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Motivation

Plasma behavior is well understood to span many temporal and spatial scales. Consequently,
many well-resolved numerical simulations generate massive amounts of data, resulting in data
management, analysis, and visualization challenges. This will clearly be exacerbated as we move
towards exascale computations. A key observation that “big” in big data typically refers to a
naive measure of size, for example, the number of (possibly adaptively selected) grid points in
a simulation, or the number of time slices. In many instances, the “complexity” of the data, or
perhaps more accurately the “complexity up to precision ε”, is much smaller [3, 26, 10, 24, 12,
14, 11, 5, 6, 7]. In principle, this phenomenon should be exploited to reduce the computational
cost of algorithms and aid in the data management of the simulation results. One approach is to
approximate the data using low-dimensional geometric models (e.g., by low-dimensional manifolds
[19, 20, 4, 2, 13, 26, 10, 1], or by a union of hyperplanes [17, 8, 25, 23, 9]).

Challenges/Opportunities:

1. The paradigm of compute, store, then analyze is no longer going to be feasible for large scale
computations. In-situ/real time compression will be needed, requiring a significant cultural
shift in how researchers handle simulation data. Researchers are going to demand guarantees
about how well the low dimensional manifolds approximate the data, as well as the detection
of anomalies before discarding any data. A software package that attempts to perform real
time compression should construct sufficiently resolved low dimensional manifolds that satisfy
the user specified tolerance, as well as provide error guarantees. This is especially challenging
because the software also needs to be computationally efficient, and the algorithms will often
only get “one pass” at the data.

2. There are surprisingly few existing libraries which provide data structures and functions
for constructing low dimensional manifolds, certainly none of which are “mainstream” or
production ready. A partial list includes:

• scikit-learn [18]: Machine learning in Python – beta software still in development.

• GMRA [16, 1]: MATLAB code base for finding multiscale low dimensional manifolds –
not optimized, hard to incorporate into a larger project

• SOM toolbox [22]: MATLAB code base using an approach called self-organizing maps
– not actively developed.

In preparation for large scale computing, researchers need access to production-ready tool-
boxes, libraries and software that are able to capture lower dimensional manifolds that can
approximate the multiscale simulation data. Ideally, the software product will provide APIs
for researchers to store, access and manipulate the manifolds that support the data.
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3. Furthermore, the above software libraries are but a first step of what will eventually be re-
quired: a distributed (likely hierarchical) approach to constructing low dimensional manifolds,
with error guarantees. A single data curation node that is on the tail end of a fire hose of
data creates bottlenecks, and is impractical for exascale computations. Rather, a distributed
(data-parallel) approach is needed, where multiple data curation tasks process locally avail-
able data to create local sketches, which are then merged to give a sketch of the entire data
set. The mathematical foundations for analyzing the precision of merged manifolds are not
well developed as yet. There are at least two distinct scenarios where merging manifolds are
important:

(a) “Pleasantly parallel” large scale computations. For example, imagine a set of smaller
tightly-coupled simulations running independently to study the effect of electron colli-
sion; each simulation might utilize different cross-section data for electron collisions. The
vast amount of data needs to be processed dynamically to provide useful information.

(b) Often, there is a natural spatial decomposition upon discretization. Merging manifolds
should be relatively straightforward in this scenario, although some care must be taken
to provide reasonable error estimates..

4. Visualization tools will be needed to aid researchers analyze simulation results. There are
many visualization platforms, for example the yt-project framework [21], a Python based
analysis and visualization toolkit or paraview [15]. Such software will need “hooks” to process
the (possibly non-linear) low dimensional manifolds. Ideally, a researcher will have access to
a slider bar which tunes the scale of the multiscale structures which are being presented.

5. Time dependent multiscale features are probably best represented by time dependent low
dimensional manifolds. Is there a way to evolve existing low-dimensional manifolds in a
computationally efficient manner? How do error estimates and guarantees change in this
scenario? How can this be leveraged to aid analysis, visualization and data management?

6. Can the reduced and associated orthogonal basis representing the (potentially time-dependent)
low-dimensional manifold be used to inform the development of new simulation algorithms
that are memory, communication, and computationally efficient? What sort of bias does one
generate when using the reduced basis?

7. A multiphysics software has many different components and solvers to resolve the many
spatial and temporal time scales. For example, one might use a Eulerian mesh with a fluid
solver in a region where MHD approximations are valid, and a Lagrangian mesh with a direct
summation solver in a region where kinetic effects are dominant. The software constructing
the low dimensional manifold approximations will need to have the flexibility to process
different data structures (possibly in overlapping regions) with differing precision, leading to
potentially tricky decisions on how to weight data for the construction of the low dimensional
manifolds.
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