Implicit Parallel Time Integrators

Andrew Christlieb Benjamin Ong *
October 25, 2010

Abstract

In this work, we discuss a family of parallel implicit
time integrators for multi-core and potentially multi-
node or multi-gpgpu systems. The method is an exten-
sion of Revisionist Integral Deferred Correction (RIDC)
by Christlieb, Macdonald and Ong (SISC-2010) which
constructed parallel explicit time integrators. The key
idea is to re-write the defect correction framework so
that, after initial startup costs, each correction loop can
be lagged behind the previous correction loop in a man-
ner that facilitates running the predictor and correctors
in parallel.

In this paper, we show that RIDC provides a frame-
work to use p cores to generate a pth-order implicit solu-
tion to an initial value problem (IVP) in approximately
the same wall clock time as a single core, backward Eu-
ler implementation (p < 12). The construction, conver-
gence and stability of the schemes are presented, along
with supporting numerical evidence.

Keywords: Initial value problems, integral deferred cor-
rection, parallel computation, multi-core computing.

*Department of Math, Michigan State University, East Lansing, MI
48823

IMPLICIT PARALLEL TIME INTEGRATORS 2

1 Introduction

In this paper, we construct and analyze a class of parallel im-
plicit time integrators for initial value problems (IVP), known
as Revisionist Integral Deferred Correction methods (RIDC),
which can be efficiently implemented with multi-core and/or
multi gpgpu architectures. The “revisionist” terminology was
adopted to highlight that (1) this is a revision of the standard
integral defect correction (IDC) formulation, and (2) successive
corrections, running in parallel but lagging in time, revise and
improve the approximation to the solution.

There are several avenues where many cores can be utilized
for implicit time integration. A transparent area where a par-
allel implementation can be employed is in the Newton solve,
where the Jacobian approximation and the linear solve can both
be performed in parallel. There are several libraries such as
PETSC [2], which utilizes the standard message passing inter-
face, and ViennaCL [25], which performs computations on a
gpgpu card, that can be utilized to speedup a code. Using a
parallel framework for the Newton solve typically produces a
significant speedup in the computation, however, hard scaling
limits may arise for a fixed problem size. Another area where
parallel algorithms are sometimes employed is domain decom-
position. Consider the initial value problem

{ y/<t> = f(t7y>> te [CL?b]J (1)

y(a) = a.

where y € R", f : R x R® — R". Domain decomposition splits
the IVP into a series of N sub problems, z/(t) = ¢;(t,y), where
2z € RN and g : RxR™ — R™" and each core works on a sep-
arate subproblem [3, 14, 27]. In general, domain decomposition
suffers from communication overhead, as well as scaling issues
for a fixed problem size. A third area where a parallel frame-
work can be employed is in the evaluation of f(¢,y), which may
contain integral solutions that can be evaluated efficiently in
parallel using fast multipole or treecode algorithms [11, 28].

IMPLICIT PARALLEL TIME INTEGRATORS 3

A fourth area of parallelization, which is the focus of this
paper, is the actual parallelization in the temporal direction.
Parallelization in this area is particularly interesting because
it can be combined with the previously discussed paralleliza-
tion ideas. For example, the present authors are exploring (i)
the use of p computing nodes, each containing a general pur-
pose graphics processing unit (gpgpu) to generate a pth-order
solution in approximately the same wall clock time as a single
computing node with a single gpgpu card, and (ii) space-time
parallelization of PDEs.

A natural idea to parallelize in the temporal direction is to
design high order Runge-Kutta schemes whose stages can be
evaluated in parallel [15]. Designing such schemes however in-
volves tedious order conditions. The approach we take involves
re-writing the defect correction framework so that, after ini-
tial startup costs, each correction loop can be lagged behind
the previous correction loop in a manner that facilitates run-
ning the predictor and correctors in parallel. This idea for
explicit parallel time integrators was previously published by
the present authors in [4], and falls in the category of parallel
across the steps. Implicit RIDC-BE integrators (RIDC algo-
rithms constructed using backward Euler integrators) are par-
ticularly promising because of their stability and efficiency. In
each step of a pth order RIDC-BE implementation with p com-
puting nodes, each computing node performs a Newton solve on
a system of N equations. This contrasts with a serial s-stage
implicit RK integrator where a system of s/N equations needs
to be solved. In practice, p has to be < 12 due to the Runge
phenomenon [26].

