
Computing and Visualization in Science manuscript No.
(will be inserted by the editor)

A relaxation approach to time-parallelization: a numerical
study

Benjamin W. Ong · Felix Kwok

Received: date / Accepted: date

Abstract The idea behind this parallel-in-time scheme

is to simultaneously compute many Jacobi or Newton

iterates at different time levels, relaxing to the final so-

lution. Although this work began as an extension of

an adaptive Schwarz waveform relaxation scheme [2], a

similar algorithm was previously proposed in 1990 by

Womble [3]. However, we believe that this manuscript

contains the first numerical results that embeds a New-

ton iterative scheme (for solving systems of nonlinear

equations) within the parallel-in-time relaxation frame-

work. A numerical study shows that some parallel speedup

can be observed for provided examples.

Keywords Waveform Relaxation · Time-Parallelization ·
Iterative Methods

Mathematics Subject Classification (2010) 65-
Y05, 65-F10

1 Introduction

To solve time-dependent partial differential equations,

ut = f(t, u), t ∈ [T0, Tf], x ∈ Ω, (1)

sequential time stepping methods are typically applied

to approximate solutions to the PDE at discrete time

levels

T0 = t0 < t1 < · · · < tn−1 < tn < · · · < tN = TF .

Benjamin W. Ong
Michigan Technological University
Department of Mathematical Sciences
E-mail: ongbw@mtu.edu

Felix Kwok
Hong Kong Baptist University
Department of Mathematics
E-mail: felix kwok@hkbu.edu.hk

If a sequential time-stepper is used, the solution at time

level tn−1 has to be available before one seeks a solution

at time level tn.

Similar to a previously introduced parallel time step-

ping method [3], we are interested in introducing parallelism-

in-time when an iterative scheme is used to find the so-

lution at each time level. If an implicit time integrator

is used, in conjunction with some spatial discretization,

to approximate solutions to eq. (1), one often obtains

(i) a linear system of equations for the unknown solu-

tion at each time level, whereby an iterative solver can

be used to solve the linear system at each time level, or

(ii) a non-linear system of equations for the unknown

solution at each time level, whereby a Newton solver

might be employed to solve the system of nonlinear

equations. In this latter case, one could, in addition,

envision a nested iterative scheme where an iterative

linear solver is used within the Newton method. We do

not address the nested iteration case in this manuscript.

For the two non-nested cases, a sequential time inte-

grator which uses an iterative method to advance the

solution at each time level can be described by Algo-

rithm 1, where Qn−1 is the iteration function for time

level n.

1 for n = 1, . . . , N do
2 set k = 1;

3 set u
[0]
n = un−1;

4 while not converged do

5 u
[k]
n = Qn(u

[k−1]
n , un−1);

6 k ← k + 1;

7 end

8 end

Algorithm 1: Sequential time integration, where

an iterative method is used to advance the solution

at each time level.

2 Benjamin W. Ong, Felix Kwok

Observe that the iteration update for time level n,

u[k]n = Qn−1(u[k−1]
n , un−1) (2)

requires a previous iterate at the current time level n,

and the (converged) solution from the previous time

level, n − 1. If one is willing to use an approximation

to un−1 in the iteration formula, eq. (2), then a paral-

lel iterative formula can be obtained. Suppose that an

initial guess for the solution at each discrete time level,

u
[0]
n , n = 1, . . . N is available, and that one is willing

to use this initial guess to simultaneously advance the

solution at each time level, i.e.,

u[1]n = Q
[0]
n−1(u[0]n , u

[0]
n−1), n = 1, . . . , N.

One can repeat this process iteratively,

u[k]n = Q
[k−1]
n−1 (u[k−1]

n , u
[k−1]
n−1), n = 1, . . . , N.

