Arrival of extremely volatile-rich high-Mg magmas changes explosivity of Mount Etna

Vadim S. Kamenetsky*
Australian Research Council Centre of Excellence in Ore Deposits and School of Earth Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia
Massimo Pompilio
Istituto Nazionale di Geofisica e Vulcanologia–Sezione di Pisa, Via della Faggiola 32 Pisa 56126, Italy
Nicole Métrich
Laboratoire Pierre Sue, Centre National de la Recherche Scientifique–Commissariat à l’Energie Atomique, CE-Saclay, 91191 Gif sur Yvette, France
Alexander V. Sobolev
Max-Planck-Institut für Chemie, Postfach 3060, 55020 Mainz, Germany, and Vernadsky Institute of Geochemistry, Moscow 117975, Russia
Dmitry V. Kuzmin
Max-Planck-Institut für Chemie, Postfach 3060, 55020 Mainz, Germany, and Institute of Geology and Mineralogy SB RAS, Novosibirsk 630090, Russia
Rainer Thomas
GeoForschungsZentrum Potsdam, Telegrafenberg B 120, D-14473 Potsdam, Germany

ABSTRACT
The volcanic hazard potential of Mount Etna volcano is currently nourished by long-lasting, powerful eruptions of basaltic magmas coupled with increased seismicity and ground deformation, and the world’s largest discharge of volcanic gases. The current evolutionary cycle of Mount Etna activity is consistent with subduction-related chemical modifications of the mantle source. Arrival of a new mantle-derived magma batch beneath the volcano has been hypothesized, but is still elusive among the erupted products. Here we demonstrate petrological and geochemical affinities between the magmas supplying modern eruptions and high-Mg, fall-stratified (FS) basalts ejected violently ~4 k.y. ago. The FS primitive magmas (~13 wt% MgO) are characteristically volatile enriched (at least 3.8 wt% H2O and 3300 ppm CO2), and bear a trace element signature of a garnet-bearing, metasomatized source (high Gd/Yb, K/La, U/Nb, Pb/Ce, Ca/Al). They started crystallizing olivine (Fo91), clinopyroxene (Mg# 92.5), and Cr spinel deep in the plumbing system (>5 kbar), contributing to the cumulative piles at depth and to differentiated alkaline basalt and trachybasalt magmas in the shallow conduit. Continuous influx of mantle-derived, volatile-rich magmas, such as those that supplied the FS fallout, provides a good explanation for major compositional and eruptive features of Mount Etna.

Keywords: Mount Etna, volcano, picrite, melt inclusions, volatiles, degassing, mantle, metasomatism.

INTRODUCTION
Mount Etna, positioned at the destructive margin marking the complex collision zone between the African and European plates (Gueguen et al., 1998), is the largest volcano in Europe and one of the most active in the world. The present edifice of Mount Etna was constructed with fractionation products of mantle-derived magmas, starting ~0.5 m.y. ago with the eruption of tholeiitic lavas, followed by transitional lavas, eventually trending to SiO2-undersaturated, alkaline basalts with distinct trace element and isotope signatures (Armienti et al., 2004; Corsaro and Pompilio, 2004; Tanguy et al., 1997). The compositional changes of the Mount Etna magmatic system were temporally and genetically linked to continuous modifications in the mantle-lithospheric source(s), caused by metasomatic enrichment in volatiles and incompatible trace elements, and melting-related depletion in basaltic components (Kamenetsky and Clocchiatti, 1996). Dramatic changes in both the source composition and the volcano’s eruptive dynamics have been tentatively ascribed to modification of the adjacent subduction system (Schiano et al., 2001; Tonarini et al., 2001), driven by vertical asthenospheric flow in response to the rollback of the subducting Ionian slab (Doglioni et al., 2001; Gvirtzman and Nur, 1999).

From a historical perspective, Mount Etna shows increasing activity in recent time; with the frequency of explosive (doubled since the fall-stratified [FS] eruption of high-magnesian magmas ~4 k.y. ago) and effusive eruptions has increased significantly (Coltelli et al., 2000). Since the early 1970s, the magmatic output of Mount Etna has increased by a factor of 4, and more than 120 eruptions have been recorded in the past 20 yr (Branca and Del Carlo, 2005). Notably, the erupted magmas have become more potassic and richer in 87Sr and 11B (Armienti et al., 2004; Clocchiatti et al., 1988; Tanguy et al., 1997; Tonarini et al., 2001), and have been accompanied by enormous output of volcanic gases CO2, SO2, and halogens (Allard, 1997; Allard et al., 1991; D’Alessandro et al., 1997). Although the present-day magmas are increasingly magnesian and volatile rich (Clocchiatti et al., 2004; Corsaro and Pompilio, 2004; Métrich et al., 2004; Spilliaert et al., 2006), and their radiogenic and stable isotope compositions require a mantle origin (Allard et al., 1991;
Armienti et al., 2004; D’Alessandro et al., 1997; Marty et al., 1994; Tonarini et al., 2001), their MgO (<8.2 wt%) and Ni (<50 ppm) contents, and forsterite contents of olivine phenocrysts (<84 mol% Fo), are too low to have been in equilibrium with a typical peridotite mantle. However, the indications of a primitive melt entering the plumbing system of Mount Etna from a mantle reservoir are explicit. In addition to the isotope systematics, these include records of large piles of mafic cumulates extending to depths of 18 km beneath the volcano (De Gori et al., 2005) and the excessive (compared to amounts degassed from the erupted magmas) supply of volatiles to the volcanic clouds (Allard et al., 1991; D’Alessandro et al., 1997). As primitive magmas have rarely been ejected in the eruptive history of Mount Etna (Corsaro and Pompilio, 2004) and have not reached the surface since the FS eruption, we used the latter to elucidate controls on recent and current volcanic activity.