For completeness, we mention that another approach to par-
allelization in the temporal direction is parallel across the method,
e.g. the recent parareal algorithm [8, 9, 21, 22, 10]. In such
methods, the time domain is split into sub-problems that can
be computed in parallel, and an iterative procedure for cou-
pling the sub-problems is applied, so that the overall method

IMPLICIT PARALLEL TIME INTEGRATORS 4

converges to the solution of the full problem. Recently, the
parareal algorithm has been coupled with the defect correction
framework [23] to form a hybrid parareal-defect correction time
integrator.

This paper is divided into five main sections. In Section 2,
RIDC methods and their construction are presented. Conver-
gence theorems and the stability of RIDC methods are discussed
Section 3. Then, numerical benchmarks comparing RIDC and
some implicit Runge-Kutta methods are given in Section 4, fol-
lowed by concluding remarks in Section 5.

2 RIDC Methods

RIDC methods are a class of time integrators based on integral
deferred correction [1, 20, 19, 16, 17, 7, 6, 24, 18, 12]. RIDC
methods first compute a prediction to the solution (“level 0”)
using low order schemes (e.g. backward Euler) followed by one
or more corrections to compute subsequent solution levels. Each
correction revises the solution and increases the formal order of
accuracy by p, the order of the integrator used to solve the error
equation [4].

Parallel speedup is obtained by simultaneously computing
provisional and corrected solutions. However, this can only be
achieved if the solution to each correction level is delayed from
the previous level, as illustrated in Figure 1 for a backward Euler
predictor and corrector, and in Figure 2 for the RK2 Trapezoid
predictor and corrector. For now, just observe that the white
circles, denoting solution values that are simultaneously com-
puted, are staggered. The staggering is necessary because one
requires a provisional solution to update. The stencil (black
filled circles) needed for the computation will be discussed in
Section 2.3.

In Section 2.1, we first derive the error equation. Then, Sec-
tion 2.2 and Section 2.3 give numerical schemes for solving the
IVP and the error equation. In Section 2.4, details for start-

IMPLICIT PARALLEL TIME INTEGRATORS >

3rd correction . O
. /TN
2nd correction -~ ® ° e [o “ @)
_ [
¢ N
1st correction 4 ° e 1 O
77777777 7/
prediction .] O

tnfii tn—2 tnfl tn tn+1

Figure 1: (RIDC4-BE) This plot shows the staggering required
for a fourth order RIDC scheme, constructed using backward
Euler predictors and correctors. The time axis runs horizon-
tally, and the correction levels run vertically. The white circles
denote solution values that are simultaneously computed, e.g.,
core 0 is computing the prediction solution at time t,,o, core 1
is computing the 1st correction solution at time ¢,1, etc.

2nd correction ° @)
—~
. (AN
1st correction - @ ° ° . o | o \‘ o
== ‘ [N
prediction (\ .] . ® 1 O
7

Figure 2: (RIDC6-RK2) This plot shows the staggering required
for a sixth order RIDC scheme, constructed using second order
trapezoid predictors and correctors. The time axis runs horizon-
tally, and the correction levels run vertically. The white circles
denote solution values that are simultaneously computed, e.g.,
core 0 is computing the prediction solution at time ¢, o, core 1
is computing the 1st correction solution at time ¢,1, etc.

IMPLICIT PARALLEL TIME INTEGRATORS 6

ing and stopping the RIDC algorithm, as well as the theoretical
speedup is discussed. We comment on the notion of resets and
other observations in Section 2.5.

2.1 Error Equation

Suppose an approximate solution 7(t) to the exact solution y(t)
is computed. Then, the error of the approximate solution is

e(t) = y(t) —n(t). (2)
If we define the residual as €(t) = n'(t) — f(t,n(t)), then the
derivative of the error (2) satisfies

e(t) =y'(t) —n'(t) = f(t,yt) — f(t,n(t)) —et).

The integral form of the error equation

!/

[e<t>+ / emcﬂ — Fn +e®) - F L), ()

can then be solved using the initial condition e(a) = 0.