Switching the order of the loops leads to Algorithm 2,

where the outer while-loop is iterated until some global

convergence criteria is met. Algorithm 2 is a simplified

variant of “Method 2” that was previously proposed in

[3], where N processors can be used to compute solu-

tions to the N discrete time-levels. Although conver-

gence of Algorithm 2 can be shown for linear PDEs [3],

this algorithm is not efficient for various choices of it-

erative schemes [1], and special care must be taken to

observe parallel speed-up.

1 for n = 0, . . . , N do in parallel

2 set u
[0]
n = u0; // initial guess

3 end
4 set k = 1;
5 while not converged do
6 for n = 1, . . . , N do in parallel

7 u
[k]
n = Q

[k−1]
n−1 (u

[k−1]
n , u

[k−1]
n−1);

8 end
9 k ← k + 1;

10 end

Algorithm 2: Parallel time integration. N proces-

sors are used to simultaneously iterate on all N time

levels.

One approach to improving parallel efficiency is to

modify Algorithm 2 to only iterate on P time levels

(P < N) simultaneously using P processors, and not

expending any effort to update the remaining P − N
levels. Intuitively, this makes sense on two levels: (1) if

a solution at an earlier time-level has already converged,

there is no reason to continue the iterative update; (2)

perhaps it is not useful to start iterating a later time-

level until a reasonable initial guess is available. Indeed,

in the extreme case when P = 1, one would like the par-

allel algorithm to recover algorithm 1, iterating each

time level until convergence before advancing to the

next time level. An algorithm that utilizes P proces-

sors is summarized in Algorithm 3. Each iteration in

Algorithm 3,

un = Qn−1(vn, vn−1),

uses the most accurate iterate at the current time level

n, vn, and the most accurate solution from the previous

time level (n− 1), vn−1. Convergence is checked before

the new iterates are stored in vn. A similar algorithm

with a slightly more sophisticated starting procedure

was recently analyzed in the context of Schwarz wave-

form relaxation [2]. We extend that work now to con-

sider more general iterative solvers using Algorithm 3.

1 for n = 0, . . . , N do in parallel
2 set vn = u0; // initial guess

3 end
4 set k = 1;
5 set m = 0; // number of converged intervals

6 while m < N do
7 set is = m + 1; // first unconverged interval

8 set ie = min(N,m+P) // at most P intervals

9 for n = is, . . . , ie do in parallel
10 un = Qn−1(vn, vn−1)
11 end
12 while ‖um+1 − vm+1‖ < TOL do
13 m← m + 1; // update # converged

14 end
15 for n = is, . . . , ie do in parallel
16 vn ← un;
17 end

18 end

Algorithm 3: Parallel time integration. P proces-

sors are used to simultaneously iterate on all N time

levels.

2 Numerical Studies

2.1 Implicit Euler and Jacobi

We begin with the canonical example, the parabolic

heat equation with Dirichlet boundary conditions,

ut = uxx, x ∈ [0, 1], t ∈ [0, 0.1],

u(0, x) = sinπx, u(t, 0) = u(t, 1) = 0.

Applying a method of lines approach, for example with

centered-differences in space, a semidiscretized equation

is obtained,

d u

dt
= Lu.

A relaxation approach to time-parallelization: a numerical study 3

Applying an implicit Euler approximation, one arrives

at an iteration formula

Aun = un−1, (3)

whereA is a constant tri-diagonal matrix which is strictly

diagonally dominant. If matrix A is decomposed into

it’s diagonal component D and remainder R, i.e., A =

D + R, then the solution to the linear system, eq. (3),

can be obtained iteratively using the Jacobi method,

u[k+1]
n = D−1(un−1 −Ru[k]n). (4)

Since A is strictly diagonally dominant, it can be shown

that eq. (4) converges for any initial guess, u
[0]
n .

To apply the parallel time integrator, Algorithm 3,

one uses the modified iteration function

Q(vn, vn−1) =: Qn(vn, vn−1) = D−1(vn−1 −Rvn).

