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INTEGRAL DEFERRED CORRECTION METHODS

CONSTRUCTED WITH HIGH ORDER RUNGE–KUTTA

INTEGRATORS.

ANDREW CHRISTLIEB, BENJAMIN ONG, AND JING-MEI QIU

Abstract. Spectral deferred correction (SDC) methods for solving ordinary
differential equations (ODEs) were introduced by Dutt, Greengard and Rokhlin
[4]. It was shown in [4] that SDC methods can achieve arbitrary high order
accuracy and possess nice stability properties. Their SDC methods are con-
structed with low order integrators, such as forward Euler or backward Euler,
and are able to handle stiff and non-stiff terms in the ODEs. In this paper, we
use high order Runge-Kutta (RK) integrators to construct a family of related
methods, which we refer to as integral deferred correction (IDC) methods. The
distribution of quadrature nodes is assumed to be uniform and the correspond-
ing local error analysis is given. The smoothness of the error vector associated
with an IDC method, measured by the discrete Sobolev norm [7, 17], is a
crucial tool in our analysis. The expected order of accuracy is demonstrated
through several numerical examples. Superior numerical stability and accu-
racy regions are observed when high order RK integrators are used to construct
IDC methods.

1. Introduction

In this paper, we consider integral deferred correction methods (IDC) [4] for
solving initial value problems (IVP) consisting of ordinary differential equations
(ODEs). Note that in the literature, this family of methods is referred to as spec-
tral deferred correction (SDC) methods if Gaussian quadrature nodes are used
to compute a correction to the defect or error. Compared to traditional multi-
step methods, e.g., Adams-Bashforth methods (AB) and multi-stage methods, e.g.,
Runge-Kutta (RK) methods, IDC methods are able to achieve arbitrary high order
accuracy without tedious algebraic computations, and are able to handle stiff and
non-stiff terms in the ODEs. IDC methods also maintain reasonably large stability
regions as the order of the schemes increase.

As discussed in [4], there are various decisions to be made when constructing
IDC methods; much work has been done in the literature to explore these choices.
The selection of quadrature nodes is discussed in [11], while [15] uses semi-implicit
schemes to handle temporal multi-scale problems. The authors in [13, 12] also
study the choice of predictors and correctors to construct semi-implicit SDC meth-
ods. In [8, 9], Krylov subspace methods are used to accelerate the convergence
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of SDC methods. In [7, 6], the smoothness of the error vector associated with an
SDC method is introduced, and is used to discuss the convergence of SDC schemes.
Their analysis and concept of smoothness of the error vector motivated this paper.
Theoretical convergence results for SDC method constructed using low order inte-
grators are discussed in various papers [5, 1, 18]. Application of SDC methods to
PDEs, through the method of lines approach, can be found in [16, 10, 2, 18, 14].

The main focus of this paper is to study IDC methods constructed using high
order RK integrators. Specifically, we will prove under mild conditions, that using
an rth order RK integrator to solve the error equation in a correction loop, increases
the order of accuracy of an IDC method by r orders. The smoothness of the er-
ror vector associated with an IDC method, measured by a discrete Sobolev norm
(introduced and used in [7, 17]), is a crucial concept in the local error analysis. In
contrast to the SDC methods in [4], we assume that the quadrature nodes are uni-
formly distributed. For the case of a non-uniform distribution of quadrature nodes,
including the Gaussian quadrature nodes discussed in [4], preliminary numerical
results indicate that a corresponding relation for the order increase does not hold.
We address these issues in [3].

The main part of the paper is organized into six sections. §2 is a review of IDC
methods described in [4], while §3 introduces the concept of discrete smoothness,
measured by a discrete Sobolev norm. §4 gives an analysis of the local error of IDC
methods constructed with forward Euler integrators; this section sets a framework
for the analysis of IDC methods constructed using high order RK methods in §5.
In §6, a numerical example is provided to support the theoretical results in §4 and
§5. Superior stability and accuracy properties of IDC methods constructed with
high order RK integrators are also demonstrated. Concluding remarks are given
§7.

2. Review of IDC methods

This section is a review of IDC methods from [4]. Our discussion on these
methods is based on notations introduced below. We consider an IVP consisting of
a system of ODEs and initial conditions,

(2.1)

{

y′(t) = f(t, y), t ∈ [0, T ],
y(0) = y0.

The time domain, [0, T ], is discretized into intervals,

0 = t1 < t2 < · · · < tn < · · · < tN = T,

and each interval, In = [tn, tn+1], is further discretized into sub-intervals,

(2.2) tn = tn,0 = tn,1 < · · · < tn,m < · · · < tn,M = tn+1.

The IDC method on each time interval [tn, tn+1] is described below. We drop the
subscript n, e.g., t0 := tn,0 in (2.2), with the understanding that the IDC method
is described for one time interval. We also refer to tm := tn,m as grid points or
quadrature nodes, whose index m runs from 0 to M , and denote the sub-interval
sizes as hm = tm − tm−1, m = 1, . . . , M .

• (prediction step) Use an (r0)
th order numerical method to obtain a nu-

merical solution, ~η[0] = (η
[0]
0 , η

[0]
1 , . . . , η

[0]
m , . . . , η

[0]
M ), which is an rth

0 order
approximation to ~y = (y0, y1, . . . , ym, . . . , yM ), where ym = y(tm) is the
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exact solution at tm. For example, applying a first order forward Euler

method to (2.1) gives η
[0]
m+1 = η

[0]
m + hm+1f(t, η

[0]
m ), m = 0, . . . , M − 1.

• (correction loop) Use the error function to improve the accuracy of the
scheme at each iteration.
For k = 1, . . . , kl (kl is number of correction steps)
(1) Denote the error function from the previous step as

e(k−1)(t) = y(t) − η(k−1)(t),(2.3)

where y(t) is the exact solution and η(k−1)(t) is an M th degree poly-
nomial interpolating ~η[k−1]. Note that the error function, e(k−1)(t), is
not a polynomial in general.

(2) Compute the residual function, ǫ(k−1)(t) = (η(k−1))′(t)−f(t, η(k−1)(t)).
In the literature, the residual function is often called the pointwise, or
differential defect.

(3) Compute the numerical error vector, ~δ[k] = (δ
[k]
0 , . . . , δ

[k]
m , . . . , δ

[k]
M ), us-

ing an (rk)th order numerical method to discretize the integral form
of the error equation,

(

e(k−1) +

∫ t

0

ǫ(k−1)(τ) dτ

)′

(t) = f(t, η(k−1)(t) + e(k−1)(t)) − f(t, η(k−1)(t))(2.4a)

.
= F (t, e(k−1)(t)),(2.4b)

where F (t, e(t)) = f(t, η(t) + e(t)) − f(t, η(t)). ~δ[k] is an (rk)th order

approximation to ~e[k−1] = (e
[k−1]
0 , . . . , e

[k−1]
m , . . . , e

[k−1]
M ), and e

[k−1]
m =

e(k−1)(tm) is the value of the exact error function at tm. For example,
applying a first order forward Euler method to (2.4) gives,

δ
[k]
m+1 = δ[k]

m + hm+1(f(tm, η[k−1]
m + δ[k]

m ) − f(tm, η[k−1]
m )) −

∫ tm+1

tm

ǫ(k−1)(t) dt

(2.5)

≈ δ[k]
m + hm+1(f(tm, η[k−1]

m + δ[k]
m ) − f(tm, η[k−1]

m )) −

M
∑

j=0

αm,jf(tj , η
[k−1]
j ),

m = 0, . . . , M − 1,

where we have approximated the integral by interpolatory quadrature
formulas, as in [4].

(4) Update the numerical solution ~η[k] = ~η[k−1] + ~δ[k].

Notationally, superscripts with a round bracket, e.g., (k), denote a function, while
superscripts with a square bracket, e.g., [k], denote a vector at the kth correction
step. English letters are reserved for functions or vectors in the exact solution
space, e.g., an exact solution y(t) and an exact error function e(t), while Greek
letters denote functions or vectors in the numerical solution space, e.g., a numerical
solution η(t), and a numerical error function δ(t).

Remark 2.1. There are various construction decisions for generating an IDC method.
For example, the distribution of grid points (2.2), or the choice of different inte-
grators. In this paper, we would like to make the statements “(r0)

th order ap-
proximation” and “ (rk)th order approximation” in our description of IDC methods
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mathematically rigorous. We will focus our discussion on a uniform distribution
of quadrature nodes. The non-uniform case, including Gaussian quadrature nodes,
will be addressed in [3].