2.2 The predictor

The predictor is a low order integrator that is applied to solve
IVP (1). For example, a backward Euler integrator advances
the solution from t,, to t,,11 using

=0l £ At f (s, ™), (4)
where the superscript [indicates this is the solution at level
0, the prediction level. This non-linear equation can be solved
using Newton’s method.

For a more general s stage RK method with stage weights
a;;, node weights b; and node points c;, the solution is advanced
from ¢, to t,,q using

nn+1 = nn] +Zb

IMPLICIT PARALLEL TIME INTEGRATORS 7

where the stages K; are found by solving the nonlinear equations
generated by

KﬁﬂﬂJ(%+qA%wn+§)% >, i=1,...,s.

2.3 The corrector

The correctors are also low order integrators, but are used to
solve the error equation (3) for the error e(t) to an approximate
solution 7(t). Since the error equation is solved iteratively to
improve a solution from the previous level, each correction level
computes an error e/ ~1(¢) to the solution at the previous level
nU=1(t) to obtain a revised solution nll(¢) = nl=1(t) +eli=1(#).

A backward Euler discretization of equation (3) (after some
algebra) gives

i i+ Aty (£ = £ET) + 0 aka‘;” L ifn >
M1 = . '
o TI?["f] + Atn fr[zJJ]rl 7[Lj+11] + Z] —0 ¥ fk: , if n < J

()

where fn] denotes f(t n,n,[L]) in the above nonlinear equations.
Qy, are quadrature weights so that the sum approximates the

integral ft"“ (7,nY=1(7))dr. For example it j =2andn >

j — 1, the function values f,) 11 1 and f ~, are used for the

quadrature and

tn+
tn

Note that the number of terms in the sum increases with level
7 because the order of method after the jth corrector is j + 1
and thus the integral must be approximated with increasing ac-
curacy. For example, we show the stencil required to compute

=2
] (t - thrlfi)

(tnt1—k — tnt1-4)

dt, k=0,1,2
i=0,i#k

-1
—1

IMPLICIT PARALLEL TIME INTEGRATORS 8

a sufficiently accurate quadrature approximation for the second
correction loop for RIDC4-BE in Figure 1 using dashed lines.
Three values are needed from the previous value to approximate
the quadrature of the residual. Note that the choice of stencils
picked for the quadrature is not unique; in practice, the differ-
ent quadrature stencils do not seem to significantly affect the
accuracy of the solution.

If a more general pth order s-stage RK method with stage
weights a;;, node weights b; and node points ¢;, is used to com-
pute nmrl, we first note from [5] that the order increase is only
guaranteed if the quadrature nodes are spaced equally with spac-
ing At. Then,

] 1N s 1
T]75+1 = ng] + ijKj7 +/t f(TJT][]i](T)) dr
j=0 "

K] T
S 0+ eI it >y -1
=0

k=0

s j
ng}+2bjl(j,+2akf,£r”, ifn<r;—1
=0 k=0

where 7; denotes the anticipated order of the method after the
jth correction. The stages K; are found by solving the nonlinear
equations generated by

K = Atf <%,nnf U — b= +Z%K +/ FO (b=t (s))d7>

—Atf (v, n7 ()

where v; = t,, + ¢;At. The integral is once again approximated
by quadrature with the appropriate stencil. This same stencil
is used to approximate the solution value nV=1(t, + c¢;At) by
interpolating the computed function values at the previous level.

IMPLICIT PARALLEL TIME INTEGRATORS 9

2.4 Startup, Shutdown and Speedup

During most of a RIDC calculation, multiple solution levels are
computed in parallel using multiple computing nodes. Here, a
computing node refers generically to (i) a single computing core
in a multi-core system, (ii) a single computing core coupled with
a gpgpu card or (iii) a cluster of computing nodes if domain
decomposition is being used.

However, the computing nodes in the RIDC algorithm can-
not start simultaneously: each must wait for the previous level
to compute sufficient n values before marching all of them in a
pipeline fashion. The order in which computations can be per-
formed using a four node system during startup is illustrated
in Figure 3 for a fourth order RIDC constructed with backward
Euler integrators. The j*® processor (running the 5™ correction)
must initially wait for j(j + 1)/2 steps. For example, in order
for computing node 1 to compute ngl}, it requires 77([)0} and nEO]
to compute a sufficiently accurate quadrature approximation.
Consequently, it cannot start in “step 1”7 (as denoted in the fig-
ure) since it has to wait for computing node 0 to complete com-
puting 77&0}. Similarly, the starting algorithm for RIDC6-RK2
is illustrated in Figure 4. For RIDC6-RK2, the ;' processor
(running the j*® correction) must initially wait for (5 + 1)2 —1
steps.

