Nonlinear phenomena in fluids with temperature-dependent viscosity: An hysteresis model for magma flow in conduits

Antonio Costa

Dipartimento di Scienze della Terra e Geologico-Ambientali, Università di Bologna, Italy

Giovanni Macedonio

Osservatorio Vesuviano, Istituto Nazionale di Geofisica e Vulcanologia, Napoli, Italy

Received 30 November 2001; revised 2 February 2002; accepted 23 February 2002; published 23 May 2002.

1. Introduction

2. The Model

[1] Magma viscosity is strongly temperature-dependent. When hot magmas flows in a conduit, heat is lost through the walls and the temperature decreases along the flow causing a viscosity increase. For particular values of the controlling parameters the steady-flow regime in a conduit shows two stable solutions belonging either to the slow or to the fast branch. As a consequence, this system may show an hysteresis effect, and the transition between the two branches can occur quickly when the critical points are reached. In this paper we describe a model to study the relation between the pressure at the inlet and the volumetric magma flow rate in a conduit. We apply this model to explain an hysteretic jump observed during the dome growth at Soufrière Hills volcano (Montserrat), and described by Melnik and Sparks [1999] using a different model.

INDEX TERMS: 3210 Mathematical Geophysics: Modeling; 3220 Mathematical Geophysics: Nonlinear dynamics; 8414 Volcanology; Eruption mechanisms; 8499 Volcanology: General or miscellaneous

In this paper we investigate a simple one-dimensional flow model of a fluid with temperature-dependent viscosity, with the essential physical properties characterizing the phenomenon of the multiple solutions and hysteresis as in Skul’skiy et al. [1999]. The fluid flows in a conduit with constant cross section and constant temperature at the wall boundaries. We assume that the fluid properties are constant with the temperature except for the viscosity, and we neglect the heat conduction along the streamlines, and the viscous heat generation. Moreover, we assume a linear relation between the shear stress and the strain rate (Newtonian rheology). This last assumption is introduced to simplify the model and allows us to demonstrate that the multiple solutions in conduit flows are the direct consequence of the viscosity increase along the conduit induced by cooling (under particular boundary conditions). Under these hypotheses, the equations for momentum and energy balance for the one-dimensional steady flow in a long circular conduit \(R \ll L \) at low Reynolds number are:

\[
\frac{1}{r} \frac{\partial}{\partial r} \left(\mu(T) r \frac{\partial v}{\partial r} \right) = \frac{dP}{dz} \tag{1}
\]

\[
\frac{1}{r} \frac{\partial}{\partial r} \left(k \frac{\partial T}{\partial r} \right) = \rho c_p \frac{\partial T}{\partial z} \quad \tag{2}
\]

where \(R \) is the conduit radius, \(L \) conduit length, \(r \) radial direction, \(z \) direction along the flow, \(v \) velocity along the flow, \(\mu \) viscosity, \(\rho \) density, \(c_p \) specific heat at constant pressure, \(k \) thermal conductivity, \(P \) pressure, and \(T \) temperature. For magma, the dependence of the viscosity on the temperature is well described by the Arrhenius law:

\[
\mu = \mu_0 \exp(B/T) \tag{3}
\]

where \(\mu_0 \) is a constant and \(B \) the activation energy. In this paper, for simplicity, we approximate equation (3) by the Nahme’s exponential law, valid when \((T - T_R) / T_R \ll 1 \), where \(T_R \) is a reference temperature:

\[
\mu = \mu_0 \exp[-\beta (T - T_R)] \tag{4}
\]

with \(\beta = B/T_R^2 \) and \(\mu_0 = \mu_e \exp(B/T_R) \). Following Skul’skiy et al. [1999], we introduce two new variables: the volumetric flow rate

\[
Q = 2\pi \int_0^R v(r)rdr \tag{5}
\]

and the convected mean temperature:

\[
T^*(z) = \frac{2\pi}{Q} \int_0^R T(r,z)v(r)rdr \tag{6}
\]

To satisfy the mass conservation, the volumetric flow rate \(Q \) is constant along the flow. Integrating Equations (1) and (2) and expressing the solutions in terms of \(Q \) and \(T^* \), we obtain:

\[
\frac{\pi R^2 \exp[\beta \left(T^* - T_w\right)]}{8\mu_0} \frac{dP}{dz} = Q \tag{7}
\]
The boundary conditions (11) are rewritten for the new variables, similar to the model of Pearson et al. [1973] (for a plane flow) and were used by Skul' skiy et al. [1995]. The value of β in Equation (10), is usually smaller than the actual value of β in the fluid (Equation 4).

In the averaged model Equation (7), we have adopted

$$\mu \approx q_{av} \exp[-\beta(T^* - T_n)]$$

and as pointed out in Helfrich [1995], the value of β in Equation (10), is usually smaller than the actual value of β in the fluid (Equation 4).

