-grid points xj−1/2 for
j = 1, . . . N . We now interpret (32) as a the product of the solution vector
with a discrete convolution matrix Ap. In direct analog to the particular (8b)
and homogeneous (8c) solutions, define the total discrete convolution matrix
as A = Ap + Ah. Then the first order dissipative scheme corresponding to
equation (4) is formulated as

ūn+1 = A
(
2ūn − ūn−1

)
. (33)

The second order non-dissipative scheme corresponding to equation (5) is

ūn+1 = 2Aūn − ūn−1. (34)

Since we are solving the wave equation discretely, the action of the matrix
A is to propagate waves to the left and right, with speed c, and so we can
interpret A as the propagation matrix. The structure of A, which we will
detail below, makes our fast algorithm possible; both the particular and
homogeneous matrix vector products can be computed in O(N) operations.
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To build the discrete convolution matrix, define the vectors

v̄± = e−α(L±x̄), w̄D± =
v̄∓ − e−2αLv̄±

1− e−4αL
=

1

1− d2N

(
v̄∓ − dN v̄±

)
,

w̄N± =
v̄∓ + e−2αLv̄±

1− e−4αL
=

1

1− d2N

(
v̄∓ + dN v̄±

)
,

where x̄ = (−L,−L + ∆x, . . . , L − ∆x, L)T corresponds to the grid points
for the trapezoidal and (Lax) optimal rules (and the semi-gridpoints for the
midpoint rule), and d = e−ν = e−α∆x. The vectors w̄± are used in the imple-
mentation of either Dirichlet or Neumann boundary conditions, according to
their superscripts. We first use equation (32) to determine the form of Ap.
For the midpoint rule, the particular matrix is given by

Ap = (a0 − a1)I + a1T (35)

where I is the N ×N identity matrix, and T is a symmetric Toeplitz matrix
whose first row (and column) is given by v+. Note that T is defined solely in
terms of the parameter d, as

T =


1 d . . . dN−1

d 1
... . . . ...

1 d
dN−1 . . . d 1

 . (36)

The trapezoidal and (Lax) optimal quadratures are similar, but T will now
be of size N + 1×N + 1, and the endpoint corrections, which can be written
as rank-one updates, will be included; thus

Ap = (a0 − a1)I + a1T −
a0

2
(v̄+ ⊗ ē1 + v̄− ⊗ ēN+1) (37)

where ē1 = (1, 0, . . . 0)T , and ēN+1 = (0, . . . , 0, 1)T .
The boundary matrices follow from discretization of (14) and (15). Omit-

ting the details, we find

ADh =− a1

[
w̄D− ⊗ (v̄+ − ē1) + w̄D+ ⊗ (v̄− − ēN+1)

]
− a0

2

[
(w̄D− − dN w̄D+ )⊗ ē1 + (w̄D+ − dN w̄D− )⊗ ēN+1

]
, (38)

ANh =a1

[
w̄N− ⊗ (v̄+ − ē1) + w̄N+ ⊗ (v̄− − ēN+1)

]
+
a0

2

[
(w̄N− − dN w̄N+ )⊗ ē1 + (w̄N+ − dN w̄N− )⊗ ēN+1

]
. (39)
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As mentioned in Section 2, the homogeneous Dirichlet boundary condi-
tions undergo a substantial simplification provided terms that are O(dN =
e−2αL) are small. We will first make use of the identities

w̄D± = v̄∓ − dN w̄D∓ , w̄N± = v̄∓ + dN w̄N∓ ,

and subsequently neglect all terms that are O(dN) in the boundary matrices
(38) and (39). After some additional algebra, the full discrete convolution
matrix for the Dirichlet problem is

AD = (a0 − a1)(I − e1 ⊗ e1 − eN+1 ⊗ eN+1) + a1(T − w̄D− ⊗ v̄+ − w̄D+ ⊗ v̄−)
(40)

≈(a0 − a1)(I − e1 ⊗ e1 − eN+1 ⊗ eN+1) + a1 (T − v̄+ ⊗ v̄+ − v̄− ⊗ v̄−)
(41)

while the Neumann matrix is

AN =(a0 − a1)I + a1

(
T + w̄N− ⊗ (v̄+ − ē1) + w̄N+ ⊗ (v̄− − ēN+1)

)
(42)

≈(a0 − a1)I + a1 (T + v̄+ ⊗ (v̄+ − ē1) + v̄− ⊗ (v̄− − ēN+1)) . (43)

The matrix A is set to (40) or (42) depending on the boundary conditions,
although in practice the approximations (41) and (43) respectively are used
for actual computation.