In terms of shutdown, the calculation ends when the highest
level (most accurate) computation reaches the final time ¢t = b.
Note that the predictor and lower level correctors will reach
ty = b earlier and as a consequence some computing threads
will sit idle.

Estimating the potential speedup and parallel efficiency for
our parallel implicit RIDC algorithms cannot be easily quan-
tified, because advancing the solution from t, to t,,; on dif-
ferent levels might involve a different number of Newton iter-
ations. Additionally, not all processors are made equal and
latency, shared memory overhead, and interprocess communi-

IMPLICIT PARALLEL TIME INTEGRATORS 10

3rd correction (node 3) (0) (D) &) (@ @

2nd correction (node2) @) @D & ©) ©®

Ist correction (node 1) (0) @ @ & © @
prediction (node 0) @ @O @ @ & ©® @®@

to t1 to ts3 ta ..

Figure 3: Starting the RIDC4-BE algorithm. Each number in-
dicates the step in which the corresponding value of f(n) is
computed. In the starting algorithm, special care is taken to
ensure that minimum memory is used by not letting the com-
puting nodes run ahead until they can be marched in a pipeline;
in this example, when node 3 starts computing ¢.

2nd correction (node 2) @ @ @ @ @ @
1st correction (node 1) 0 @ @ @ @ @ @
prediction (node 0) -(0) @ @ @ @ @) @

to t1 ta t3 ts ts te ...

Figure 4: Starting the RIDC6-RK2 algorithm. Here, the com-
puting nodes can be marched in a pipeline when node 2 starts
computing ts.

IMPLICIT PARALLEL TIME INTEGRATORS 11

cation issues will decrease the speedup in practice. Under the
assumption that advancing the solution from ¢, to ¢, involves
the same number of Newton iterations, a rough estimate for
speedup and efficiency for RIDC algorithms constructed with
backward Euler is,

pN Fie N
, elliciency = ,
N +p(p+1)/2 TN 2

speedup =

where p is the order of the RIDC algorithm, and the number of
computing nodes available. As N — oo, the speedup — p, and
the efficiency — 1. For RIDC algorithms constructed with an
implicit RK2 scheme,

pN Foi N
, etficiency = ,
N+@p+1)?2-1 Y N+(p+1)?2-1

speedup =

where the order of the RIDC algorithm is 2p, and p computing
nodes are available.

2.5 Resets and Other Comments

A RIDC computation can be periodically “reset”. That is, in-
stead of computing all the way to the final time, we compute on
some smaller time interval to time ¢,, and use the most accurate
solution to reset the RIDC computation at ¢t = t,. In practice,
this should lower the error constant of the overall method, but
at the cost of decreasing the speedup due to the additional cost
of starting the RIDC algorithm multiple times.

Finally, we comment that we cannot increase the order of
RIDC indefinitely as (i) it is not practical and (ii) the Runge
phenomenon [26], which arises from using equi-spaced interpo-
lation points, will eventually cause the scheme to become un-
stable. In practice, 12th order RIDC methods have been con-
structed without any observable instability.

IMPLICIT PARALLEL TIME INTEGRATORS 12

3 Convergence and Stability

We first discuss convergence theorems for the implicit RIDC
methods, followed by the linear stability regions of various im-
plicit RIDC methods. The effect of resets on the stability regions
are explored.

3.1 Convergence of RIDC methods

The analysis in [7, 5], proving convergence under mild conditions
for IDC methods, extends simply to these RIDC methods.

Theorem 3.1. Let f(¢,y) and y(¢) in IVP (1) be sufficiently
smooth. Then, the local truncation error for a RIDC method
constructed using uniform time steps and backward Euler in-

tegrators as the predictor and (p — 1) Euler correction loops is
O(hr).