FS ERUPTION: ROCKS, MINERALS, AND MELT INCLUSIONS

The 3930 ± 60 B.P. (14C age; Coltelli et al., 2000) FS eruption produced a pyroclastic fallout deposit of 0.183 km³ that covered the eastern flanks of Mount Etna (Coltelli et al., 2005). The deposit reaches 110 cm in thickness at ~7 km from the summit craters, and its thickness and dispersal indicate that the eruption column reached significant heights (18–20 km; Coltelli et al., 2005), and thus had high explosive (sub-Plinian) energy. The erupted products are a highly vesiculated (30–60 vol%) scoria lapilli containing euhedral crystals of olivine (<8%), clinopyroxene (<3%), and Cr spinel (<0.1%). Despite relatively low amounts of ferromagnesian phenocrysts, the rocks are high-Mg basalt to picrite in composition (12–17 wt% MgO; GSA Data Repository Table DR1) with high Ni and Cr abundances (135–285 and 920–1330 ppm, respectively), characteristic of primitive unfractonated magmas. The rocks are extremely enriched in CaO relatively to Al₂O₃ (CaO/Al₂O₃ = 1.1–1.2), despite the low modal abundances of clinopyroxene phenocrysts. The FS rocks are depleted in heavy rare earth elements (HREE) and high-field strength elements (HFSE) relative to REEs of higher and similar incompatibility, respectively (Fig. 1). They are also relatively enriched in large-ion lithophile elements (LILE—K and Sr) and Pb (Fig. 1). Depletions and enrichments demonstrated by the ratios of similarly incompatible elements (e.g., K/La, Nb/U, Ce/Pb, Ti/Gd) are typical of subduction-related magmas and commonly attributed to selective addition of LILE > light REE > HFSE to a mantle peridotite by melts and/or fluids derived from a subducting crust. High Gd/Yb in the magmas can be taken as evidence of residual garnet in the source.

![Figure 1](https://example.com/figure1.png)

Figure 1. Primitive mantle normalized (after Sun and McDonough, 1989) trace element compositions of fall-stratified (FS) rocks (open circles, average of 6 samples), melt inclusions hosted in FS olivine phenocrysts (closed circles, average of 23 melt inclusions; bars show one standard deviation), and Mount Etna lavas erupted in 2001–2002 (diamonds, average of 61 samples; after Andronico et al., 2005; Corsaro et al., 2006).

![Figure 2](https://example.com/figure2.png)

Figure 2. Comparison between compositions of fall-stratified (FS) parental magmas (exemplified by recalculated melt inclusions), FS whole rocks, and modern lavas of Mount Etna (Andronico et al., 2005; Corsaro et al., 2006). Note significant variations in trace elements among individual melt inclusions. Symbols as in Figure 1.
High-Mg compositions of the FS olivine phenocrysts (Fo 90–91 mol% in the majority of crystals) and clinopyroxene (Mg# 96–92.5) also point to the primitive nature of their parental magmas (see Tables DR2 and DR3). Early crystallization of FS clinopyroxene, confirmed by the occurrence of clinopyroxene inclusions in most forsteritic olivine, may reflect high Ca abundance in the parental magma and high-pressure crystallization conditions (Grove et al., 1992). Spinel microphenocrysts and inclusions in olivine have extremely high Cr (Cr# 70–80 mol%) and moderately low Ti (0.6–1.0 wt% TiO₂) compositions that are also typical of many primitive alkaline island arc magmas, including those from nearby Vulcano, Aeolian arc (Kamenetsky and Clocchiatti, 1996; Kamenetsky et al., 2001).

Olivine-hosted melt inclusions, analyzed for major, trace, and volatile elements, using different microbeam techniques, and subsequently corrected for postentrapment modifications (see Data Repository [see footnote 1] for the details of analytical methods and calculations) provide more insight into the nature of the FS parental magmas (Figs. 2 and 3). Melt inclusions (as large as 250 µm) have negative-crystal shape with scalloped edges and appear as brownish glass with a spherical vapor bubble (Fig. 3), which is sometimes larger than typical shrinkage bubbles (i.e., >5 vol%). The bubble walls are invariably lined with tiny Ca-Mg carbonate crystals (Fig. 3).