5 Stability
We now prove the stability of our fully discrete schemes (33) and (34), and
complete the convergence proof of Theorem 4.

Lemma 6. The fully discrete solution unj , obtained with (34), with A given
by (40) or (42) will be stable for 0 ≤ t ≤ T , for any T > 0, and any choice
of ∆x and ∆t. If unj is obtained with (33), with A given by (37), then it will
be stable for 0 ≤ t ≤ T , for any T > 0 and any choice of ∆x and ∆t.

Remark 1. The bound we find below does not guarantee stability for the
dissipative method (33), for a narrow range of ν. Our numerical solutions
have exhibited no instabilities, and evaluation of the true eigenvalues over the
narrow range of ν shows that they have magnitude less than 1.
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Our proof utilizes Von-Neumann stability analysis, and a special result
for the eigenvalues of the Toeplitz matrix (36). We will establish stability
for these schemes below by studying the eigenvalues of Ap given by (35), and
A = Ap+Ah. Since Ah will be exponentially small away from the boundaries,
the main part of our work will focus on analyzing the eigenvalues of Ap.

5.1 The Eigenvalues of Ap

We now make a crucial observation which allows us to make several analytical
remarks about the stability of our algorithm. The inverse of our Toeplitz
matrix T in equation (36) is given by

T−1 =
1

1− d2


1 + d2 −d
−d 1

. . . . . . . . .
1 −d
−d 1 + d2


This observation makes it possible to use a result of Yueh and Cheng [14],
in which the eigenvalues for tridiagonal matrices with perturbed corners are
found. This establishes that the eigenvalues of T are given by

τk =
1− d2

1 + d2 + 2d cos (θk)
, 1 ≤ k ≤ N,

where θk is a root of

sin((N + 1)θ) + 2d sin(Nθ) + d2 sin((N − 1)θ) = 0, θ ∈ (0, π).

The spectrum of T is easily bounded by letting θk = 0, π, and after some
algebraic manipulation and making use of d = e−ν ,

tanh
(ν

2

)
< τk < coth

(ν
2

)
.

Lemma 7. The eigenvalues λk of the matrix Ap given by equation (35) are
contained in the interval (0, 1).

Proof. Observing the relationship between Ap and T , the eigenvalues λk are
related to τk by

λk = (a0 − a1) + a1τk = 1− a1

(
coth

(ν
2

)
− τk

)
(44)
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where we have used (28), and several hyperbolic trigonometric identities. We
can now bound the eigenvalues, and after several more identities we find that

1− a1

sinh
(
ν
2

)
cosh

(
ν
2

) < λk < 1.

If we evaluate these expressions for the midpoint, trapezoidal and optimal
quadratures we find that in all cases, 0 < λk < 1, which proves the lemma.

Lemma 8. The matrix Ap is symmetric positive definite, and therefore di-
agonalizable.

Proof. The symmetry of Ap follows from that of T . Positive definiteness
follows from the previous lemma.

5.2 Stability of the dissipative scheme with A = Ap

We now prove the stability of equations (33) and (34), with A = Ap (i.e.,
Ah = 0). Following the standard approach of Von-Neumann, we make the
ansatz ūn = µnū0 for n ≥ 0, and find the amplification factors µ. Since
we have a multistep scheme, there will be 2N roots of the Von-Neumann
polynomial. However, since we have shown that Ap is a symmetric positive
definite matrix, we know that there exists an orthonormal matrix Q such
that Ap = QΛQT , where Λ is the diagonal matrix with entries given by (44).
Thus, if we define v̄ = QT ū0, and multiply equations (33) and (34) by Q,

µn+1v̄ =
(
2µn − µn−1

)
Λv̄. (45)

µn+1v̄ =
(
2µnΛ− µn−1I

)
v̄. (46)

Since these latter forms are expressed as the determinant of a diagonal ma-
trix, the Von-Neumann polynomial can be written in factored form, and the
amplification factors of (45) µ±k will be determined in pairs by the expressions