Theorem 3.2. Let f(t,y) and y(¢) in IVP (1) be sufficiently
smooth. Then, the local truncation error for an RIDC method
constructed using uniform time steps, a py'"-order Runge-Kutta

method in the prediction loop, and (p1,ps, - - - ,p;)™"-order RK
methods in the correction loops, is O(hP*1), where p = >"7_ p;.

The proof for both these theorems extend simply from the anal-
ysis in [5, 7].

3.2 Regions of Absolute Stability

We stick to the normal definition of absolute stability, as order
stars are difficult to generate for RIDC schemes for N > 1. We
instead use the following simpler definitions.

Definition 3.1. The amplification factor for a numerical method,
¢(AAt), can be interpreted as the numerical solution to Dal-
hquist’s test equation,

y(t) =My(t), y(0)=1, (6)

IMPLICIT PARALLEL TIME INTEGRATORS 13

at t = 1. If the numerical method uses a stepsize of At, then
d(AAL) = y(1), for A € C,

Definition 3.2. The stability region, .S, for a numerical method,
is the subset of the complex plane C, consisting of all AAt such
that |p(AAL)] < 1,

S = {AAL: [p(AAL)| < 1}

We introduce the following definition for “scaled” stability
regions for parallel methods, and note that the stability regions
for RIDC methods in [4] should have been appropriately scaled.

Definition 3.3. The scaled stability region for a serial time in-
tegrator, S, is the stability region S defined above scaled by the
number of function evaluations per At step. The scaled stability
region for a parallel time integrator, S,, is the stability region S
defined above scaled by the number of function evaluations per
At step, and further scaled by the parallel speedup.

In Figure 5, we plot the stability regions for RIDC4-BE,
varying the number of steps taken before a reset. In Figure 5(a),
we have scaled by the stability region by the number of function
evaluations per time step, and in Figure 5(b), we have further
scaled by the parallel speedup. (One can, and should interpret
Figure 5(a) as the stability region for RIDC4-BE when only one
computing node is used for the computation, and Figure 5(b) as
the stability region of RIDC4-BE when four computing nodes
are used.) Note that the axis scales are different in both plots
for annotation purposes. The two main observations are (i)
RIDC4-BE maintains A-stability regardless when the reset is
performed, and (ii) the scaled stability region for RIDC4-BE
when four nodes are used, approaches that of backward Euler
as the number of steps before a reset increases.

Figure 6 shows the scaled stability regions of RIDC4-BE,
RIDC4-RK2, RIDC8-RK2 after 100 steps. We observe that al-
though the base trapezoidal RK2 scheme is A-stable, the RIDC
methods constructed using that RK2 scheme loses its A-stability

property.

IMPLICIT PARALLEL TIME INTEGRATORS 14

20 10
10 5
0 0
-10 -5
=20 -10

0 10 20 30 40 -5 0 5 10 15 20

(a) Stability region of RIDC4-BE (b) Stability region of RIDC4-
scaled by the number of function BE futher scaled by the parallel
evaluations per step speedup

Figure 5: This figure shows the region of absolute stability for
the backward Euler integrator (magenta), and the scaled regions
of absolute stability for the RIDC4-BE algorithm after 4 steps
(red), 10 steps (black), and 100 steps (blue). The two main
observations are (i) RIDC4-BE maintains A-stability regardless
when the reset is performed, and (ii) the stability region ap-
proaches that of backward Euler as the number of steps before
a reset increases. The regions of stability are the regions outside
of the enclosed curves.

RIDC4-RK2
5
RIDC8-RK2
RIDC4-BE
-5
-2 -1 0 1 2

Figure 6: Scaled regions of absolute stability for various par-
allel RIDC schemes. For RIDC methods constructed using the
trapezoidal RK2 integrator, the stability regions lie to the left
of the curve. For RIDC4-BE, the region of absolute stability is
the region outside the curve.

IMPLICIT PARALLEL TIME INTEGRATORS 15

4 Numerical Examples

We present some numerical results validating the order of ac-
curacy of the RIDC schemes, and the speedup obtained in this
parallel framework. The computations were performed on a
desktop containing two quad core Intel Xeon 3.0Ghz proces-
sors. The RIDC algorithms were implemented in C++ using
the OpenMP protocol.

