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Abstract To leverage the computational capability of modern supercomputers, ex-
isting algorithms need to be reformulated in a manner that allows for many con-
current operations. In this paper, we outline a framework that reformulates classical
Schwarz waveform relaxation so that successive waveform iterates can be computed
in a parallel pipeline fashion after an initial start-up cost. The communication costs
for various implementations are discussed, and numerical scaling results are pre-
sented.
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1 Introduction

Schwarz Waveform Relaxation (SWR) introduced in [2] has been analyzed for a
wide range of time-dependent problems, including the parabolic heat equation [7],
wave equation and advection-diffusion equations [6, 8], Maxwell’s equations [4],
and the porous medium equation [9]. In contrast to classical Schwarz iterations,
where the time-dependent PDE is discretized in time and domain-decomposition is
applied to the sequence of steady-state problems, SWR solves time-dependent sub-
problems; this relaxes synchronization of the sub-problems and provides a means
to couple disparate solvers applied to individual sub-problems, for example [10].
SWR has also been shown in [8, 1] to have superlinear convergence for small time
windows. This paper outlines a framework that reformulates SWR so that successive
waveform iterates can be computed in a pipeline fashion, allowing for increased con-
currency and hence, increased scalability for SWR-type algorithms. In §2, we review
the SWR algorithm before introducing and comparing several Pipeline Schwarz
Waveform Relaxation algorithms (PSWR) in §3. Numerical scaling results for the
linear heat equation are presented in §4.
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2 Schwarz Waveform Relaxation

Denote the PDE of interest as

ut = L (t,u), (x, t) ∈Ω × [0,T ] (1)
u(x,0) = f (x), x ∈Ω

u(z, t) = g(z, t), z ∈ ∂Ω .

Consider a partitioning of the domain, Ω = ∪iΩi. The domains in the partition may
be overlapping or non-overlapping. Let ui denote the solution on sub-domain Ωi.
Then, equation (1) can be decomposed into a coupled system of equations,

(ui)t = L (t,ui), (x, t) ∈Ωi× [0,T ] (2)
ui(x,0) = f (x), x ∈Ωi

ui(z, t) = g(z, t), z ∈ ∂Ωi∩∂Ω ,

Ti j(ui(z, t)) = Ti j(u j(z, t)), z ∈ ∂Ωi∩∂Ω j.

where T are transmission operators appropriate to the equation (1). SWR decouples
the system of PDEs in equation (2). Let u[k]i denote the k-th waveform iterate on
sub-domain Ωi. After specifying an initial estimate for the sub-domain solution on
the interfaces, u[0]i (z, t),z ∈ ∂Ωi \ ∂Ω , the SWR algorithm iteratively solves PDEs
(3) for waveform iterates k = 1,2, . . . until convergence,

(u[k]i )t = L (t,u[k]i ), (x, t) ∈Ωi× [0,T ] (3)

u[k]i (x,0) = f (x), x ∈Ωi

u[k]i (z, t) = g(z, t), z ∈ ∂Ωi∩∂Ω ,

Ti j(u
[k]
i (z, t)) = Ti j(u

[k−1]
j (z, t)), z ∈ ∂Ωi∩∂Ω j.

A pseudo-code for the algorithm is presented on the next page. Observe that
SWR allows for each sub-domain to independently compute time-dependent solu-
tions on their respective sub-domains (lines 9-11) During each waveform iteration,
transmission data on each sub-domain is aggregated for the entire computational
time interval before boundary data is exchanged between neighboring sub-domains
(lines 12-14).

3 Pipeline Schwarz Waveform Relaxation

Using a similar approach described in [3], the relaxation framework can be rewritten
so that after initial start-up costs, multiple waveform iterations can be computed in
a pipeline-parallel fashion. A graphical example of the PSWR algorithm for two
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Schwarz Waveform Relaxation Algorithm
1. MPI Initialization
2. parallel for i = 1 . . .N (Sub-domain)
3. for t = ∆ t . . .T
4. Guess u[0]i (z, t), z ∈ ∂Ωi∩∂Ω j
5. end
6. end
7. for k = 1 . . .K (Waveform iteration)
8. parallel for i = 1 . . .N (Sub-domain)
9. for t = ∆ t . . .T
10. Solve for u[k]i (t,x)
11. end
12. for t = ∆ t . . .T
13. Exchange transmission data T (u[k]i (t,z))
14. end
15. Check convergence
16. end
17. end
.