Remark 2.2. Deferred correction methods described in reference [4] and cited therein
differ from the spectral deferred correction in that a differential form of the error
equation is formulated,

(e(k−1))′(t) = f(t, η(k−1)(t) + e(k−1)(t)) −
∂

∂t
η(k−1)(t),(2.6)

instead of (2.4). In this paper, we focus on IDC methods and briefly address the
corresponding results in deferred correction methods.

3. Mathematical Preliminaries

Definition 3.1. (smoothness of a function): A function f(t), t ∈ [0, T ] possesses

S degrees of smoothness, if ‖dsf‖∞ :=
∥

∥

∂s

∂ts f
∥

∥

∞
is bounded, for s = 0, 1, 2, ..., S,

where ‖f‖∞
.
= maxt∈[0,T ] |f(t)|.

We would like to establish the concept of smoothness for a discrete data set,
analog to that of a function. Consider the discrete data set,

(t, f) = {(t0, f0), ..., (tM , fM )},(3.1)

where fm = f(tm) and tm = mh, m = 0, . . . , M are equi-spaced points. The
smoothness of a discrete data set is established in the limiting process of h → 0.

Definition 3.2. (discrete differentiation): Given a discrete data set, (t, f), defined
in (3.1), denote LM as the usual Lagrange interpolant, an M th degree polynomial
that interpolates (t, f),

LM (t, f) =

M
∑

m=0

cm(t)fm, where cm(t) =
∏

n6=m

t − tn
tm − tn

.(3.2)

An sth degree discrete differentiation is a linear mapping that maps ~f = (f0, f1, ..., fM )

into
−→
d̂sf , where (d̂sf)m = ∂s

∂ts LM (t, f)|t=tm
. This linear mapping can be repre-

sented by a matrix multiplication
−→
d̂sf = Ds · ~f , where Ds ∈ R(M+1)×(M+1), and

(Ds)mn = ∂s

∂ts cn(t)|t=tm
, m, n = 0, ..., M .

Definition 3.3. The (Ŝ,∞) Sobolev norm of the discrete data set (t, f), is defined
to be

∥

∥

∥

~f
∥

∥

∥

Ŝ,∞
=

S
∑

s=0

∥

∥

∥

∥

−→
d̂sf

∥

∥

∥

∥

∞

=

S
∑

s=0

∥

∥

∥Ds · ~f
∥

∥

∥

∞
,

where
−−→
d̂0f = Id · ~f is the identity matrix operating on ~f .

Definition 3.4. (smoothness of a discrete data set): A discrete data set (3.1),

possesses S (S ≤ M) degrees of smoothness, if ‖~f‖
Ŝ,∞

is bounded as h → 0.

The smoothness of a discrete data set can also be measured by divided difference
approximations to the derivative of the discrete data set.
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Definition 3.5. (divided differences): Given a discrete data set (t, f), (3.1), a

divided difference of the discrete data set is a linear mapping that maps ~f =

(f0, f1, ..., fM ) into
−−→
d1f , with size(

−−→
d1f) = M and (d1f)m = fm+1−fm

tm+1−tm
for m =

0, ..., M − 1. An sth degree divided difference is a linear mapping that maps ~f into
−→
dsf , with size(

−→
dsf) = M − s + 1 and (dsf)m = (ds−1f)m+1−(ds−1f)m

tm+1−tm
, for m =

0, ..., M − s.

Definition 3.6. The (S,∞) Sobolev norm of (t, f) is defined to be

∥

∥

∥

~f
∥

∥

∥

S,∞
=

S
∑

s=0

∥

∥

∥

−→
dsf
∥

∥

∥

∞
,

where
−−→
d0f = Id · f .

Proposition 3.7. The (Ŝ,∞) Sobolev norm defined in Definition 3.3 is equivalent
to the (S,∞) Sobolev norm defined in Definition 3.6.

Proof. We will prove the equivalence of the (1̂,∞) and (1,∞) norm; the equivalence

of the general (Ŝ,∞) and (S,∞) norm can be proved in a similar fashion. For any
discrete data set (3.1), let LM (t, f) be the corresponding Lagrange interpolant (3.2).

By Definition 3.2, (d̂1f)m = ∂
∂t

LM (t, f)|t=tm
. (d1f)m is a first order approximation

to ∂
∂t

LM (t, f)|t=tm
, i.e.,

(d1f)m =
∂

∂t
LM (t, f)|t=tm

+ O(h) = (d̂1f)m + O(h).(3.3)

From (3.3), if (1̂,∞) norm is bounded and independent of H , then so is the (1,∞)
norm, and vice versa. This proves the equivalence of the two norms. �

Utilizing Proposition 3.7, the smoothness of a discrete data set can also be
measured by divided differences of the discrete data set.

Definition 3.8. (smoothness of a discrete data set) A discrete data set (3.1),

possesses S (S ≤ M) degrees smoothness, if
∥

∥

∥

~f
∥

∥

∥

S,∞
is bounded, as h → 0.

Remark 3.9. We require S ≤ M in Definition 3.4 and Definition 3.8, because
−−−−→
d̂M+1f = ~0 and size(

−−−−→
dM+1f) = 0, for any discrete data set.

Example 3.10. (a not so smooth discrete data set): The discrete data set,

(t, f) = {(0, 0), (h, h), (2h, 2h), (3h, h), (4h, 0)},

with H = 4h has only one degree of smoothness in the discrete sense, according to
either Definition 3.4 or 3.8.

We will use the definitions of smoothness, Definition 3.4 and Definition 3.8 inter-
changeably as convenient. Propositions 3.11 through 3.15 describe basic properties
associated with the smoothness of discrete data sets. We omit the proofs for brevity.

Proposition 3.11. If a discrete data set (t, f), as defined in (3.1), has S degrees
of smoothness, then (t, hpf) = {(tm, hp · fm)}M

m=0 has min(S + p, M) degrees of
smoothness.
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Proposition 3.12. If discrete data sets (t, f) and (t, g) have Sf and Sg degrees
of smoothness respectively, then (t, f + g) = {(tm, fm + gm)}M

m=0 and (t, f · g) =
{(tm, fm · gm)}M

m=0 have min(Sf , Sg) degrees of smoothness.

Proposition 3.13. If a function f(t), t ∈ [0, H ], has S degrees of smoothness
in the continuous sense, then the discrete data set (t, f) = {(tm, f(tm))}M

m=0 has
min(S, M) degrees of smoothness in the discrete sense.

Proposition 3.14. If a function f(t), t ∈ [0, H ], has S degrees of smoothness in the

continuous sense, then the discrete data set (t, Hp · dqf
dtq ) = {(tm, Hp dqf

dtq (tm))}M
m=0

has min(S − q + p, M) degrees of smoothness in the discrete sense with q ≤ S. This
is a direct consequence from Proposition 3.13 and Proposition 3.11.

Proposition 3.15. If a function f(t) has Sf degrees of smoothness in the continu-
ous sense and the discrete data set (t, g) = {tm, gm}M

m=0 has Sg degrees of smooth-
ness in the discrete sense, then the discrete data set (t, f ◦ g) = {tm, f(gm)}M

m=0

has min(Sf , Sg) degrees of smoothness in the discrete sense.

Finally, we establish the relationship between the smoothness of the error vector
associated with an IDC method, measured by properties of its discrete derivative
or its divided difference, and the derivative of the corresponding error function.

Proposition 3.16. Let y(t) in IVP (2.1) have S ≥ M +2 degrees of smoothness in
the continuous sense, and let η, be the numerical solution computed using an IDC
method constructed with (M+1) equispaced quadrature nodes in each sub interval. If
the error vector associated with an IDC method, ~e = ~y−~η, satisfies ‖~e‖∞ ∼ O(hr+1)
with r ≤ M , and the corresponding error function from interpolation errors, e(t) =
y(t) − LM (t, η), satisfies ei = e(t = ti), (note that e(t) is not a polynomial in
general), then

• e(t) ∼ O(hr+1), for t ∈ [0, H ].