Equations (7) and (8) with the boundary conditions:

$$P(0) = P_0, \quad P(L) = 0, \quad T^*(0) = T_0$$

give an approximate solution of the problem. These equations are similar to the model of Pearson et al. [1973] (for a plane flow) and were used by Shah and Pearson [1974] to study the viscous heating effects. In the nondimensional form, Equations (7) and (8) are:

$$\frac{dp}{d\zeta} = -q e^{-\zeta}$$

$$\frac{dq}{d\zeta} + \theta = 0$$

where

$$q = \frac{\rho c_p Q}{2\pi R L \alpha}, \quad \zeta = \frac{z}{L}$$

$$p = \frac{\rho c_p R^3 P_0}{16\mu_n L^2 \alpha}, \quad \theta = \beta(T^* - T_n)$$

The boundary conditions (11) are rewritten for the new variables:

$$p(0) = p_0 = \frac{\rho c_p R^3 P_0}{16\mu_n L^2 \alpha}, \quad p(1) = 0, \quad \theta(0) = B$$

with $B = \beta(T_0 - T_n)$. The solutions of Equation (12), satisfying Equation (14) at the boundaries, are:

$$p(\zeta) - p_0 = q \int_0^\zeta \exp(-B e^{-\zeta})d\zeta$$

$$\theta(\zeta) = B \exp(-\zeta/q)$$

and, therefore, the relation between the nondimensional pressure at the conduit inlet p_0 and the nondimensional flow rate q is:

$$p_0 = q \int_0^1 \exp(-B e^{-\zeta/q})d\zeta$$

In Figure 1 we plot relation (16) obtained numerically. We observe that for values of B greater than a critical value $B_c \approx 3$, there are values of p_0 which correspond to three different values of q. By using a simpler model, Skul' skiy et al. [1999] found $B_c = 4$, whereas Helfrich [1995] found $B_c = 3.03$, in good agreement with Pearson et al. [1973]. Moreover, Shah and Pearson [1974] showed that when the viscous heat generation is important, the value of B, can be lower, but for high values of B, the relation between p_0 and q is similar to the case without viscous heat generation.

The stability analysis of the three branches: slow, intermediate and fast, shows that the intermediate branch is never stable. Moreover, one part of the slow branch is stable to two-dimensional perturbations but unstable to the three-dimensional ones, in a way similar to the Saffman- Taylor instability Wylie and Lister [1995]. In the case of multiple solutions, an hysteresis phenomenon may occur, as proposed in Wylie and Lister [1995] and verified experimentally in Skul' skiy et al. [1999].

In the experiments of Skul' skiy et al. [1999] a fluid with prescribed temperature and pressure was injected into a capillary tube with constant wall temperature and controlled fluid pressure and flow rate. The device is used to show the transition between the two regimes corresponding to the upper and the lower branches.

A comparison between the experimental results (crosses) and theory (full line) is shown in Figure 2 for the nondimensional variables p_0 and q, for $B = 4.6$. The dashed lines indicate the pressure history prescribed in the experiments. The two steady-state regimes corresponding to the slow and to the fast branch were clearly recorded. Starting with a configuration with low pressure (point A) and increasing the pressure, the flow rate increases along the slow branch until it reaches a critical point (point B). Here, a
jump to the fast branch occurs (point C). Increasing the pressure further, the flow rate increases along this branch, whereas, decreasing the pressure, the flow rate decreases moving along the upper branch, until it reaches another critical point (point D) where the jump on the slow branch occurs (point E). On the slow branch the nondimensional flow rate is more than one order of magnitude lower than that on the fast branch.

3. Application

[8] During some basaltic fissure eruptions in Hawaii and in Iceland, the eruption begins with a rapid opening at high flow rate and, after few hours, the flow rate quickly decreases. To explain this phenomenon, Wylie and Lister [1995] and Helfrich [1995] proposed a model similar to the model proposed in this paper, based on the hysteresis jump between the fast branch and the slow branch when the pressure driving the eruption, decreases.

[9] A similar phenomenon, showing a jump in the mass flow rate, was observed during the dome growth (1995–1999) at Soufrière Hills volcano in Montserrat as described by Melnik and Sparks [1999]. The model used by Melnik and Sparks [1999] to explain this effect is essentially based on the crystal growth kinetics which affects magma viscosity, and the mechanical coupling between the gas and the melt through the Darcy law.

[10] In this paper we explain the same phenomenon in terms of the viscosity variation governed by cooling along the flow. However, since the crystal content is physically related to the magma temperature, the two models are physically related.

[11] Using the data of Table 1, we fit the curve of Equation (16) with the observed values of the discharge rates and dome height reported in Melnik and Sparks [1999].

[12] The variation of the dome height reflects a change of the exit pressure and, as a consequence, a variation of the dome height expressed in terms of overpressure. The values of α, B and μ_0 are chosen by least square best fitting of the observed data, and the wall temperature T_w, was defined as the temperature for which magma ceases to flow. Figure 3 shows the results of least square fitting: the discharge rate is reported on the x-axis and the overpressure on the y-axis. The crosses indicate the observed values, reported in Melnik and Sparks [1999], and the dome height expressed in terms of overpressure.