µ2
k − 2λkµk + λk = 0, 1 ≤ k ≤ N,

and similarly, for (46)

µ2
k − 2λkµk + 1 = 0, 1 ≤ k ≤ N.
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The dissipative scheme will thus have amplification factors given by

µ±k = λk ± i
√
λk − λ2

k. (47)

Since λk ∈ (0, 1), we see immediately that the amplification factors form
complex conjugate pairs. Further, since each θk is distinct, this means that
for each k, the roots of the Von-Neumann polynomial will also be distinct.
If we further show that |µ±k | ≤ 1, then we will have shown stability of the
numerical scheme. Taking the modulus of the roots, we have

|µ±k | =
√
λ2
k + λk − λ2

k =
√
λk < 1.

Thus, the first order system will be stable, and, since |µ±k | < 1, dissipative.
Likewise, the roots of the non-dissipative scheme are given as

µ±k = λk ± i
√

1− λ2
k.

This time, the modulus of each complex conjugate pair is

|µ±k | =
√
λ2
k + 1− λ2

k = 1.

Thus, since the eigenvalues are all distinct, the method is stable, and, since
|µ| = 1, the scheme is non-dissipative.

5.3 Stability with A = Ap + Ah

In this section, we turn our attention to the Dirichlet boundary matrix A =
AD, from equation (40). We treat the matrix ADh , given by equation (38)
perturbatively, and look for the eigenvalues of A, denoted λ + δ, where λ is
an eigenvalue of Ap. Stability will follow if we can show that |µ| ≤ 1, where
µ is now given by

µ2 − 2(λ+ δ)µ+ λ+ δ = 0

in the dissipative scheme and

µ2 − 2(λ+ δ)µ+ 1 = 0

in the non-dissipative scheme. Note that the boundary corrections are such
that the first and last columns, (as well as the rows) of AD are identically zero,
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which means that we can omit the terms in equation (38) involving e1 and
eN+1, and the corresponding zero eigenvalues. Stability will hold provided
λ + δ ∈ [−1, 1] for the non-dissipative scheme, which can be shown to be
the case using Gershgorin’s theorem. However, for the dissipative scheme,
we require the more restrictive range λ + δ ∈ [−1/3, 1] to ensure stability.
Below, we will make use of the Bauer-Fike theorem.

Theorem 9. Let A be a diagonalizable matrix, and Q be the non-singular
eigenvector matrix such that A = QΛQ−1, where Λ is the diagonal matrix
containing the eigenvalues of A. Then for the matrix A+E, with eigenvalues
λ+ δ, and where E is an arbitrary perturbation matrix, the following holds

|δ| ≤ κ(Q)||E||,

where || · || denotes the 2-norm, and κ(·) is the condition number.

We will apply this theorem with A set to the middle (N − 1)× (N − 1)
entries (i.e. nonzero rows and columns) of the free space matrix Ap; and
E the corresponding portion of ADh . Since Ap is a real symmetric positive
definite matrix (hence Q is orthonormal), we have κ(Q) = 1. Thus,

|δ| ≤ ||ADh ||,

and so we restrict our attention to the norm of ADh , given by equation (38),
(again, after omitting the terms involving e1 and eN+1). Since it is given
entirely in terms of two vectors, ADh is at most rank two. Specifically, we
have [12] that the eigenvalues of ADh are given by

λ± =
Tr(ADh )± Tr(JADh )

2
,

where Tr(·) denotes the trace, and J is the counter-identity matrix, with
ones along the anti-diagonal. In particular, we note that Jv± = v∓. Notice
also that ADh is symmetric; therefore, the 2-norm of the matrix is equal to its
spectral radius (i.e., the absolute value of the maximum eigenvalue)

||ADh || =
∣∣∣∣Tr(ADh ) + Tr(JADh )

2

∣∣∣∣ .
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This value can be computed using dot products; observe that

Tr (v̄± ⊗ v̄±) =v̄± · v̄± =
N−1∑
k=1

e−2α(L±xk) =
d2

1− d2

(
1− d2N

)
Tr (v̄± ⊗ v̄∓) =v̄± · v̄∓ =

N−1∑
k=1

e−2αL = (N − 1)dN

which follows from ν = α∆x, 2L = N∆x, and d = e−ν . Additionally,
Jw± = w∓, and so we have

|δ| ≤ ||ADh || =
a1

2
Tr
[(
w̄D+ + w̄D−

)
⊗ (v̄+ + v̄−)

]
=
a1

2

1− dN

1− d2N
Tr [(v̄+ + v̄−)⊗ (v̄+ + v̄−)]

= a1(1− dN)

(
d2

1− d2
+

d2N

1− d2N
(N − 1)

)
= a1c(N, d).