4.1 Advection-Diffusion

We apply various RIDC-BE algorithms to the advection-diffusion
problem to show that RIDC methods are able to achieved de-
signed orders of accuracy, and to study how the error changes
with the number of resets. The advection-diffusion equation is

U = Uy + Dug,, x€[0,1], te€][0,1],
u(z,0) = 2 + sin(27z),

with periodic boundary conditions. The diffusion coefficient is
set at D = 1072. The problem is discretized into 128 spatial
intervals and solved in Fourier space; a system of odes are ob-
tained for each discrete wave number.

64 63

_%,...7%.

(tg); = (ik)iy, — kK*Diy,, k=

The convergence studies are summarized in Table 1, which show
that RIDC methods are able to achieve their designed orders of
accuracy.

We also study how the number of resets affect the overall
error for this advection-diffusion problem, as discussed in Sec-
tion 2.5. A total of 400 steps are taken. In Figure 7, the error
at the final time ¢ = 1 is plotted for varying number of resets.
For example, if three resets are taken, then the most accurate
solution after every 100 steps is used to restart the RIDC algo-
rithm. Note that 99 resets (i.e. a reset every four steps in this

IMPLICIT PARALLEL TIME INTEGRATORS

16

RIDC2-BE

RIDC3-BE

RIDC4-BE

error order

error order

error order

1.75e-02 -

1.53e-03 -

1.27e-04 -

4.78e-03 1.88

2.14e-04 2.8

9.01e-06 3.82

2.19e-03 1.93

6.56e-05 2.91

1.85e-06 3.90

1.25e-03 1.95

2.82e-05 2.94

5.98e-07 3.93

8.06e-04 1.96

1.46e-05 2.95

2.48e-07 3.9

RIDC5-BE

RIDC6-BE

RIDC7-BE

error order

error order

error order

2.41e-04 -

3.34e-05 -

4.59¢-06 -

9.88e-06 4.61

7.02e-07 5.57

4.95e-08 6.53

120

1.42e-06 4.78

6.79e-08 5.76

3.21e-09 6.75

160

3.52e-07 4.85

1.27e-08 5.83

4.55e-10 6.79

200

1.18e-07 4.89

3.45e-09 5.84

1.15e-10 6.17

RIDC4-RK2

RIDC6-RK2

RIDCS8-RK2

error order

error order

error order

1.87e-02 -

1.05e-03 -

4.45e-04 -

1.20e-03 3.96

2.90e-05 5.17

3.00e-06 7.22

7.23e-05 4.05

5.23e-07 5.79

1.10e-08 8.09

4.38e-06 4.05

8.62e-09 5.92

3.07e-11 8.49

Table 1: Convergence study for various RIDC schemes applied
to solve the advection-diffusion problem. In all cases, RIDC
schemes achieve their designed orders of accuracy.

IMPLICIT PARALLEL TIME INTEGRATORS 17

experiment) corresponds to the standard IDC algorithm with-
out parallelism. It is observed that the error decreases as the
number of restarts is increased, but not significantly.

10°

10_7 L
10°°

10

error

0 50 100
Num Restarts

Figure 7: In the advection-diffusion example, we explore how
the number of resets affect the error for the RIDC4-BE algo-
rithm. As more resets are taken, the error decreases. Compar-
ing with results in [4], the optimal number of restarts (balancing
the efficiency with minimizing the error) appears to be problem
dependent.

4.2 Brusselator

We consider an idealized autocatalytic reaction described by the
Brusselator equations [13],

ou 5 0*u
v 5 0*v
i Bu —u"v + a@,
where A = 1 and B = 3 are rate constants, and a@ = = is

50
the diffusion constant. This system is nonlinear, and stiff due

to the diffusion. A method of lines discretization is applied
by using a centered differencing on the diffusion term. We set

r; =1Ax,1=0,1,... M, where Az = ﬁ = ﬁ, and obtain the

IMPLICIT PARALLEL TIME INTEGRATORS 18

system of equations

Ou; 9 Uip1 — 2U; + Ui—1

Y —A—i-ul-vi—(B—i-l)ui—l—oz(A2 :

Ov; i1 — 20; + v :
aZ:Bui—u?vi—i—a(UH AZ;—U 1>, 1=1,...M —1

with boundary conditions
u(0,t) =u(l,t) =1, v(0,t) =v(l,t)=3.
The following initial conditions were chosen:
u(z,0) =1 +sin(27x), ov(z,0) = 3.

