Nomenclature

\(a \) Length of the panel between the supports

\(b \) Width of the panel between the supports/ width of the beam

\(c \) Sandwich beam/ panel core thickness

\(f \) Thickness of the panel face sheet

\(h \) Sandwich beam/ panel overall thickness

\(m, n \) Number of terms in double Fourier series

\(p(x,y) \) Pressure in xy-plane expressed in double Fourier series

\(p_{2k+1}, q_{2k+1} \) Constants used in the shear load equations before core yielding

\(p_{2k+1}^*, q_{2k+1}^* \) Constants used in the shear load equations after core yielding

\(p_{mn} \) Unknown coefficient for pressure

\(q_{mn}, q_{mn}^* \) Unknown coefficient for bending deflection before and after core yielding

\(r_{mn}, r_{mn}^* \) Unknown coefficient for shear deflection before and after core yielding

\(t \) Thickness of the beam face sheet

\(u \) In-plane displacement of the panel parallel to x-axis

\(v \) In-plane displacement of the panel parallel to y-axis

\(w \) Out-of-plane displacement of the panel parallel to z-axis

\(w_b \) Beam/ panel deflection due to bending before core yielding

\(w_s \) Beam/ panel deflection due to shear before core yielding

\(w_b^* \) Beam/ panel deflection due to bending after core yielding

\(w_s^* \) Beam/ panel deflection due to shear after core yielding
A_{eff} Effective contact area of the bladder with the panel

B Bending rigidity of sandwich structure about its mid-plane

B_f Bending rigidity of beam face sheet about its own neutral axis

C_1 Constant of integration for w_p

D Constant used in bending moment equations

D_1, D_2, D_3 Constant of integration for w_p

D_{sf}, D_{sf} Flexural rigidity of the panel face sheet

E_1 Constant of integration for w_p

E_c Modulus of elasticity of core

E_{c0} Modulus of elasticity of core before yielding

E_{c1} Modulus of elasticity of core after yielding

E_f Modulus of elasticity of face sheet

F_1, F_2, F_3 Constant of integration for w_p

F_L Load measured by the load cell

G_c, G_f Shear modulus of core and face sheet respectively

G_{c0} Shear modulus of core before yielding

G_{c1} Shear modulus of core after yielding

H_1, H_2, H_3 Constant of integration for w_p

I Constant used in shear stress equations

J Constant determined by the face sheet and core thickness

K Constant used in shear force equations

K_{pl} Material parameter for bi-linear material model

L Distance between the support rollers
\(L^* \) Total length of sandwich beam

\(M \) Bending moment

\(M_{sf}^{(1)} \) Moment on the face sheets due to loading

\(M_{sf}^{(2)} \) Moment of the face sheets due to the bending about its own mid-planes

\(M_x, M_y \) Bending moments in the panel per unit length/ width before core yielding

\(M_{xtot}, M_{ytot} \) Total bending moments in the panel per unit length/ width after core yielding

\(M_{xy}, M_{yx} \) Twisting moments in the panel per unit width before core yielding

\(M_{xytot}, M_{yxtot} \) Total twisting moments in the panel per unit width after core yielding

\(N_{BF} \) Normal/ membrane load in bottom face sheet

\(N_{TF} \) Normal/ membrane load in top face sheet

\(N_{BF(xg)} \) Global X-axis component of the bottom face sheet membrane force

\(N_{BF(yg)} \) Global Y-axis component of the bottom face sheet membrane force

\(N_{TF(xg)} \) Global X-axis component of the top face sheet membrane force

\(N_{TF(yg)} \) Global Y-axis component of the top face sheet membrane force

\(N_x, N_y \) Normal forces in the faces per unit length

\(N_{xy}, N_{yx} \) Shear forces in the faces per unit length

\(P \) Total load applied in four point bending

\(P_b \) Measured bladder pressure

\(Q_c, Q_{xc}, Q_{yc} \) Shear load carried by the core before core yielding

\(Q_c^* \) Shear load carried by the core after core yielding
Q_{x0}
Shear component at core yielding initiation

$Q_{sf}^{(1)}, Q_{sf}^{(1)}$
Shear load carried by the face sheet due to bending curvature

$Q_{sf}^{(2)}, Q_{sf}^{(2)}$
Shear load carried by the face sheet due to shear curvature

$Q_{tot}, Q_{xtot}, Q_{ytot}$
Total shear load before core yielding

$Q_{tot}^*, Q_{xtot}^*, Q_{ytot}^*$
Total shear load after core yielding

$R_{BF(yg)}$
Total resultant force in global Y-axis in bottom face sheet

$R_{C(yg)}$
Total resultant force in global Y-axis in core

$R_{TF(yg)}$
Total resultant force in global Y-axis in top face sheet

$R_{TOT(yg)}$
Total resultant force in global Y-axis for sandwich panel

S, S_c
Shear stiffness of the core

S_{c0}
Shear stiffness of the core before core yielding

S_{c1}
Shear stiffness of the core after core yielding

V
Shear load

V_c
Shear load in core

V_{BF}
Shear load in bottom face sheet

V_{TF}
Shear load in top face sheet

$V_{C(Xg)}$
Global X-axis component of the core shear force

$V_{C(Yg)}$
Global Y-axis component of the core shear force

$V_{BF(Xg)}$
Global X-axis component of the bottom face sheet shear force

$V_{BF(Yg)}$
Global Y-axis component of the bottom face sheet shear force

$V_{TF(Xg)}$
Global X-axis component of the top face sheet shear force
\(V_{TF(Y_g)} \) Global Y-axis component of the top face sheet shear force

\(X_G \) Global X-axis in I-DEAS

\(Y_G \) Global Y-axis in I-DEAS

\(\alpha, \beta \) Constants used in the double Fourier series

\(\varepsilon_x, \varepsilon_y \) In-plane strains before core yielding

\(\varepsilon_x^*, \varepsilon_y^* \) In-plane strains after core yielding

\(\phi \) Width of the unloaded panel region

\(\gamma_0 \) Shear strain at yield

\(\gamma \) Shear deformation in the beam core

\(\gamma_y \) In-plane shear strain

\(\gamma_{xzc} \) Core shear strain component

\(\gamma_{xy}^* \) In-plane shear strain after core yielding

\(\varphi \) Distance from the support point to the elastic/plastic interface

\(\lambda_0, \lambda_1 \) Constants used in shear load equations before and after core yielding

\(v_f \) Poisson’s ratio of face sheet

\(\sigma_0 \) Yield point in uniaxial tension

\(\tau_0 \) Shear stress at the yield point

\(\tau_{xy} \) In-plane shear stress

\(\tau_{xz}, \tau_{yz} \) Shear stress components in sandwich panel

\(\tau_{xzc}, \tau_{ycc} \) Shear stress components in core