• Let ~̃e = 1
hr ~e and ẽ(t) = 1

hr e(t). If ~̃e has Sẽ ≤ M+1−r degrees of smoothness
in the discrete sense, then

di

dti
ẽ(t) ∼

{

O(1), if 0 ≤ i ≤ Sẽ

O( 1
hi−Sẽ

), if Sẽ ≤ i ≤ M + 1 − r,
∀t ∈ [0, H ].(3.4)

• The vector (diẽ(t)
dti |t=t0 , . . . ,

diẽ(t)
dti |t=tM

) has Sẽ − i degrees of smoothness in
the discrete sense for i ≤ Sẽ.

The proof of this proposition can be inferred from well known properties of the
derivatives in Lagrange interpolation. Note that these error estimates for polyno-
mial interpolation do not require that the grid be equispaced.

4. Local error of IDC methods constructed with forward Euler

integrators

In this section, we provide local error estimates for IDC methods constructed
using forward Euler integrators. Our approach differs from the convergence and
local error estimates discussed in [8, 18] respectively. This section introduces the
framework which allows for the analysis of IDC methods constructed using high
order RK methods, discussed in Section 5. In the following theorems and lemmas,
we will assume that function f(t, y) in IVP (2.1) has S − 1 degrees of smoothness
if the solution y(t) has S degrees of smoothness.
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Theorem 4.1. Let y(t), the solution to the IVP (2.1), have at least S ≥ M + 2
degrees of smoothness in the continuous sense. Then, the local error for an IDC
method constructed using (M + 1) uniformly distributed nodes, (tm = mh, m =
0, . . . , M), and forward Euler integrators for the prediction and kl ≤ M correction
loops, is O(hkl+2).

Proof. The proof of Theorem 4.1 follows from two lemmas discussed in depth below.
We will show in Lemma 4.2 that the theorem holds for k = 0, and in Lemma 4.3
that an inductive argument is satisfied. Note that this theorem is also implied by
discussions in [5]. �

Lemma 4.2. (prediction step): Consider an IDC method constructed using (M+1)
uniformly distributed nodes, and a forward Euler integrator for the prediction step.
Let y(t), the solution to the IVP (2.1), have at least S ≥ M + 2 degrees of smooth-

ness, and let ~η[0] = (η
[0]
0 , . . . , η

[0]
m , . . . , η

[0]
M ), be the numerical solution computed after

the prediction step. Then the error vector, ~e[0] = ~y−~η[0], satisfies ‖~e[0]‖∞ ∼ O(h2),

and the rescaled error vector, ~̃e[0] = 1
h
~e[0], has M degrees of smoothness in the dis-

crete sense.

Proof. We drop the superscript [0] as there is no ambiguity. Since ηm+1 = ηm +
hf(tm, ηm), the error at tm+1, em+1 = ym+1 − ηm+1, satisfies

em+1 = em + h(f(tm, ym) − f(tm, ηm)) +

S−1
∑

i=2

hi

i!
y(i)(tm) + O(hS),

where we have performed a Taylor expansion of ym+1 about t = tm. Let um =

f(tm, ym) − f(tm, ηm), and rm = h2

2! y
(2)(tm) + · · · + hS−1

(S−1)!y
(S−1)(tm). Notice that

um = emfy(tm, ym) + · · · +
(−1)S−1(em)S−2

(S − 2)!
fyS−2(tm, ym) + O((em)S−1),

where we have performed a Taylor expansion of f(t, ηm) about y = ym. We are
now ready to bound ‖~e[0]‖∞ by induction. By definition, e0 = 0, so certainly,
e0 ∼ O(h2). Assume that em ∼ O(h2). Since um ∼ O(em) ∼ O(h2), we have

em+1 = em + hum + rm + O(hS) ∼ O(h2),

which completes the inductive proof that ‖~e‖∞ ∼ O(h2). Note that the inductive
proof was with respect to m, the index of the grid points.

To prove the smoothness of the rescaled error vector, we will again use an in-
ductive approach, but this time, with respect to s, the degree of smoothness. First,
note that a divided difference approximation to the derivative of the rescaled error
vector gives,

(d1ẽ)m =
ẽm+1 − ẽm

h
= ũm +

rm

h2
+ O(hS−2),(4.1)

where

ũm =
um

h
=

S−2
∑

i=1

(−1)i+1 hi−1

i!
fyi(tm, ym)(ẽm)i + O(h2S−3).

We are now ready to prove that ~̃e has M degrees of smoothness by induction.
Since ‖~̃e‖∞ ∼ O(h), ~̃e has at least zero degrees of smoothness in the discrete sense.

Assume that ~̃e has s ≤ M − 1 degrees of smoothness. We will show that
−→
d1ẽ has



8 ANDREW CHRISTLIEB, BENJAMIN ONG, AND JING-MEI QIU

s degrees of smoothness, from which we can conclude that ~̃e has (s + 1) degrees of
smoothness.

Since fyi has (S − i − 1) degrees of smoothness in the continuous sense,
−→
fyi =

[fyi(t0, y0), . . . , fyi(tM , yM )] has (S − i − 1) degrees of smoothness in the discrete

sense. Consequently, hi−1−→fyi has (S−2) degrees of smoothness, which implies that
~̃u has min (S − 2, s) degrees of smoothness. Similarly, ~r

h2 has (S − 2) degrees of

smoothness in the discrete sense. Hence
−→
d1ẽ has s degrees of smoothness =⇒ ~̃e

has (s + 1) degrees of smoothness. Since this argument holds for S ≥ M + 2, we

can conclude that ~̃e has M degrees of smoothness. �

Lemma 4.3. (correction step): Consider an IDC method constructed using (M+1)
uniformly distributed nodes, and forward Euler integrators for the prediction and
kl ≤ M correction loops. Also, let y(t), the solution to the IVP (2.1), have at least

S ≥ M + 2 degrees of smoothness, and let ~η[k] = (η
[k]
0 , . . . , η

[k]
m , . . . , η

[k]
M ), be the

numerical solution computed after the kth correction loop. If ~e[k−1] ∼ O(hk+1) and
~̃e[k−1] = 1

hk ~e[k−1] has (M − k + 1) degrees of smoothness, then ‖~e[k]‖∞ ∼ O(hk+2),

and ~̃e[k] = 1
hk+1~e

[k] has (M − k) degrees of smoothness in the discrete sense.

Proof. The error equation, (2.4), integrated over [tm, tm+1] gives

e
[k−1]
m+1 = e[k−1]

m +

∫ tm+1

tm

F (t, e(k−1)(t)) dt −

∫ tm+1

tm

ǫ(k−1)(t) dt(4.2)

= e[k−1]
m + hF (tm, e[k−1]

m ) +

M
∑

i=1

hi+1

(i + 1)!

di

dti
F (tm, e[k−1]

m ) + O(hM+2) −

∫ tm+1

tm

ǫ(k−1)(t) dt.

Recall from equation (2.5), that the numerical error vector, which arises from uti-
lizing a forward Euler integrator to solve the error equation, satisfies

δ
[k]
m+1 = δ[k]

m + h
(

f(tm, η[k−1]
m + δ[k]

m ) − f(tm, η[k−1]
m )

)

−

(∫ tm+1

tm

ǫ(k−1)(t) dt + O(hM+2)

)

.

Subtracting the numerical error vector from the error equation gives

e
[k]
m+1 = e[k]

m + h
(

f(tm, ym) − f(tm, η[k−1]
m + δ[k]

m )
)

+
M
∑

i=1

hi+1

(i + 1)!

di

dti
F (tm, e[k−1]

m ) + O(hM+2)

= e[k]
m + hu[k]

m + r[k−1]
m + O(hM+2),

where r
[k−1]
m =

∑M
i=1

hi+1

(i+1)!
di

dti F (tm, e
[k−1]
m ), and u

[k]
m = f(tm, ym) − f(tm, η

[k−1]
m +

δ
[k]
m ). Taylor expanding f(tm, η

[k−1]
m + δ

[k]
m ) about y = ym, gives,

u[k]
m =

S−2
∑

i=1

(−1)i+1

i!
fyi(tm, ym)(e[k]

m )i + O((e[k]
m )S−1).(4.3)

We will also need a Taylor expansion of F (t, e(k−1)(t)) = f(t, y(t)) − f(t, y(t) −
e(k−1)(t)),

F (t, e(k−1)t) =

S−2
∑

j=1

(−1)j+1

j!
fyj (t, y(t))(e(k−1)(t))j + O((e(k−1)(t))S−1).
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Since ~̃e[k−1] has (M−k+1) degrees of smoothness in the discrete sense, d
dt

ẽ(k−1)(t) ∼
O(1) from Proposition 3.16. Thus,

dF

dt
=

S−2
∑

j=1

(−1)j+1hkj

j!