Melt inclusion compositions show a limited range in MgO (12.6 ± 0.3 wt%) and match the bulk rock major and trace element compositions (Figs. 1 and 2). Thus, the melt inclusions support our conclusions about high-Mg and high-Ca compositions of the FS parental melt with the trace element systematics reminiscent of subduction-related magmatism. Although the average composition of melt inclusions is indistinguishable from the average bulk rock composition, the observed chemical variability among individual inclusions, especially in trace elements (Figs. 1 and 2), is very large and cannot have been induced by crystallization because the compositions of host olivines are similar.

Melt inclusions have moderately high Cl and S (average 0.15 and 0.17 wt%, respectively), but are exceptionally enriched in H₂O and CO₂ for basaltic melts, in general, and primitive high-Mg basalt, in particular (Fig. 3). The original CO₂ content of trapped melts was undoubtedly higher than measured in glasses, because carbon present in the bubbles (gaseous phase and carbonates) is not quantified. Because H₂O does not correlate with elements of similar incompatibility (see large variability in trace elements in Fig. 2), the effects of degassing cannot be excluded. Nevertheless, the highest measured abundances of dissolved volatiles indicate very deep crystallization (at least 400–500 MPa, Fig. 3) of clinopyroxene and olivine from the FS parental melt.

IMPLICATIONS FOR MODERN ERUPTIONS

The evolution of the FS parental melt upon decompression, cooling, degassing, and extensive (50%–60%) crystallization of olivine and clinopyroxene (with the plagioclase liquidus depressed by high H₂O contents) can hypothetically account for the compositions of modern lavas at Mount Etna. The latter show the compositional trends in major and trace elements that can be tracked back to the FS compositions (Fig. 2), the geochemical signature consistent with their derivation from the high-magnesian, FS-type magma (Fig. 1). Water and CO₂ contents in the melt inclusions of modern eruptions (Del Carlo and Pompilio, 2004; Métrich et al., 2004; Métrich and Rutherford, 1998; Spilliaert et al., 2006) also point to the volatile-enriched character of parental magmas (Fig. 3); however, linking the FS magmas and the present-day magmas requires a more comprehensive interpretation of the behavior of volatile elements. Quantitative relationships between the FS and modern magmas are hampered by current lack of relevant experimental data to model the olivine-clinopyroxene coticetic, and undefined extents of primitive magma replenishment, interaction with earlier cumulates, mixing with evolved magmas in the conduit, and degassing.

In historic time, and most evident recently, Mount Etna showed prominent geochemical changes in the erupted products (Armienti et al., 2004; Clocchiatti et al., 1988; Tanguy et al., 1997; Tonarini et al., 2001) and dramatically increased volcanic activity, seismicity, and ground deformation (Branca and Del Carlo, 2005; Patane et al., 2003). Uncommon elsewhere in the world, frequent explosive eruptions of basaltic magmas in the latest volcanic cycles of Mount Etna are coupled with the largest (for a single volcano) emissions of volcanic gases CO₂ and SO₂ (Allard, 1997; Allard et al., 1991; D’Alessandro et al., 1997). Another unusual aspect of the Mt. Etna magmatic system is the vertical extent (up to 18 km) of the magma storage region and related mafic cumulates indicated by geophysical and geochemical data (Allard, 1997; Chiarabba et al., 2000; De Gori et al., 2005; Lügge et al., 2000; Tanguy et al., 1997). A prerequisite to all features that make present-day Mount Etna an extraordinary magmatic system is arrival of new primitive magma into the feeding system. Such magma, hypothesized in several works (Clocchiatti et al., 2004; Métrich et al., 2004; Patane et al., 2003; Spilliaert et al., 2006) but not sampled directly among recent volcanics, can be best approximated by an unevolved, mantle-derived,
FS-type magma, established in our study. The FS-type melt demonstrates properties critical for positive magma buoyancy, i.e., originally high abundances of dissolved H2O and CO2, that were further increased by crystallization of olivine and clinoxyroxene at depth. Subsequent decompression promoted early saturation of the melt in volatiles, vesiculation, and rapid ascent of the low-density, highly buoyant melt-bubble mixture. Thus, the explosive dynamics of modern Mount Etna can be related to a deep supply of volatile-rich, high-Mg magmas. The recognition of such magmas in the plumbing system of Mount Etna is also important in linking shallow-crust and surface processes to the evolution of the mantle source region. The FS-type melt provides compelling compositional evidence that Mount Etna is currently supplied from a source, increasingly fluxed by melts and fluids, in a continuously changing tectonic framework.

ACKNOWLEDGMENTS

This paper has greatly benefited from comments by Malcolm Rutherford, Paul Wallace, and Dawnika L. Blatter. This research was supported by a Research Fellowship and Discovery grant (Australian Research Council, Australia) and FW. Bessel Award (A. von Humboldt Foundation, Germany) to V. Kamenetsky, and an Istituto Nazionale di Geofisica e Vulcanologia—Dipartimento della Protezione Civile grant to M. Pompilio.

REFERENCES CITED

Armiht, P., Tonarini, S., D’Orazio, M., and Inno-

Manuscript received 4 July 2006
Revised manuscript received 30 October
Manuscript accepted 31 October 2006
Printed in USA

GEOLOGY, March 2007

258