In Table 1, the maximum value (over N) of the bound is given for various
values of ν; the values for the optimal and trapezoidal rules were identical to
4 digits of precision. The largest eigenvalue of ADh is approximately 0.3361,
which is slightly larger than 1/3. Thus, while our analysis cannot guarantee
stability for the dissipative scheme, it more than does for the non-dissipative
scheme. However, we stress that this bound is loose, and that in the indicated
region the full eigenvalues λ+ δ have been computed, and are less than 1 in
magnitude. Thus, we conclude that the method is stable. To further validate
this statement, numerical simulations using values of N and ν corresponding
to potential instabilities nonetheless produce stable convergent solutions.

ν max |δ| ν max |δ|
0.001 0.3361 0.008 0.3342
0.002 0.3358 0.016 0.3319
0.004 0.3353 0.032 0.3275

Table 1: Bound for the perturbation of the free space eigenvalues.
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6 Dispersion
We now analyze the phase error of our free-space approximation. The con-
tinuous dispersion relation results from looking at sinusoidal solutions of the
wave equation, v(x, t) = ei(kx−ωt), which gives ω2 = c2k2. We now analyze
the semi-discrete, and fully discrete dispersion relations, and define the phase
error for the dissipative and non-dissipative schemes. We will only examine
the free-space problem here.

6.1 Semi-discrete schemes

For the semi-discrete equation we define un(x) = ûeikx−iω̃(n∆t), where ω̃ de-
notes the discrete temporal frequency. Plugging this ansatz into the non-
dissipative scheme (10), we get

(
e−iω̃∆t + eiω̃∆t

)
ûeikx−iω̃(n∆t) =

(
α

∫ ∞
−∞

e−α|x−y|eikydy

)
ûe−iω̃(n∆t).

We cancel the common term to get

cos (ω̃∆t) =
α

2

∫ ∞
−∞

e−α|x−y|−ik(x−y)dy =
α

2

∫ ∞
0

e−αz
(
eikz + e−ikz

)
dz (48)

after the change of variables z = y − x. The right hand side can be viewed
as a Laplace transform of cos kz, and this expedites the evaluation of the
integral. Thus

cos (ω̃∆t) =
α2

α2 + k2
= 1− s, (49)

where
s =

z2

1 + z2
, z =

k

α
. (50)

This is the semi-discrete analog to the continuous dispersion relation. To
avoid aliasing, we are only interested in wave numbers in the region 0 ≤
ω̃∆t ≤ π. The phase error can then be defined as

Φ(∆t) =

∣∣∣∣ ω̃kc − 1

∣∣∣∣ .
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For a fixed frequency k, we can analyze the convergence of this approximation
using a Taylor series approximation for small z = k/α = kc∆t/

√
2. First,

we make use of trigonometric identities in (49) to obtain

sin2

(
ω̃∆t

2

)
=
s

2
=

1

2

(
z2

1 + z2

)
. (51)

Now using the expansion for arcsin, we get

ω̃ =
2

∆t
arcsin

(
z√

2(1 + z2)

)
= kc

(
1− 5(kc∆t)2

24
+O(∆t4)

)
from which it follows that the phase error is second order.

For the dissipative scheme, we define un as before, and eventually obtain
e−iω̃∆t =

(
2− eiω̃∆t

)
(1− s), where s is defined by (50). From this expression

we isolate ω̃ by solving a quadratic polynomial for λ = eiω̃∆t. The quadratic
equation now admits complex solutions λ = 1 ± ikc∆t. Thus, the temporal
frequencies will be complex (dissipative),

ω̃ =
1

i∆t
log (1 + ikc∆t) = kc

(
1− ikc∆t

2
+O(∆t2)

)
,

and the phase error is first order.