Figure 1 shows the number of Jacobi iterations required

at each time step for varying number of time-parallel

tasks. 100 spatial intervals and 20 time steps were used,

and the Jacobi iteration was terminated after a tol-

erance of 10−4 was reached. As P increases, an in-

creasing number of Jacobi iterates are needed at each

time step, consistent with the analysis in [1]. The ben-

0 5 10 15 20
0

500

1,000

1,500

timestep

#
J
a
co

b
i

it
er

a
te

s

Serial

P = 2

P = 5

P = 10

Womble

Fig. 1 Heat equation: # Jacobi iterations required at each
time step for the serial and parallel time integrators with
varying number of time-parallel tasks (P). As P increases,
an increasing number of Jacobi iterates are needed at each
time step, and parallel efficiency is lost.

efit of using parallel time integrators however, is that

several Jacobi iterations can be simultaneously com-

puted. Table 1 shows the number of parallel Jacobi iter-

ations, speedup, and efficiency for parallel time integra-

tors with varying number of time-parallel tasks. Here,

Jacobi iterates that can be simultaneously computed

count as a single parallel Jacobi iterate. For a small

number of time-parallel tasks, reasonable speedup and

efficiency is observed.

P # Parallel Iterations speedup efficiency
1 (serial) 6291 – –

2 3392 1.85 0.93
3 2547 2.46 0.82
4 2167 2.90 0.73
5 1954 3.22 0.64
10 1540 4.09 0.41

20 (Womble) 1425 4.41 0.22

Table 1 Heat equation: time-parallel integration with vary-
ing number of (simultaneous) parallel Jacobi iterations. For a
small number of time-parallel tasks, reasonable speedup and
efficiency is observed.

2.2 Implicit Euler and Newton

Inviscid Burgers’ equation is a non-linear time-dependent

PDE,

ut +

(
1

2
u2

)
x

= 0, x ∈ [0, 1], t ∈ [0, 0.5],

u(0, x) = 1− cos 2πx, u(t, 0) = u(t, 1) = 0.

If we utilize implicit Euler and an up-wind conserva-

tive spatial discretization, then the non-boundary nodes

Un
j := u(tn, xj) satisfy

Un
j = Un−1

j − ∆t

∆x

[
1

2

(
Un
j

)2 − 1

2

(
Un
j−1

)2]
.

This gives rise to a non-linear system of equations,

F (un, un−1) = 0. (5)

One approach to solving this non-linear system of equa-

tions is to use Newton’s method, which generates an

iteration formula of the form

u[k+1]
n = u[k]n − (∇F (u[k]n , un−1))−1F (u[k]n , un−1),

where ∇F is the Jacobian matrix. Hence, to apply the

parallel time integrator, Algorithm 3, one uses the iter-

ation function

Qn(vn, vn−1) = vn − (∇F (vn, vn−1))−1F (vn, vn−1).

Figure 2 shows the number of Newton iterations re-

quired at each time step for varying number of time-

parallel tasks. 2000 spatial intervals and 10 time steps

were used, and the Newton iteration was terminated

after a tolerance of 10−10 was reached. The number of

Newton iterations needed by the serial backward Eu-

ler integrator varies throughout the domain, but for

most of the domain, only 5 – 7 Newton iterations are

required, limiting the possibility for parallel speedup.

As P increases, the total number of Newton iterations

(area under each curve) increases

We expect limited benefit from using parallel time

integrators since the sequential integrator only requires

4 Benjamin W. Ong, Felix Kwok

5 10

10

20

timestep

#
N

ew
to

n
it

er
a
te

s

Serial

P = 2

P = 4

P = 6

Womble

Fig. 2 Burgers’ equation: # Newton iterations required at
each time step for the serial and parallel time integrators with
varying number of time-parallel tasks (P). As P increases, the
total number of Newton iterations required (area under the
curve) increases.