subdomains is shown in Figure 1. To simplify the presentation, we first present the
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Fig. 1 The proposed PSWR algorithm allows for multiple Schwarz waveform iterations to be
simultaneously computed. After an initial start-up cost, multiple iterates are computed in a pipeline
fashion.

algorithm for the simplified case where the same time discretization is used for all
sub-problems (Pipeline Schwarz Waveform Relaxation Algorithm 1).

Several observations should be made about the proposed PSWR algorithm. First,
a Schwarz iteration can only proceed if boundary data (i.e. transmission conditions)
from the previous iterate are available; this condition (part of the start-up cost before
the PSWR algorithm can be run in a pipeline fashion) is checked by the if statement
in line 12. Secondly, transmission data is exchanged after every time step to facilitate
the pipeline parallellism. This added synchronization can be relaxed at the expense
of increasing the start-up cost needed to run this algorithm in a pipeline fashion. This
pipeline parallelism allows for N ·K concurrent processes in the PSWR algorithm
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Pipeline Schwarz Waveform Relaxation Algorithm 1
1. MPI Initialization
2. parallel for i = 1 . . .N (Sub-domain)
3. for t = ∆ t . . .T
4. Guess u[0]i (z, t), z ∈ ∂Ωi∩∂Ω j
5. end
6. Set t [0] = T
7. end
8. parallel for k = 1 . . .K (Waveform iteration)
9. parallel for i = 1 . . .N (Sub-domain)
10. set t [k] = ∆ t
11. While t [k] ≤ T
12. If t [k] < t [k−1]

13. Solve for u[k]i (t [k],x)

14. Exchange transmission data T (u[k]i (t [k],z))
15. t [k]← t [k]+∆ t
16. end
17. end
18. Check convergence
19. end
20. end
.

with efficiency Nt
K+Nt

(accounting for start-up costs), where Nt is the number of time
steps used to discretize the time domain [0,T ], N is the number of sub-domains, K
is the number of waveform iterates. This contrasts with the SWR algorithm, which
can only utilize N concurrent processes corresponding to the N sub-domains. This
increased concurrency in PSWR comes with the overhead of an increased number
of messages and synchronization.

For the SWR algorithm, one needs to send O(K − 1) message of size O(Nt).
If N ·K processors are used in a pipeline parallel fashion as described in Pipeline
Schwarz Waveform Relaxation Algorithm 1, O((K−1) ·Nt) messages of size O(1)
are needed. More generally, if N · p processors are used in the PSWR algorithm,
where p < K is a multiple of K, then O((p− 1)/p ·K ·Nt) messages of size O(1),
and O(K/p−1) messages of size O(Nt), are needed. We note that the PSWR algo-
rithm can also be implemented using a framework the naturally reduces the number
of messages in a system. Assuming a heterogenous compute platform (where each
socket has multiple cores), one can use the MPI-3 framework [11] or the OpenMP
protocol in the outer “parallel for” statement in line 8, to aggregate transmission data
from line 14 naturally before exchanging transmission data with neighboring nodes.
Alternatively, because nodes working on waveform iterate k only needs to com-
municate with waveform iterates k− 1, the PSWR algorithm allows for a natural
grouping of nodes so that one can (in principle) use multiple overlapping communi-
cators to leverage data/network-topology and software defined networking advances
[5] to add scalability.

Generalizations to allow for disparate time discretizations in each sub-problem
are possible. We list the algorithm without implementation. Unlike PSWR Algo-
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rithm 1, it is not possible to keep the “pipe” full, i.e. domain i might necessarily
need to wait for it’s neighbouring domains to provide adequete boundary data. Ad-
ditionally, solving for u[k]i (t [k]i ,x) in line 14 requires an interpolation algorithm to
correctly obtain the correct transmission condition to be used in the solution of (3).
Lastly, an implementation decision has to be made on how to collect and store the
data from neighboring domains before the interpolation is used to obtain the trans-
mission conditions for an update in line 14.