6.2 Fully discrete schemes

Next we focus our attention on the fully discrete form of the non-dissipative
scheme (10). The only modification to equation (48) will be that the integral
is replaced with an infinite sum. Let unj = ûei(kj∆x−nω̂∆t), where now ω̂
denotes the fully discrete temporal frequency. We make use of (26), along
with (28) to simplify the evaluation of the infinite sum. After cancellation of
the common term, the fully discrete dispersion relation is

cos (ω̂∆t) = 1− 2a1

eν − 1
+ a1

∞∑
m=1

e−kmν
(
eikm∆x + e−ikm∆x

)
= 1− σ

where after some algebra we find the discrete analog to (50)

σ = a1 coth
(ν

2

)( ζ2

1 + ζ2

)
, ζ =

sin
(
k∆x

2

)
sinh

(
ν
2

) . (52)
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Notice that since ν = α∆x, ζ ≈ z for small k∆x and ν. As in the semi-
discrete analysis, we study the phase for a fixed frequency k. After some
additional algebraic manipulation, we arrive at

sin2

(
ω̂∆t

2

)
=
σ

2
=
a1

2
coth

(ν
2

)( ζ2

1 + ζ2

)
.

Since we are interested in implicit methods, the relevant inequality is ∆x <
c∆t, and so we consider the limit of the phase error for ∆x,∆t → 0, with
ν a small, fixed quantity. If we assume that k∆x � 1, then it follows that
ω∆t� 1 as well, and the dispersion relation reduces to

ω̂∆t ≈ k∆x

√
ã1

2
+O((k∆x)2),

where ã1 is defined in equation (29), and applies to each type of quadrature
considered. After making use of ν = α∆x, the phase error satisfies

Φ(ν,∆x,∆t) =

∣∣∣∣ ω̂kc − 1

∣∣∣∣ ≈
∣∣∣∣∣
√
ã1
ν2

4
+O((k∆x)2)− 1

∣∣∣∣∣
Perusal of the quadrature schemes we have considered reveals that the mid-
point (25) and trapezoidal (27) rules will produce a phase error that is O(ν2),
whereas for the optimal quadrature (31), the fraction inside the radical of
the phase error reduces exactly to unity, and the phase error is now properly
second order. In Figure 1, the phase error is greatly reduced with the opti-
mal quadrature when compared to the trapezoidal quadrature for the fully
discrete scheme. In particular, the error in the static limit is zero in the
former case, not in the latter.

The fully discrete dispersion relation for the dissipative scheme is

e−iω̂∆t =
(
2− eiω̂∆t

)
(1− σ)

where σ is defined by (52). The dispersion relation is a quadratic polynomial
in λ = exp (iω̂∆t), with solution λ = 1± i

√
σ

1−σ . Thus

ω̂ =
1

i∆t
log

(
1± i

√
a1 coth

(
ν
2

)
ζ2

1 + ζ2 + a1 coth
(
ν
2

)
ζ2

)
.
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(b) Trapezoidal rule (27)

Figure 1: Phase error comparison

Finally, if we fix ν and k and let ∆x → 0, the static limit of the first order
phase error is given by

lim
∆x→0

Φ̃(ν,∆x,∆t) =

∣∣∣∣ ω̂kc − 1

∣∣∣∣ ≈
∣∣∣∣∣
√
ã1
ν2

4
+O((k∆x)2)− 1

∣∣∣∣∣ ,
which is exactly the same limit as for the non-dissipative scheme.

7 Numerical Results
In this section we present a refinement study of the numerical schemes (33)
and (34). The wave equation is computed on the unit interval, with wave
speed c = 2, up to a time t = T = 1, and zero Dirichlet conditions are
imposed. For the initial condition we prescribe a Gaussian

v(x, 0) = e−( 12x
L )

2

, vt(x, 0) = 0

which will be initially of negligible amplitude at the boundaries, and will
have the exact solution

v(x, t) =
1

2

(
e−( 12(x−ct)

L )
2

+ e−( 12(x+ct)
L )

2
)
.