5–7 Newton iterations at most of the time levels. Ta-

ble 2 shows the number of parallel Newton iterations,

speedup, and efficiency for parallel time integrators with

varying number of time-parallel tasks. Here, Newton it-

erates that can be simultaneously computed count as a

single parallel Newton iterate. For a small number of

P # Parallel Iterations speedup efficiency
1 (serial) 78 – –

2 45 1.73 0.87
3 36 2.17 0.72
4 32 2.33 0.61
5 30 2.60 0.52

10 (Womble) 26 3.00 0.3

Table 2 Burgers’ equation: time-parallel integration with
varying number of (simultaneous) parallel Newton iterations.
For a small number of time-parallel tasks, reasonable speedup
and efficiency is observed.

time-parallel tasks, reasonable speedup and efficiency

is observed.

3 Further Observations / Future Work

The observed work diagrams (number of Jacobi/Newton

iterations), figs. 1 and 2, and the observed parallel speedup

and efficiency, tables 1 and 2, are consistent with a pre-

viously developed error propagation model for a differ-

ent relaxation scheme [2]. In that model, there are two

sources of error that contribute to the error propaga-

tion model. There is the error arising due to advancing

the initial guess from one time level to the next; this

error may be amplified or decayed based on the dis-

cretization scheme. There is also the error that arises

due to the iterative approximation. Denote the error

due to advancing the initial guess from time level n to

time level (n+ 1) at iteration k as G(n, k), and denote

the error that arises due to the iterative update from

iterate k to iterate (k + 1) at time level n as H(n, k).

The error propagation model [2] is built on a system of

coupled recurrence equations

G(n, k) ≤ αG(n− 1, k) + H(n, k), (6a)

H(n, k + 1) ≤ G(n− 1, k) + βH(n, k), (6b)

where α and β < 1 are constants. The constant α mea-

sures the amplification or decay of the error in the initial

condition for each time level if there is no contribution

from the iterative error. This constant can be greater

than 1. The constant β measures the contraction of the

error in the iterative scheme when the initial guess is

exact. This is typically a desired property of the itera-

tive solver, and must be less than 1 in some appropriate

norm if the original method converges.

The numerical evidence indicates that with some

effort, one should be able to identify error measures

G(m, k) and H(m, k) for the two numerical examples

that satisfy eq. (6). The analysis is elusive and a topic

for more exploration.

4 Conclusion

This work started as an extension of an adaptive Schwarz

waveform relaxation algorithm proposed by the present

authors [2]. The idea is to simultaneously compute many

Jacobi or Newton iterates at different time levels, re-

laxing to the final solution. It turns out, that a similar

algorithm was previously proposed in 1990 by Womble

[3]. However, we believe that this manuscript contains

the first numerical results that embeds a Newton itera-

tive scheme (for solving systems of nonlinear equations)

within the relaxation framework. Some parallel speedup

is observed for both provided examples, and the work

diagrams appear consistent with a previously develop

error propagation model [2], though it remains to be

shown that the same analysis can be applied.

References

1. Deshpande, A., Malhotra, S., Schultz, M., Douglas, C.C.:
A rigorous analysis of time domain parallelism. Parallel
Algorithms Appl. 6, 53–62 (1995)

2. Kwok, F., Ong, B.: Schwarz waveform relaxation with
adaptive pipelining. SIAM Journal on Scientific Comput-
ing 41(1), A339–A364 (2019). DOI 10.1137/17M115311X.
URL https://doi.org/10.1137/17M115311X

3. Womble, D.: A time-stepping algorithm for parallel com-
puters. SIAM Journal on Scientific and Statistical Com-
puting 11(5), 824–837 (1990). DOI 10.1137/0911049. URL
https://doi.org/10.1137/0911049

https://doi.org/10.1137/17M115311X
https://doi.org/10.1137/0911049

	Introduction
	Numerical Studies
	Further Observations / Future Work
	Conclusion