(

dfyj

dt
(ẽ(k−1))j +

d(ẽ(k−1))j

dt
fyj

)

+ O(h(k+1)(S−1)−1) ∼ O(hk).

We are now ready to bound ‖~e[k]‖∞ by induction. By definition, e
[k]
0 = 0, so

certainly, e
[k]
0 ∼ O(hk+2). Assume that e

[k]
m ∼ O(hk+2). Then,

e
[k]
m+1 = e[k]

m + hu[k]
m + r[k−1]

m + O(hM+2)

∼ O(hk+2) + O(hk+3) + O(hk+2) + O(hM+2) ∼ O(hk+2),

since each term of r
[k−1]
m ∼ O(hk+2), and u

[k−1]
m is bounded in (4.3). This completes

the inductive proof for the error bound.
To prove the smoothness of the rescaled error vector, we use an inductive argu-

ment based on s, the degree of smoothness of ~̃e[k]. This is similar in spirit to the

proof of Lemma 4.2. First, the rescaled error vector, ~̃e[k], has at least 0 degrees of

smoothness since
∥

∥

∥

~̃e[k]
∥

∥

∥

∞
∼ O(h) is bounded. Assume that ~̃e[k] has s < M − k

degrees of smoothness. We will prove that
−−−→
d1ẽ

[k] has s degrees of smoothness, from

which we can conclude that ~̃e[k] has (s + 1) degrees of smoothness in the discrete
sense. The divided difference approximation to the derivative of the rescaled error
vector can be expressed as,

(d1ẽ
[k])m =

ẽ
[k]
m+1 − ẽ

[k]
m

h
= ũ[k]

m + r̃[k−1]
m + O(hM−k),

where

ũ[k]
m =

S−2
∑

i=1

(−1)i+1h(k+1)(i−1)

i!
fyi(tm, ym)(ẽ[k]

m )i + O(h(S−2)(k+2)+1),

has s degrees of smoothness, and

r̃[k−1]
m =

r
[k−1]
m

hk+2
=

M
∑

i=1

hi−1

(i + 1)!

di−1

dti−1

(

1

hk

d

dt
F (tm, e(k−1)(tm))

)

=

M
∑

i=1

hi−1

(i + 1)!

di−1

dti−1

S−2
∑

j=1

(−1)j+1

j!

((

hk(j−1) dfyj

dt

)

(ẽ(k−1))j +
d(ẽ(k−1))j

dt
(hk(j−1)fyj)

)

,

has at least min(S − (j + 1) + k(j − 1) − 1, M − k) ≥ s degrees of smoothness.

Since
−−−→
d1ẽ

[k] has s degrees of smoothness, we can conclude that ~̃e[k] has (M +1− k)
degrees of smoothness. �

Remark 4.4. For the case of non-uniformly distributed quadrature nodes, the rescaled

error vector ~̃e[0] possesses only one degree of smoothness. An example is given be-
low. The lack of smoothness also holds for the rescaled error vector obtained after
an RK prediction step in Section 5. Consider the case of four quadrature nodes
distributed such that h1 = H

6 , h2 = 2H
3 and h3 = H

6 . Then, ũm and rm

h2
m

in equation
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(4.1) only possess at most one degree of smoothness. For example, if y(t) = t3 then

rm

h2
m

=
1

2!
y(2)(tm) +

hm

3!
y(3)(tm) + · · · .

has only one degree of discrete smoothness.

Remark 4.5. Theorem 4.1 can be extended to the case of non-uniformly distributed
quadrature nodes, despite the reduced smoothness of the error vector. The proof is
similar in spirit to that of Theorem 4.1, since the rescaled error vector only requires
one degree of smoothness to show that ‖~e[k]‖ ∼ O(hk+2). This robust behavior for
the Euler case is in sharp contrast to the behavior of defect correction methods on
a non-uniform grid, which show no increase in order at all. For related results, see
[1].

5. Local error of IDC methods constructed with high order RK

integrators

In this section, we first review properties of RK integrators, then provide the
local error estimates for IDC methods which utilize high order RK methods in the
prediction and correction steps. The outline for the error estimates is similar to the
local error estimates for IDC methods constructed with forward Euler integrators,
presented in the previous section. A key set of equations, (5.8), is derived for
applying a high order RK correction. In the following theorems and lemmas, we
will assume that function f(t, y) in IVP (2.1) has S − 1 degrees of smoothness if
the solution y(t) has S degrees of smoothness.

Definition 5.1. A p-stage explicit RK method can expressed in the form

ηi+1 = ηi +

p
∑

j=1

bjkj , kj = hf

(

ti + cjh, ηi +

j−1
∑

l=1

ajlkl

)

j = 1, 2, 3, . . . , p,

where ajl, bj, and cj are real coefficients. An RK method is of order r if f(t, y)
in (2.1) is sufficiently smooth, and ‖y(ti + h) − ηi+1‖ ≤ Khr+1, for some constant
K > 0, i.e., the Taylor series expansion for the exact solution, y(ti + h), and ηi+1,
coincide up to and including the term hr.

Proposition 5.2. Let y(t), the solution to IVP (2.1), have S ≥ r degrees of
smoothness, and let η be the numerical solution obtained using an rth order RK
method. If tm+1 − tm = h, then

ηm+1 = ηm +
S−1
∑

j=

hj

j!
Ej(tm, ηm) + Rr(tm, ηm) + O(hS),(5.1)

where the functions Ej(t, y) are the elementary differentials of y,

y(j)(t) := Ej(t, y(t)) =
∑

qi
y+qi

t≤j−1

α
w1···wni

wf

q1
yq1

t ···q
ni
y q

ni
t

ni
∏

i=1

(f
tqi

t y
qi
y
)wifwf .(5.2)

and the remainder term,

Rr(t, η) =
S−1
∑

j=r+1

hj





∑

qi
y+qi

t≤j−1

β
w1w2···wni

wf

q1
t q1

y···q
ni
t q

ni
y qf

ni
∏

i=1

(f
tqi

t y
qi
y
)wi(tm, ηm)fwf (tm, ηm)



 ,
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has constant coefficients β
w1w2···wni

wf

q1
yq1

t ···q
ni
y q

ni
t

determined by the specific RK method.

Proof. Equation (5.1) comes from a Taylor expansion of ηm+1 about t = tm. Note
that the first r + 1 terms coincide with the Taylor expansion of the exact solution,

y(tm+1) = y(tm) +
S−1
∑

j=1

hj

j!
y(j)(tm) + O(hS).(5.3)

The remainder term can be proved by induction. Once again, the range of summa-
tion, qi

t + qi
y ≤ j − 1, is not restrictive since some of the coefficients β

w1w2...wni
wf

q1
yq1

t ...q
ni
y q

ni
t

will be zero. �

Theorem 5.3. Let y(t), the solution to the IVP (2.1), have at least S ≥ M + 2
degrees of smoothness in the continuous sense. Then, the local error for an IDC
method constructed using (M + 1) uniformly distributed nodes, (tm = mh, m =
0, . . . , M), an (r0)

th order RK method in the prediction step and (r1, r2, . . . , rkl
)th

order RK methods, is O(h(skl
+1)), where skl

=
∑kl

j=0 rj ≤ M + 1.

Proof. The proof of Theorem 5.3 follows from two lemmas discussed in this section.
We will show in Lemma 5.4 that the theorem holds for k = 0, and in Lemma 5.5
that an inductive argument is satisfied. �

Lemma 5.4. (prediction step): Consider an IDC method constructed using (M+1)
uniformly distributed nodes, and an rth

0 order RK method for the prediction step.
Let y(t), the solution to IVP (2.1), have at least S ≥ M + 2 degrees of smoothness

in the continuous sense, and let (η
[0]
0 , . . . , η

[0]
m , . . . , η

[0]
M ), be the numerical solution

computed after the prediction step. Then, the error vector, ~e[0] = ~y − ~η[0], satisfies

‖~e[0]‖∞ ∼ O(hr0+1), and the rescaled error vector, ~̃e[0] = 1
hr0

~e[0], has min(S−r0, M)
degrees of smoothness in the discrete sense.