[13] The values obtained by the best fit of the observed data are:

$$\alpha_{\text{best}} = 3.56 \quad \text{W m}^{-2} \text{K}^{-1}$$

$$\mu_0_{\text{best}} = 5 \times 10^8 \quad \text{Pa s}$$

$$B_{\text{best}} = 3.46$$

[14] Figure 3 shows the agreement of the model with the observed data; the proposed model is able to explain the hysteresis effect observed in dome growth at Soufrière Hill (Montserrat) by Melnik and Sparks [1999], and modeled in a different way.

[15] A typical value of the viscosity is $\mu_0 = \mu(T_w) = 10^7 \text{ Pa s}$ for Montserrat andesite at 1123 K with 4% water content [Melnik and Sparks, 1999]. This value is in good agreement with Equation (17); in fact, for $B = B^{\text{best}}$ and assuming $T_w \approx 783 \text{ K}$, we have $\mu_0 = \mu_{W}^{\text{best}} \exp (B) \simeq 1.6 \times 10^7 \text{ Pa s}$. Moreover, for $B = B^{\text{best}}$ and $T_0 - T_w \approx 250 \text{ K}$ gives $\beta \simeq 0.014 \text{ K}^{-1}$ (for example, from data of Hess and Dingwell [1996] for a magma with a similar composition and 4% water content, we obtain $\beta \simeq 0.016 \text{ K}^{-1}$). Finally, for the heat transfer coefficient we have:

$$\alpha \approx \frac{k}{\delta_T} \approx 4 \quad \text{W m}^{-2} \text{K}^{-1}$$

where δ_T is the thermal boundary layer of the flow, while using $k = 2 \text{ W m}^{-1} \text{ K}^{-1}$, $\delta_T \approx 50 \text{ cm}$ (Bruce and Huppert [1989] used $\delta_T \approx 10 \text{ cm}$ for dyke length of about one kilometer).

[16] Moreover, we verify the basic assumptions of the model: the assumption of one-dimensional flow is based on the small diameter/length ratio of the conduit ($R/L \sim 10^{-3}$), and the small Reynolds number is simply verified:

$$Re = \frac{\rho R_c}{\mu_0} \approx \frac{2300 \times 15 \times 0.003}{10^7} \approx 10^{-5}$$

The viscous heating effects can be neglected because the Nahme number based on the shear stress is small:

$$G = \frac{\beta (- dp)}{R_c^2 \mu_0} \approx 1$$

The assumption of negligible heat conduction along the streamlines is justified by the high value of the Peclet number (the ratio between the advective and the conductive heat conduction): $P_e = (\rho \beta R_c)/k \approx 10^5$.

[17] The existence of the multiple solutions for the steady flow allows the system to show a pulsating behavior between the different solutions. In the case where the initial pressure, is greater than the critical pressure corresponding to point E in Figure 4, the system is on the fast branch of the solution, such as in point A. If the pressure decreases, the system moves along this branch up to the critical point C. In C a jump to the slow branch occurs (point D). If the pressure continues to decrease, the
The discharge rate tends to zero. Instead if the pressure increases, the system moves along the slow branch up to the other critical point \(E \). In this point the jump occurs on the fast branch and the system reaches point \(B \).

[18] The overpressure conditions and pulsating activity, typical of dome eruptions, are evident not only at Soufrière Hills, but also in Santiaguito (Guatemala), Mount Unzen (Japan), Lascar (Chile), Galeras (Colombia) and Mount St. Helens (USA) [Melnik and Sparks, 1999].

4. Conclusion

[19] Magma flow in conduits shows the existence of multiple solutions, like other fluids with strong temperature dependent viscosity. This is a consequence of the increase of viscosity along the flow due to cooling. For a given pressure drop along the conduit, one or two stable regimes (fast and slow branches) may exist. The transition between the two branches occurs when critical values are reached, and an hysteresis phenomenon is possible. These jumps were evident during the dome growth in the 1995–1999 Soufrière Hills (Montserrat) eruption. The pulsating behaviour of the dome growth was previously modeled by Melnik and Sparks [1999] in terms of the nonlinear effects of crystallization and gas loss by permeable magma.

[20] In this paper we propose a model to describe the nonlinear jumps between the two stable solutions as a consequence of the coupling between the momentum and energy equation induced by the strong temperature-dependent viscosity of magma.

[21] However, since the crystal content is a consequence of cooling, the two models, although different, are physically related.

[22] Acknowledgments. This work was supported by the European Commission (Contract ENV4-CT98-0713), with the contribution of the Gruppo Nazionale per la Vulcanologia INGV and the Department of the Civil Protection in Italy.

References

A. Costa, Dipartimento di Scienze della Terra e Geologico-Ambientali, Università di Bologna, Via Zamboni 67, I-40126 Bologna, Italy. (costa@ov.ingv.it)

G. Macedonio, Osservatorio Vesuviano - INGV, Via Diocleziano 328, I-80124 Napoli, Italy. (macedon@ov.ingv.it)