Newton’s method is applied to solve the non-linear system of
equations, and a GMRES algorithm is used to solve for each
Newton update within Newton’s method. In all the numerical
runs presented below, a tolerance of 1074 is used to find the
Newton update using the GMRES algorithm, and a tolerance
of 10719 is used as a stopping criterion for Newton’s method. For
the non-linear solve, the Jacobian is approximated numerically
using a first order finite difference formula.

In Figure 8(a), the error versus the stepsize for various schemes
are plotted. All schemes achieve their designed rate of conver-
gence. The error of the solution obtained using the three stage
Radaub scheme is smaller than that of the other schemes. One
might speculate that the serial Radaub scheme might be the
most efficient scheme since each time update requires a Newton
solve of a 3N system of equations (proportional to the number
of stages), whereas a RIDC4-BE scheme requires four Newton
solves of N system of equations for each update (after start up).
We show in Figure 8(b) however that our parallel RIDC4-BE
using four computing nodes is more efficient for this problem.
In Figure 9, we show the speedup obtained by comparing timing
runs for sequential RIDC integrators, and RIDC integrators run
with multiple cores.

IMPLICIT PARALLEL TIME INTEGRATORS 19

error
=
o

-10 _
o° 107, 2000 4000 _ 6000

computational time (s)

10
10

-©-BE
-5 “4-Trap
—-<RIDC4
Radau5
= 1
At

(a) Convergence Study (b) Timings

Figure 8: (a) shows a convergence study of various numerical
schemes. All schemes achieve their designed rate of convergence.
In (b), the errors are plotted as a function of computational
time. RIDC4-BE run with four computing cares appear to be
the most efficient.

8
O RIDC4-BE
6 X RIDC8-BE]

%

0 2 4 6 8
number of cores

Figure 9: Speedup of RIDC4-BE (black circles) and RIDC8-BE
methods are computed by comparing wall clock computation
times of multi-core implementations with a single-core (sequen-
tial) implementation .

IMPLICIT PARALLEL TIME INTEGRATORS 20

5 Conclusions

In this paper, we introduced implicit RIDC algorithms and im-
plemented these algorithms on multi-core systems. We show
that these algorithms attain their designed orders of accuracy
for various problems, and show that significant speedup is ob-
tained over serial algorithms. Stability and convergence of these
methods were also discussed. In continuing work, the authors
are applying RIDC algorithms to practical problems of interest,
where time and spatial parallelization is desired, and are ex-
ploring the use of multi-core, multi-gpu nodes for use in RIDC
algorithms.

Acknowledgments

This work was supported by AFRL and AFOSR under contract
and grants FA9550-07-0092 and FA9550-07-0144, and the High
Performance Computing Center (HPCC) at Michigan State Uni-
versity. The authors would also like to thank C.B. Macdonald
and R.J. Spiteri for insightful comments and enlightening dis-
cussions related to this work.

References

[1] W. Auzinger, H. Hofstiatter, W. Kreuzer, and
E. Weinmiiller. Modified defect correction algorithms
for ODEs part I: General theory. Numer. Algorithms,
36:135-156, 2004.

[2] S. Balay, K. Buschelman, D. Gropp, W.D.and Kaushik,
M.G. Knepley, L.C. Mclnnes, B.F. Smith, and Zhang H.
PETSc Web page, 2009. http://www.mcs.anl.gov/petsc.

[3] E. Brakkee, A. Segal, and CGM Kassels. A parallel domain
decomposition algorithm for the incompressible Navier-

IMPLICIT PARALLEL TIME INTEGRATORS 21

Stokes equations. Simulation Practice and Theory, 3(4-
5):185-205, 1995.

Andrew Christlieb, Colin Macdonald, and Benjamin Ong.
Parallel high-order integrators. SIAM J. Sci. Comput.,
32(2):818-835, 2010.

Andrew Christlieb, Maureen Morton, Benjamin Ong, and
Jing-Mei Qiu. Semi-implicit integral deferred correction
constructed with high order additive Runge-Kutta integra-
tors. submitted.

Andrew Christlieb, Benjamin Ong, and Jing-Mei Qiu.
Comments on high order integrators embedded within in-
tegral deferred correction methods. Comm. Appl. Math.
Comput. Sci., 4(1):27-56, 2009.