The problem is discretized so that the ratio c∆t/∆x is held fixed at 10 in
the first order dissipative scheme, and 20 in the second order non-dissipative
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scheme. Note that in both cases, this quantity is well beyond the CFL stabil-
ity limit imposed on explicit finite difference schemes. The spatial step ∆x =
1/N is varied in the range corresponding to N ∈ [50, 12800], and ∆t is scaled
accordingly. The error is computed as ‖(‖v(x, t)−u(x, t)‖L2[0,1])‖L∞[0,T ], and
the results are shown in Figure 2. Notice that in the first order scheme, the
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(a) First order scheme (33)
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(b) Second order scheme (34)

Figure 2: Convergence of numerical schemes

midpoint and trapezoidal methods perform as well as the optimal quadra-
ture rule, since the range of ∆t is such that ∆t > ν2, and so the error due to
spatial discretization is not observed. This is in contrast to the second order
scheme, which shows the superiority of the optimal quadrature. The error in
the midpoint and trapezoidal rules will not decrease beyond O(ν2) even as
we refine ∆t and ∆x.

7.1 Extension to higher dimensions

Thus far we have developed a numerical approach for solving the one-dimensional
wave equation implicitly. Since the matrices (40) and (42) are comprised of a
diagonal matrix, a Toeplitz matrix and several rank-one updates, their prod-
uct with a vector can be computed in O(N) operations. We can make use of
this result in higher dimensions by performing ADI splitting. Observe that
the Helmholtz operator (6)

(
∇2 − α2

)
= −α2

(
1− 1

α2

∂2

∂x2

)(
1− 1

α2

∂2

∂y2

)(
1− 1

α2

∂2

∂z2

)
+O

(
1

α2

)
,
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which shows that each spatial component of the Laplacian can be factored,
resulting in three R1 problems. The error is O(1/α2) = O(c2∆t2), which is
the same order as the truncation error. Thus, the fast algorithm developed
can be used to obtain fully 3 dimensional boundary integral solutions. More
details about this algorithm will be reported in a separate work.

For now we show several examples of our method. First, we utilize the
ADI scheme presented to generate sinusoidal modes on a rectangular geom-
etry (x, y) ∈ [0, Lx]× [0, Ly]]. The initial condition is

u(x, y, 0) = sin

(
2πx

Lx

)
cos

(
2πx

Ly

)
, ut(x, y, 0) = 0,

and we impose homogeneous Dirichlet conditions at x = 0, Lx, with homo-
geneous Neumann conditions in y = 0, Ly.

Several plots of the solution are shown in Figure 3. Here we have taken
Lx = Ly = 1, ∆x = ∆y = 1/256, and ∆t = 1/80.

Next, we show the power of using an integral method over a differential
method with the following classical example of a vibrating mode. We impose
homogeneous Dirichlet conditions on a circle of radius R, with

u(x, y, 0) = J0

(
z2

√
x2 + y2

R

)
, ut(x, y, 0) = 0,

where J0 is the Bessel function of the first kind of order 0, and z2 ≈ 5.5201 is
its second zero. The exact solution is then given by u(x, y, t) = u(x, y, 0) cos(z2ct),
and the numerical solution is shown for several times in Figure 4. To perform
the computation, the unit circle (R = 1) was embedded inside a square mesh
of width ∆x = ∆y = 0.01, and the solution was truncated to include only
those points which fall within (or on) the circle. The points that are used in
the x and y sweep are shown in Figures 5(a) and 5(b) respectively.

Since the ADI method is used, the boundary conditions are enforced by
constructing the integrals along each horizontal/vertical line on the mesh
(blue dots) in turn, with two additional points (red dots) which are on the
circle. At these points, we enforce that u vanish, by augmenting the boundary
matrix Adh (38) accordingly. As shown in Figure 4, no spurious effects at
the boundary are observed, even though several points on the circle come
arbitrarily close to the internal mesh.
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Figure 3: Plots of the (1,1) mode on a square domain.
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Figure 4: Plots of the (2,0) mode on a circular domain.

30



−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(a) x sweep

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.5 0 0.5 1

(b) y sweep

Figure 5: Grids used for ADI splitting

8 Conclusion
Thus we have introduced a computational method for solving the wave equa-
tion with the method of lines transpose. Our approach differs from existing
methods in that we solve the semi-discrete equation using a boundary in-
tegral solution. Since our method is implicit, there is no restriction on the
time step, and so we have a competitive advantage over explicit time stepping
algorithms.