Proof. We drop the superscript [0] since there is no ambiguity. First, note that a
Taylor expansion of the error, em+1 = ym+1 − ηm+1, about t = tm, (see equations
(5.3) and (5.1)), results in

em+1 = em + um + r1,m − r2,m + O(hS),

where

um =

r0
∑

i=1

hi

i!
(Ei(tm, ym) − Ei(tm, ηm))

=

r0
∑

i=1

hi

i!

S−1−i
∑

j=1

(−1)j−1(em)j

j!

∂jEi

∂yj
(tm, ym) + O((em)S−i),

r1,m =

S−1
∑

i=r0+1

hi

i!
y(i)(tm),

r2,m =

S−1
∑

j=r0+1

hj
∑

qi
t+qi

y≤j−1

β
w1w2···wni

wf

q1
t q1

y···q
ni
t q

ni
y qf

ni
∏

i=1

(f
tqi

t y
qi
y
)wi(tm, ηm)fwf (tm, ηm).

We are now ready to bound ‖~e[0]‖∞ by induction. By definition, e0 = 0, so certainly,
e0 ∼ (hr0+1). Assume that em ∼ O(hr0+1). Since um ∼ O(hr0+2), r1,m ∼ O(hr0+1)
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and r2,m ∼ O(hr0+1), we have em+1 ∼ O(hr0+1), which completes the inductive
proof.

To prove the smoothness of the rescaled error vector, we will again use an in-
ductive approach, but this time, with respect to s, the degree of smoothness. First,
note that a divided difference approximation to the derivative of the rescaled error
vector gives

(d1ẽ)m =
ẽm+1 − ẽm

h
= ũm + r̃1,m − r̃2,m + O(hS−r0−1),

where

ũm =
um

hr0+1
=

r0
∑

i=1

1

i!

S−1−i
∑

j=1

(−1)j−1hi+r0(j−1)−1

j!

∂jEi

∂yj
(tm, ym)(ẽm)j + O(hS−r0−1),

r̃1,m =
r1,m

hr0+1
=

S−1
∑

i=r0+1

hi−r0−1

i!
y(i)(tm),

r̃2,m =
Rr0(tm, ηm)

hr0+1
=

S−r0−2
∑

j=0

hj
∑

qi
t+qi

y≤j+r0

β
w1w2···wni

wf

q1
t q1

y ···q
ni
t q

ni
y qf

ni
∏

i=1

(f
tqi

t y
qi
y
)wi(tm, ηm)fwf (tm, ηm).

We are now ready to prove that ~̃e has min (S − r0, M) degrees of smoothness by

induction. Since ‖~̃e‖∞ ∼ O(h) is bounded, ~̃e has at least zero degrees of smoothness

in the discrete sense. Assume that ~̃e has s < min(S − r0, M) degrees of smoothness

in the discrete sense. We will prove that
−→
d1ẽ has s degrees of smoothness, from

which we can conclude ~̃e has (s + 1) degrees of smoothness in the discrete sense.

From a similar argument in the proof of Lemma 4.2, ~̃u has s degrees of smoothness

in the discrete sense. Assuming that y(t) has S degrees of smoothness,
−→
r̃ 1 has

(S − r0 − 1) degrees of smoothness. Since ~̃e has s degrees of smoothness, ~e has
min(s + r0, M) degrees of smoothness and ~η = ~y − ~e has min(s + r0, M) degrees of

smoothness. Thus,
−→
r̃2 has min(s+r0, S−r0−1, M), at least s, degrees of smoothness

in the discrete sense. Therefore ~̃e has (s + 1) degrees of smoothness. We can now

conclude that ~̃e has min(S − r0, M) degrees of smoothness in the discrete sense.
�

Lemma 5.5. (correction step): Let y(t), the solution to IVP (2.1), have at least
S ≥ M + 2 degrees of smoothness in the continuous sense. Consider an IDC
method, constructed using (M + 1) uniformly distributed nodes, an (r0)

th order
RK method in the prediction step and (r1, r2, . . . , rkl

)th order RK methods in the
respective correction loops. If the error vector after the (k − 1)st loop satisfies

~e[k−1] ∼ O(hsk−1+1), and the rescaled error vector, ~̃e[k−1] = 1
h

sk−1 ~e[k−1], has (M +
1−sk−1) degrees of smoothness in the discrete sense, then, the updated error vector,

~e[k], satisfies ‖~e[k]‖∞ ∼ O(hsk+1), and the rescaled error vector, ~̃e[k] = 1
hsk

~e[k], has
(M + 1 − sk) degrees of smoothness in the discrete sense.

The proof of this lemma is very technical and involved. First, we discuss proper-
ties of the error function, e(k−1)(t). Then, the actual construction of IDC methods
using RK integrators within the correction loops is described. A discussion on the
properties of the numerical error vector is given before Lemma 5.5 is proved. Note
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that for a non-uniform distribution of nodes, ~̃e[0] has only one degree of smoothness
(as discussed in Remark 4.4), hence, Lemma 5.5 does not apply.

5.1. Properties of the error function. We write the error equation (2.4) as

(Q(k−1))′(t) = F (t, Q(k−1)(t) − E(k−1)(t))
.
= G(k−1)(t, Q(k−1)(t)),(5.4)

where Q(k−1)(t) = e(k−1)(t) + E(k−1)(t), and E(k−1)(t) =
∫ t

0
ǫ(k−1)(τ) dτ . Our

analysis for the error vector will rely on this form of error equation, (5.4), or the
scaled variant,

(Q̃(k−1))′(t) = G̃(k−1)(t, Q̃(k−1)(t)),(5.5)

where Q̃(k−1)(t) = Q(k−1)(t)
h

sk−1 , and G̃(k−1)(t, Q̃(k−1)(t)) = G(k−1)(t,hsk−1Q̃(k−1)(t))
h

sk−1 .

Proposition 5.6. If e(k−1)(t) ∼ O(hsk−1+1), then Q(k−1)(t) ∼ O(hsk−1+1), and
G(k−1)(t, Q(k−1)(t)) ∼ O(hsk−1+1).

Proof. From the above definition of G,

G(k−1)(t, Q(k−1)(t)) = F (t, e(k−1)(t))

=

S−2
∑

i=1

(−1)i+1

i!

∂if

∂yi
(t, y(t))(e(k−1)(t))i + O(h(sk−1+1)(S−1)) ∼ O(hsk−1+1),

and Q(k−1)(t) =
∫ t

0
G(k−1)(τ, Q(k−1)(τ)) dτ ∼ O(hsk−1+1). �

Proposition 5.7. Suppose ~e[k−1] ∼ O(hsk−1+1) and the rescaled error vector,
~̃e[k−1], has (M + 1 − sk−1) degrees of smoothness in the discrete sense. Then

dl

dtl
Q̃(k−1)(t) ∼ O(1), if l ≤ M + 1 − sk−1, ∀t ∈ [0, H ].(5.6)

Proof. Since the rescaled error vector, ~̃e[k−1], has (M +1−sk−1) degrees of smooth-

ness in the discrete sense, from Proposition 3.16, dl

dtl ẽ
(k−1)(t) ∼ O(1), for l ≤

M + 1 − sk−1, ∀t ∈ [0, H ]. From Proposition 5.6,

Q(k−1)(t) =

∫ t

0

G(k−1)(τ, Q(k−1)(τ)) dτ

=

∫ t

0

S−2
∑

i=1

(−1)i+1

i!

∂if

∂yi
(τ, y(τ))(e(k−1)(τ))i dτ + O(h(sk−1+1)(S−1)+1),

we have

d

dt
Q̃(k−1)(t) =

S−2
∑

i=1

(−1)i+1

i!
hsk−1(i−1) ∂

if

∂yi
(t, y(t)) (ẽ(k−1)(t))i + O(h(sk−1+1)(S−2)+1)

∼ O(1),

dl

dtl
Q̃(k−1)(t) ∼

dl−1

dtl−1
(ẽ(k−1)(t)) ∼ O(1), for l = 2, . . . , M + 1 − sk−1.