Andrew Christlieb, Benjamin Ong, and Jing-Mei Qiu. In-
tegral deferred correction methods constructed with high
order Runge-Kutta integrators. Math. Comput., 79:761—
783, 2010.

M.J. Gander and E. Hairer. Nonlinear convergence analysis
for the parareal algorithm. Lecture Notes in Computational
Science and Engineering, 60:45, 2008.

M.J. Gander and S. Vandewalle. Analysis of the parareal
time-parallel time-integration method. SIAM J. Sci. Com-
put., 29(2):556-578, 2007.

M.J. Gander and S. Vandewalle. On the superlinear and
linear convergence of the parareal algorithm. Lecture Notes
in Computational Science and Engineering, 55:291, 2007.

L. Greengard and W. D. Gropp. A parallel version of the
fast multipole method. Computers and Mathematics with
Applications, 20(7):63 — 71, 1990.

IMPLICIT PARALLEL TIME INTEGRATORS 22

[12]

[13]

[14]

[15]

[19]

[20]

Thomas Hagstrom and Ruhai Zhou. On the spectral de-
ferred correction of splitting methods for initial value prob-
lems. Commun. Appl. Math. Comput. Sci., 1:169-205,
2006.

E. Hairer and G. Wanner. Solving ordinary differential
equations. II, volume 14 of Springer Series in Computa-
tional Mathematics. Springer-Verlag, Berlin, second edi-
tion, 1996. Stiff and differential-algebraic problems.

G. Horton and S. Vandewalle. A space-time multi-
grid method for parabolic PDEs. Siam J. Sci. Comput,
16(4):848-864, 1995.

P. J. Van Der Houwen, B. P. Sommeijer, and W. Couzy.
Embedded diagonally implicit runge-kutta algorithms
on parallel computers. Mathematics of Computation,
58(197):135-159, 1992.

Jingfang Huang, Jun Jia, and Michael Minion. Accelerating
the convergence of spectral deferred correction methods. J.
Comput. Phys., 214(2):633-656, 2006.

Jingfang Huang, Jun Jia, and Michael Minion. Arbitrary
order Krylov deferred correction methods for differential al-
gebraic equations. J. Comput. Phys., 221(2):739-760, 2007.

Anita T. Layton and Michael L. Minion. Implications of the
choice of quadrature nodes for Picard integral deferred cor-
rections methods for ordinary differential equations. BIT,
45(2):341-373, 2005.

A.T. Layton. On the choice of correctors for semi-implicit
Picard deferred correction methods. Applied Numerical
Mathematics, 58(6):845-858, 2008.

A.T. Layton and M.L. Minion. Implications of the choice of
predictors for semi-implicit Picard integral deferred correc-

IMPLICIT PARALLEL TIME INTEGRATORS 23

[21]

22]

23]

[24]

[25]

[26]

[27]

28]

tions methods. Comm. Appl. Math. Comput. Sci., 1(2):1-
34, 2007.

J.L. Lions, Y. Maday, and G. Turinici. A “parareal” in time
discretization of PDEs. Comptes Rendus de I’Academie des
Sciences Series I Mathematics, 332(7):661-668, 2001.

Y. Maday and G. Turinici. A parareal in time procedure
for the control of partial differential equations. Comptes
rendus-Mathématique, 335(4):387-392, 2002.

M. Minion. A hybrid parareal spectral deferred corrections
method.

Michael L. Minion. Semi-implicit spectral deferred correc-
tion methods for ordinary differential equations. Commun.
Math. Sci., 1(3):471-500, 2003.

F. Rudolf, K. Rupp, and Weinbub J. ViennaCL Web page,
2010. http://viennacl.sourceforge.net.

Carl Runge. Uber empirische Funktionen und die Interpo-
lation zwischen dquidistanten Ordinaten. Zeit. fur Math.
und Phys., 46:224-243, 1901.

B.F. Smith, P. Bjorstad, and W. Gropp. Domain decom-
position: parallel multilevel methods for elliptic partial dif-
ferential equations. Cambridge Univ Pr, 2004.

M.S. Warren and J.K. Salmon. A portable parallel particle
program. Computer Physics Communications, 87(1-2):266
— 290, 1995. Particle Simulation Methods.