We have considered a fully implicit scheme (i.e., in which the Helmholtz
operator is treated implicitly), and showed that it is dissipative, as well as
a time-averaged approach that leads to a non-dissipative scheme. We also
analyzed the fully discretized schemes that result when the integral solution is
discretized using the midpoint and trapezoidal rules. We showed convergence
and stability for each of these schemes, and validated our models with a
numerical example.

References
[1] Uri M. Ascher, Robert M. M. Mattheij, and Robert D. Russell, Numer-

ical solution of boundary value problems for ordinary differential equa-
tions, Classics in Applied Mathematics, vol. 13, Society for Industrial
and Applied Mathematics (SIAM), Philadelphia, PA, 1995, Corrected
reprint of the 1988 original. MR 1351005 (96f:65075)

31



[2] H. Cheng, L. Greengard, and V. Rokhlin, A fast adaptive multipole
algorithm in three dimensions, J. Comput. Phys. 155 (1999), no. 2,
468–498.

[3] R. Coifman, V. Rokhlin, and S. Wandzura, The fast multipole method
for the wave equation: A pedestrian prescription, IEEE Trans. Antennas
and Propagation 35 (1993), no. 3, 7–12.

[4] Zydrunas Gimbutas and Vladimir Rokhlin, A generalized fast multipole
method for nonoscillatory kernels, SIAM J. Sci. Comput. 24 (2002),
no. 3, 796–817 (electronic). MR 1950512 (2004a:65176)

[5] L. Greengard and V. Rokhlin, A fast algorithm for particle simulations,
J. Comput. Phys. 73 (1987), no. 2, 325–348.

[6] U. Hornung, A parabolic-elliptic variational inequality, Manuscripta
Math. 39 (1982), no. 2, 155–172.

[7] S.D. Jackson and P.H. Muir, Theory and numerical simulation of nth-
order cascaded Raman fiber lasers, JOSA B 18 (2001), no. 9, 1297–1306.

[8] J. Jia and J. Huang, Krylov deferred correction accelerated method of
lines transpose for parabolic problems, J. Comput. Phys. 227 (2008),
no. 3, 1739–1753.

[9] Leon Lapidus and George F. Pinder, Numerical solution of partial differ-
ential equations in science and engineering, A Wiley-Interscience Pub-
lication, John Wiley & Sons Inc., New York, 1999. MR 1718868

[10] Peijun Li, Hans Johnston, and Robert Krasny, A Cartesian treecode for
screened Coulomb interactions, J. Comput. Phys. 228 (2009), no. 10,
3858–3868. MR 2511077 (2010d:78012)

[11] A. Mazzia and F. Mazzia, High-order transverse schemes for the nu-
merical solution of PDEs, J. Comput. Appl. Math. 82 (1997), no. 1-2,
299–311.

[12] N. Muthiyalu and S. Usha, Eigenvalues of centrosymmetric matrices,
Computing 48 (1991), no. 2, 213–218.

32



[13] X. Sun and M.J. Ward, The dynamics and coarsening of interfaces for
the viscous Cahn–Hilliard equation in one-spatial dimension, Stud. Appl.
Math. 105 (2000), no. 3, 203–234.

[14] Wen-Chyuan Yueh and Sui Sun Cheng, Explicit eigenvalues and inverses
of tri-diagonal toeplitz matrices with four perturbed corners, ANZIAM
(2008), 361–387.

[15] A. Zafarullah, Application of the method of lines to parabolic partial
differential equations with error estimates, J. ACM 17 (1970), 294–302.
MR 0280025 (43 #5746)

33


	Introduction
	Boundary integral solutions using MOLT
	Dissipative schemes
	Purely dispersive schemes
	Boundary integral solution
	Homogeneous boundary conditions

	Analysis of the semi-discrete solution
	Consistency in free space
	Consistency with boundary conditions

	One-dimensional formulation
	Fully discrete solution
	A Lax-type correction
	Discrete treatment of boundary conditions

	Stability
	The Eigenvalues of Ap
	Stability of the dissipative scheme with A=Ap
	Stability with A = Ap+Ah

	Dispersion
	Semi-discrete schemes
	Fully discrete schemes

	Numerical Results
	Extension to higher dimensions

	Conclusion