Note that if ~̃e[k−1] does not have the required degrees of smoothness (e.g., if a non-
uniform mesh is used to construct the IDC method), then the discrete derivative

of dl

dtl Q̃
(k−1) is no longer O(1). �
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Proposition 5.8. Q̃(k−1)(t) satisfies

Q̃
[k−1]
m+1 = Q̃[k−1]

m +

M−sk−1
∑

i=1

hi

i!
G̃

(k−1)
i−1 (tm, Q̃[k−1]

m ) + O(hM+1−sk−1 ),

or, equivalently,

e
[k−1]
m+1 = e[k−1]

m + hsk−1

M−sk−1
∑

i=1

hi

i!
G̃

(k−1)
i−1 (tm, Q̃[k−1]

m ) + O(hM+1) −

∫ tm+1

tm

ǫ(k−1)(τ) dτ,

(5.7)

where

G̃
(k−1)
i−1 (t, Q̃) :=

∑

qi
t+qi

Q̃
≤i−1

γ
w1···wni

wf

q1
t q1

Q̃
···q

ni
t q

ni

Q̃

ni
∏

i=1

(G̃
(k−1)

tqi
t Q̃

qi
Q̃

)wi(G̃(k−1))wf , i ≤ M − sk−1.

As before, γ
w1...wni

wf

q1
t q1

Q̃
···q

ni
t q

ni

Q̃

are constant coefficients, and, wi, wf , qi
t, qi

Q̃
and ni are

non-negative integers. Note that

G̃
(k−1)
i−1 (t, Q̃(k−1)(t)) :=

di−1G̃(k−1)

dti−1
=

di

dti
Q̃(k−1)(t) ∼ Oh(1), i ≤ M − sk−1.

5.2. RK integrators within the correction loop of IDC methods. A p−stage,
rth order RK method applied to (5.5) gives,

k̃1 = G̃(k−1)(t0, Q̃
[k−1]
0 )

k̃2 = G̃(k−1)(t0 + c2h, (Q̃
[k−1]
0 + ha2,1k̃1))

· · ·

k̃p = G̃(k−1)(t0 + cph, (Q̃
[k−1]
0 + h(ap,1k̃1 + . . . + ap,p−1k̃p−1)))

Ω̃
[k]
1 = Q̃

[k−1]
0 + h(b1k̃1 + . . . + bpk̃p),

where Ω denotes the solution in numerical space. In the actual implementation, we
discretize the error equation (2.4) as follows,

k1 = F (t0, e
[k−1]
0 )

k2 = F

(

t0 + c2h, e
[k−1]
0 + ha2,1k1 −

∫ t0+c2h

t0

ǫ(k−1)(τ) dτ

)

· · ·

kp = F

(

t0 + cph, e
[k−1]
0 + h

p
∑

i=1

apiki −

∫ t0+cph

t0

ǫ(k−1)(τ) dτ

)

δ
[k]
1 = e

[k−1]
0 + h

p
∑

i=1

biki −

∫ t0+h

t0

ǫ(k−1)(τ) dτ.(5.8)

Proposition 5.9. The Taylor series for ẽ(k−1)(t0 + h) = 1
h

sk−1 e(k−1)(t0 + h) and

for 1
h

sk−1 δ
[k]
1 above, coincide up to and including the term hr, for a sufficiently

smooth error function ẽ(k−1)(t).
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Proof. First, we prove by induction that

hsk−1 k̃i = ki, ∀i = 1, . . . , p.(5.9)

Since

hsk−1 k̃1 = G(k−1)(t0, Q
[k−1]
0 ) = F (t0, e

(k−1)(t0)) = k1,

the claim is true for i = 1. Assume that (5.9) is true for 1, . . . , i. Then,

hsk−1 k̃i+1 = G(k−1)



t0 + ci+1h, hsk−1(Q̃(k−1)(t0) + h

i
∑

j=1

ai+1,j k̃j)





= G(k−1)



t0 + ci+1h, Q(k−1)(t0) + h

i
∑

j=1

ai+1,jkj





= F



t0 + ci+1h, Q(k−1)(t0) + h

i
∑

j=1

ai+1,jkj − E(k−1)(t0 + ci+1h)





= F



t0 + ci+1h, e
[k−1]
0 + h

i
∑

j=1

ai+1,jkj −

∫ t0+ci+1h

t0

ǫ(k−1)(τ) dτ



 = ki+1,

which completes the inductive proof. Also,

δ
[k]
1 := hsk−1Ω̃

[k]
1 − E(t1)

= Q(k−1)(t0) − E(t1) + h(b1k1 + . . . + bpkp)

= e
[k−1]
0 + h(b1k1 + . . . + bpkp) −

∫ t0+h

t0

ǫ(k−1)(τ) dτ.

Since the Taylor series for Q̃(k−1)(t0 + h) and Ω̃
[k]
1 coincide, up to and including,

the term hr, the Taylor series for 1
h

sk−1 e(k−1)(t0 + h) and 1
h

sk−1 δ
[k]
1 also coincide,

up to and including, the term hr. �

Proposition 5.10. Suppose that the error equation (2.4) is discretized using the
algorithm in (5.8). Then, the numerical error vector satisfies

δ
[k]
m+1 = δ[k]

m +

rk
∑

i=1

hsk−1+i

i!
G̃(k−1)(tm, Ω̃[k]

m ) + hsk−1R̃rk+1(tm, Ω̃[k]
m )(5.10)

−

∫ tm+1

tm

ǫ(k−1)(τ)dτ + O(hM+1),

where Ω̃
[k]
m = 1

h
sk−1

(

δ[k](tm) +
∫ tm

0
ǫ(k−1)(τ) dτ

)

and

R̃rk+1(t, Ω̃) =

M−sk−1
∑

q=rk+1

hq
∑

qi
t+qi

Q̃
≤q−1

ζ
w1w2···wni

wf

q1
t q1

Q̃
···q

ni
t q

ni

Q̃

ni
∏

i=1

(G̃
(k−1)

tqi
t Q̃

qi
Q̃

(t, Ω̃))wi(G̃(k−1)(t, Ω̃))wf .

Here ζ
w1w2···wni

wf

q1
t q1

Q̃
···q

ni
t q

ni

Q̃

are constant coefficients determined by (5.8). Note that the

O(hM+1) truncation error arises from numerically computing
∫ tm+1

tm
ǫ(k−1)(τ)dτ ,
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and that G̃
(k−1)

tqi
t Q̃

qi
Q̃

(t, Ω̃) ∼ Oh(1) for qi
t + qi

Q̃
≤ M − sk−1. We omit the proof, which

is similar in spirit to the proof of Proposition 5.2.

Remark 5.11. In algorithm (5.8), an evaluation of f(t, η(t)) is needed at interme-
diate stages, e.g., at t = t0 + cph; this results in additional function evaluations
of f(t, η(t)). Since function evaluations are usually the most computationally in-
tensive portion of an algorithm, we perform polynomial interpolations from known

values instead. Specifically, given ~f = (f(t0, η0), . . . , f(tm, ηm), . . . , f(tM , ηM )), an
M th degree Lagrange interpolant, LM (t, f), (3.2), is constructed and used to ap-
proximate f(t, η(t))|t=t0+cph. This approximation has truncation error, O(hM+2).

Remark 5.12. To evaluate the integral term in algorithm (5.8), we integrate the cor-

responding Lagrange interpolant,
∫ t0+cih

t0
LM (t, ǫ(k−1)) dt, i = 1, . . . , p, with trun-

cation error, O(hM+2).

Proof of Lemma 5.5. Subtracting the numerical error vector, (5.10), from the inte-
grated error equation, (5.7),

e
[k]
m+1 = e

[k−1]
m+1 − δ

[k]
m+1

(5.11)

= e[k]
m + hsk−1

M+1−sk−1
∑

i=rk+1

hi

i!
G̃

(k−1)
i−1 (tm, Q̃[k−1]

m )

+ hsk−1

rk
∑

i=1

hi

i!

(

G̃
(k−1)
i−1

(

tm,
e
[k−1]
m + E(k−1)(tm)

hsk−1

)

− G̃
(k−1)
i−1

(

tm,
δ
[k]
m + E(k−1)(tm)

hsk−1

))

− hsk−1R̃rk+1

(

tm,
δ
[k]
m + E(k−1)(tm)

hsk−1

)

+ O(hM+2)

= e[k]
m + u[k]

m + r
[k−1]
1,m − r

[k]
2,m + O(hM+2),

where

u[k]
m = hsk−1

rk
∑

i=1

hi

i!