Pipeline Schwarz Waveform Relaxation Algorithm 2
1. MPI Initialization
2. parallel for i = . . .1..N (Sub-domain)
3. for ti = ∆ ti . . .T
4. Guess u[0]i (z, t), z ∈ ∂Ωi∩∂Ω j
5. end
6. Set t [0]i = T
7. end
8. parallel for k = 1 . . .K (Waveform iteration)
9. parallel for i = 1 . . .N (Sub-domain)
10. initialize ∆ t [k]i

11. set t [k]i = ∆ t [k]i

12. While t [k]i ≤ T

13. If t [k]i < t [k−1]
j for all neighbors j

14. Solve for u[k]i (t [k]i ,x)

15. Send transmission data T (u[k]i (t [k]i ,z)) to neighbor nodes
16. t [k]i ← t [k]i +∆ t [k]i
17. end
18. end
19. Check convergence
20. end
21. end
.

4 Numerical Experiments

We present results from strong scaling studies, which vary the number of compu-
tational cores used to compute the PSWR algorithm while keeping total discretized
problem size constant. The diffusion equation ut = k(uxx+uyy) is solved in R2 using
a centered five point finite-difference approximation in space, and a backward Euler
time integrator. In our first scaling study, 400x400 grid points are decomposed into
4x4 non-overlapping domains for 400 total time steps. Optimized robin transmission
conditions of the form
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Fig. 2 The error of the waveform iterates at time T is computed relative to monodomain solu-
tion for a 4× 4 decomposition of the problem using optimized transmission conditions. The con-
vergence behvaior of the PSWR algorithm is identical to the convergence behavior of the SWR
algorithm.

Ti j[·] =
(

d
dn̂

+ p
)
[·], T ji[·] =

(
d
dn̂
− p

)
[·],

are used, where d
dn̂ is the derivative in the normal direction, and p = 1. (A recurr-

sion formula is used to compute the transmission condition in lieu of discretizing
the derivative in the normal direction). In each experiment a total of 16 full wave-
form iterations are completed. Timing results are obtained using the stampede su-
percomputer at the Texas Advanced Computing Center. Good parallel efficiency and
speedup is observed in spite of the increase in the number of messages required by
the PSWR algorithm. Note that the 4×4×1 case is identically the SWR algorithm.

Nx×Ny×Nk # cores walltime speedup efficiency
4×4×1 16 293.02 seconds 1.00 × 1.00
4×4×2 32 149.92 seconds 1.95 × 0.98
4×4×4 64 75.48 seconds 3.89 × 0.97
4×4×8 128 38.71 seconds 7.57 × 0.95

4×4×16 256 23.90 seconds 12.26 × 0.77

In our second scaling study, 1600x1600 grid points are decomposed into 16x16
non-overlapping domains domains for 400 total time steps. Again, a centered five
point finite difference stencil, a backward Euler time integrator, and optimized trans-
mission conditions are used. Good parallel efficiency and speedup is observed even
with the increased synchronization/number of messages in the system.
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Nx×Ny×Nk # cores walltime speedup efficiency
16×16×1 256 295.86 seconds 1.00 × 1.00
16×16×2 512 155.98 seconds 1.90 × 0.95
16×16×4 1024 77.10 seconds 3.84 × 0.96
16×16×8 2048 43.20 seconds 6.85 × 0.86

16×16×16 4096 26.65 seconds 11.10 × 0.69

In the above computations, a linear solve on a sub-domain takes O(10−2) sec-
onds. This relatively small problems size was chosen (100× 100 on each sub-
domain) so that communications would play a substantial role in the timing studies.
The presented efficiencies can be improved by partitioning the problem to be more
computationally expensive (i.e. more time is spent in the linear solve).

5 Conclusions

In this paper, we have reformulated classical Schwarz waveform relaxation to allow
for pipeline-parallel computation of the waveform iterates, after an initial startup
cost. Theoretical estimates for the parallel speedup and communication overhead
are presented, along with strong scaling studies to show the effectiveness of the
pipeline Schwarz waveform relaxation algorithm.
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