(

G̃i−1

(

tm,
e
[k−1]
m + E(k−1)(tm)

hsk−1

)

− G̃i−1

(

tm,
δ
[k]
m + E(k−1)(tm)

hsk−1

))

(5.12)

=

rk
∑

i=1

hi

i!

di−1

dti−1

(

G(k−1)
(

tm, e[k−1]
m + E(k−1)(tm)

)

− G(k−1)
(

tm, δ[k]
m + E(k−1)(tm)

))

=

rk
∑

i=1

hi

i!

di−1

dti−1

(

f (tm, y(tm)) − f
(

tm, η(k)(tm)
))

=

rk
∑

i=1

h

i!
hi−1 di−1

dti−1





S−2
∑

j=1

(−1)j+1

j!

∂jf

∂yj
(tm, y(tm))(e[k]

m )j + O((e[k]
m )S−1)



 ,
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and since sk = sk−1 + rk,

r
[k−1]
1,m = hsk−1

M+1−sk−1
∑

i=rk+1

hi

i!
G̃i−1(tm, Q̃[k−1]

m )(5.13)

= hsk+1
M−sk
∑

i=0

1

(rk + i + 1)!
hi di

dti

(

drk

dtrk
G̃(tm, Q̃[k−1]

m )

)

,

r
[k]
2,m = hsk−1R̃rk+1

(

tm,
δ
[k]
m + E(k−1)(tm)

hsk−1

)

(5.14)

= hsk+1
M+1−sk
∑

i=0

hi
∑

qi

Q̃
+qi

t≤i+rk

ζ
w1w2···wni

wf

q1
Q̃

q1
t ···q

ni

Q̃
q

ni
t

ni
∏

i=1

(

G̃
Q̃

qi
Q̃ tqi

t

(t, Ω̃[k]
m )

)wi

G̃wf (t, Ω̃[k]
m ).

We are now ready to bound ‖~e[k−1]‖∞ using an inductive argument. By definition,

e
[k]
0 = 0, so certainly e

[k]
0 ∼ O(hsk+1). Assume that e

[k]
m ∼ O(hsk+1). From (5.12),

u
[k]
m ∼ O(hsk+2). By Proposition 5.7, drk

dtrk
G̃(tm, Q̃

[k−1]
m ) = drk+1

dtrk+1 Q̃(k−1)(t)|t=tm
∼

O(1). Therefore, r
[k−1]
1,m ∼ O(hsk+1) from (5.13), and r

[k]
2,m ∼ O(hsk+1) from (5.14)

and Proposition 5.10. Thus, e
[k]
m+1 ∼ O(hsk+1), completing the inductive proof.

As before, we will prove the smoothness of the rescaled error vector using an

inductive argument based on s, the degree of smoothness of ~̃e[k]. First, the rescaled
error vector has at least 0 degrees of smoothness since ‖~̃e[k]‖∞ ∼ O(h) < ∞.

Assume that ~̃e[k] has s < M + 2 − sk degrees of smoothness in the discrete sense.

We will prove that
−→
d1ẽ

[k] has s degrees of smoothness, from which we can then
conclude that ~̃e[k] has (s + 1) degrees of smoothness. Using (5.11), the divided
difference approximation to the derivative of the rescaled error vector satisfies

(d1ẽ
[k])m =

ũ
[k]
m

h
+

1

h
r̃
[k−1]
1,m −

1

h
r̃
[k]
2,m + O(hM+2−sk),

where

ũ
[k]
m

h
=

rk
∑

i=1

hi−1

i!

di−1

dti−1

S−2
∑

j=1

(−1)j+1hsk(j−1)

j!

∂jf

∂yj
(tm, y(tm)(ẽ[k]

m )j + O(h(sk+1)(S−2)−1),

r̃
[k−1]
1,m

h
=

S−rk−1
∑

i=0

hi

(rk + i + 1)!

di

dti

(

drk

dtrk
G̃(tm, Q̃[k−1]

m )

)

,

r̃
[k]
2,m

h
=

M+2−sk
∑

i=0

hi
∑

qi

Q̃
+qi

t≤i+rk

ζ
w1w2···wni

wf

q1
Q̃

q1
t ...q

ni

Q̃
q

ni
t

ni
∏

i=1

(

G̃
Q̃

qi
Q̃ tqi

t

(t, Ω̃[k]
m )

)wi

G̃wf (t, Ω̃[k]
m ).

are computed from (5.12), (5.13), and (5.14).

Using a similar argument from before, 1
h
~̃u[k] has s degrees of smoothness in

the discrete sense. Similarly, 1
h
~̃r
[k]
1 has (M − sk) degrees of smoothness since

drk

dtrk
G̃(t, Q̃(k−1))|t=tm

= drk+1

dtrk+1 Q̃(k−1)(t)|t=tm
, has (M − sk) degrees of smoothness.

Since 1
h
~̃r
[k]
2 also has min(M − sk, s) degrees of smoothness in the discrete sense, we

can conclude that
−−−→
d1ẽ

[k] has s degrees of smoothness in the discrete sense, which
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implies that ~̃e[k] has (M + 1 − sk) degrees of smoothness in the discrete sense,
completing the inductive proof. �

Theorem 5.13. (deferred correction): Suppose y(t), the solution to IVP (2.1),
has S ≥ M + 1 degrees of smoothness. Consider a deferred correction method
constructed with (M + 1) uniformly distributed nodes, tm = mh, m = 0, . . . , M ,
an rth

0 order RK method in the prediction step, and (r1, r2, . . . , rkl
)th order RK

methods for kl correction loops. The local error for the above deferred correction

method is O(hskl
+1), where skl

=
∑kl

j=0 rj ≤ M + 1.

Proof. The proof of this theorem is similar to that of Theorem 5.3. The difference
involves using the differential form of the error equation (2.6), instead of the Picard
integral equation in the correction steps. This leads to a difference in the maximum
achievable order. Specifically, deferred correction methods approximate ∂

∂t
η(k−1)(t),

(2.6), with at most M th order accuracy. Thus a deferred correction method can
achieve M th order accuracy at best, unlike the IDC methods which can achieve
(M + 1)st order accuracy. �

6. Numerical examples

We test the order of accuracy for various IDC methods constructed using a
variety of integrators in the prediction and correction steps. Our numerical runs
are in agreement with the analysis in Sections 4 and 5. Then, we compare the
stability and accuracy of these methods. Superior stability and accuracy properties
are observed for IDC8-RK4 versus IDC8-RK2 and IDC8-FE.

Example 6.1. Consider the IVP,

y′(t) = −2π sin 2πt − 2(y − cos 2πt), y(0) = 1,(6.1)

which has an exact solution, y(t) = cos 2πt. We solve this IVP numerically using
IDC methods constructed with eight uniformly distributed nodes and various in-
tegrators. Specifically, given a final integration time, T , and number of intervals
N , the IDC method is iterated completely in each interval, [ti−1, ti] = T/N, i =
1, . . . , N using the quadrature nodes ti,j = ti + jh, h = H/7, j = 0, . . . , 7. This
defines the starting value for the next interval. In the table, IDC8-FE denotes the
IDC method constructed using eight uniformly distributed nodes and forward Eu-
ler integrators for the prediction and correction loops, IDC8-RK2 denotes the IDC
method constructed using eight uniformly distributed nodes and RK2 integrators
for the prediction and correction loops, etc. Eighth order convergence is observed
for all IDC8 schemes tested, in agreement with the analysis presented in Section 4
and 5. Interestingly, the error of the numerical solution obtained using IDC8-RK4,
is consistently one order of magnitude smaller than that of those obtained using
IDC8-FE and IDC8-RK2. More analysis and discussion on this observation are
provided in [3]. The results are summarized in Table 1.

In Table 2, the computations are repeated with deferred correction methods.
DC8-FE denotes a deferred correction method constructed using eight uniformly
distributed nodes and forward Euler integrators for the prediction and correction
loops, DC8-RK2 denotes a deferred correction method with eight uniformly dis-
tributed nodes and RK2 integrators for the prediction and correction loops etc.
The expected seventh order convergence is observed for DC8-FE. The eighth order
convergence observed for DC8-RK2 and DC8-RK4 is puzzling. This behavior does
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Table 1. The error at T = 20 and the corresponding order of
accuracy for various IDC methods used to solve IVP (6.1). Note
that the number of steps, N , is inversely proportional to the inter-
val size, H = T/N , and the sub-interval size is H/7.

– IDC8-FE IDC8-RK2 IDC8-RK4
steps (N) error order error order error order

40 5.47E-6 – 5.48E-6 – 4.49E-7 –
80 1.49E-8 8.52 1.49E-8 8.52 1.17E-9 8.57
120 5.42E-10 8.17 5.43E-10 8.16 4.27E-11 8.18
160 5.30E-11 8.08 5.31E-11 8.08 4.16E-12 8.10
200 8.79E-12 8.05 8.80E-12 8.05 6.83E-13 8.10

not appear if an odd number of quadrature nodes are used to construct the DC
method.

Table 2. The error at T = 20 and the corresponding order of ac-
curacy for various DC methods used to solve IVP (6.1). Note that
the number of steps, N , is inversely proportional to the interval
size, H = T/N , and the sub-interval size is H/7.

– DC8-FE DC8-RK2 DC8-RK4
steps (N) error order error order error order

40 3.89E-5 – 5.72E-6 – 5.87E-7 –
80 3.30E-7 6.88 2.60E-8 7.79 2.54E-9 7.85
120 2.15E-8 6.74 1.02E-9 8.00 9.83E-11 8.02
160 2.91E-9 6.94 1.02E-10 8.00 9.81E-12 8.01
200 6.11E-10 6.99 1.70E-11 8.00 1.64E-12 8.01

Definition 6.2. The amplification factor for a numerical method, Am(λ), can be
interpreted as the numerical solution to

y′(t) = λy(t), y(0) = 1,(6.2)

after one time step of size 1 for λ ∈ C, i.e., Am(λ) = y(1).

Definition 6.3. The stability region, S, for a numerical method, is the subset of
the complex plane C, consisting of all λ such that Am(λ) ≤ 1,

S = {λ : Am(λ) ≤ 1} .

In Figure 1(a), the stability regions for IDC8-FE, IDC8-RK2 and IDC8-RK4 are
computed numerically and plotted. Interestingly, the area of the stability regions
increases with the order of the embedded integrator. This isn’t overly surprising
since the regions of absolute stability for RK methods of order one (Euler’s method)
through four increases with the order. A similar observation is made in Figure 1(b)
for twelfth order IDC methods constructed using twelve interior points and various
integrators.
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(a) Eighth order IDC Methods
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(b) Twelfth order IDC Methods

Figure 1. (a) Stability regions for eighth order IDC methods con-
structed using eight uniformly distributed points and various inte-
grators. The regions of absolute stability increase with the order
of the embedded integrator. (b) A similar observation is shown for
twelfth order IDC methods.

Definition 6.4. Let e(λ) be the error at T = 1, obtained using a numerical method
to solve IVP (6.2), λ ∈ C, with a fixed number of function evaluations (i.e., dt is
chosen so that the total number of function evaluations for the method can be
controlled). Then, the accuracy plot for that numerical method is defined to be a
contour plot of the error, e(λ).

Generating the accuracy plots for different methods, where the same number of
function evaluations is used to generate each plot, gives us a way to qualitatively,
and quantitatively compare the performance of the different schemes; i.e., for the
same amount of work, how accurate are the methods?

In Figures 2(a) and 2(b), the accuracy plots for a generic RK4 method are
shown generated width 56 and 560 function evaluations respectively. In Figures 2(c)
and 2(d), accuracy plots for IDC8-FE are generated with 57 and 570 function
evaluations, while Figures 2(e) and 2(f) show the accuracy plots for IDC8-RK4
generated with 57 and 570 function evaluations. For the same number of function
evaluations, the accuracy plots show that IDC8-RK4 performs better than RK4
and IDC8-FE. This is particularly evident when |λ| ≪ 1.

7. Conclusions

In this paper, a local error analysis is given for SDC methods constructed using
general high order RK methods and a uniform distribution of quadrature nodes.
Similar arguments apply for the deferred correction method. Numerical examples
are in agreement with our analysis.

Our analysis does not extend for non-uniform distributions of quadrature nodes;
in fact, preliminary numerical experiments show that the accuracy order of an SDC
method, constructed with a non-uniform distribution of quadrature nodes, doesn’t
always increase with r orders, even when an rth order RK method is applied. In-
vestigations on using non-uniform quadrature nodes and other high order methods,
e.g., multi-step methods, are on-going research topics.
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(a) RK4 (b) RK4

(c) IDC8-FE (d) IDC8-FE

(e) IDC8-RK4 (f) IDC8-RK4

Figure 2. The accuracy plots for RK4, IDC8-FE and IDC8-RK4
are generated for ∼ 56 function evaluations and ∼ 560 function
evaluations.

References

1. W. Auzinger, H. Hofstätter, W. Kreuzer, and E. Weinmüller, Modified defect correction algo-

rithms for odes part i: General theory, Numer. Algorithms 36 (2004), 135–156.
2. Anne Bourlioux, Anita T. Layton, and Michael L. Minion, High-order multi-implicit spectral

deferred correction methods for problems of reactive flow, J. Comput. Phys. 189 (2003), no. 2,

651–675. MR MR1996061 (2004f:76084)
3. Andrew Christlieb, Benjamin Ong, and Jing-Mei Qiu, A comment on high order integrators

embedded within integral deferred correction methods, Commun. Appl. Math. Comput. Sci.
to appear.



22 ANDREW CHRISTLIEB, BENJAMIN ONG, AND JING-MEI QIU

4. Alok Dutt, Leslie Greengard, and Vladimir Rokhlin, Spectral deferred correction methods for

ordinary differential equations, BIT 40 (2000), no. 2, 241–266. MR MR1765736 (2001e:65104)
5. Thomas Hagstrom and Ruhai Zhou, On the spectral deferred correction of splitting methods

for initial value problems, Commun. Appl. Math. Comput. Sci. 1 (2006), 169–205 (electronic).
MR MR2299441

6. A. Hansen and J. Strain, Convergence Theory for Spectral Deferred Correction, preprint,
University of California at Berkeley, February (2005).

7. AC Hansen and J. Strain, On the order of Deferred Correction,
http://www.damtp.cam.ac.uk/user/na/people/Anders/Deferred.pdf.

8. Jingfang Huang, Jun Jia, and Michael Minion, Accelerating the convergence of spectral de-

ferred correction methods, J. Comput. Phys. 214 (2006), no. 2, 633–656. MR MR2216607
(2006k:65173)

9. , Arbitrary order Krylov deferred correction methods for differential algebraic equa-

tions, J. Comput. Phys. 221 (2007), no. 2, 739–760. MR MR2293148 (2008a:65134)
10. Anita T. Layton and Michael L. Minion, Conservative multi-implicit spectral deferred cor-

rection methods for reacting gas dynamics, J. Comput. Phys. 194 (2004), no. 2, 697–715.
MR MR2034861 (2004k:76089)

11. , Implications of the choice of quadrature nodes for Picard integral deferred corrections

methods for ordinary differential equations, BIT 45 (2005), no. 2, 341–373. MR MR2176198

(2006h:65087)
12. A.T. Layton, On the choice of correctors for semi-implicit Picard deferred correction methods,

Applied Numerical Mathematics 58 (2008), no. 6, 845–858.
13. A.T. Layton and M.L. Minion, Implications of the choice of predictors for semi-implicit Picard

integral deferred corrections methods, Comm. Appl. Math. Comput. Sci. 1 (2007), no. 2, 1–34.
14. Yuan Liu and Chi-Wang Shu, Strong stability preserving property of the deferred correction

time discretization, J. Comput. Math. to appear.
15. Michael L. Minion, Semi-implicit spectral deferred correction methods for ordinary differential

equations, Commun. Math. Sci. 1 (2003), no. 3, 471–500. MR MR2069941 (2005f:65085)
16. , Semi-implicit projection methods for incompressible flow based on spectral deferred

corrections, Appl. Numer. Math. 48 (2004), no. 3-4, 369–387, Workshop on Innovative Time
Integrators for PDEs. MR MR2056924

17. Robert D. Skeel, A theoretical framework for proving accuracy results for deferred corrections,
SIAM J. Numer. Anal. 19 (1982), no. 1, 171–196. MR MR646602 (83d:65184)

18. Yinhua Xia, Yan Xu, and Chi-Wang Shu, Efficient time discretization for local discontinuous

Galerkin methods, Discrete Contin. Dyn. Syst. Ser. B 8 (2007), no. 3, 677–693 (electronic).
MR MR2328730

Department of Math, Michigan State University, East Lansing, Michigan, 48824

Department of Math, Michigan State University, East Lansing, Michigan, 48824

Department of Mathematics and Computer Sciences, Colorado School of Mines,

Golden, Colorado, 80401

E-mail address: jingqiu@mines.edu


