

- Use of complex numbers to represent EM waves
- The complex refractive index
 - Scattering = real part
 - Absorption = imaginary part
- · Absorption and skin depth

The one-dimensional wave equation

The one-dimensional wave equation for scalar (i.e., non-vector) functions, *f*:

$\partial^2 f$	$1 \ \partial^2 f$	_	Δ
∂x^2 –	$\overline{\mathbf{v}^2} \ \overline{\partial t^2}$	-	U

where v will be the velocity of the wave.

The wave equation has the simple solution:

$$f(x,t) = f(x \pm vt)$$

where f(u) can be any twice-differentiable function.

Waves using complex numbers

$$E = E_0 \cos k(x - ct); \quad \phi = k(x - ct)$$

The argument of the cosine function represents the <code>phase</code> of the wave, $\varphi,$ or the fraction of a complete cycle of the wave.

Using complex numbers, we can write the harmonic wave equation as:

$$E = E_0 e^{ik(x-ct)} = E_0 e^{i(kx-\omega t)}$$

i.e., $E = E_0 \cos(\varphi) + i E_0 \sin(\varphi)$, where the 'real' part of the expression actually represents the wave.

We also need to specify the displacement E at x = 0 and t = 0, i.e., the 'initial' displacement.

Waves using complex numbersSo the electric field of an EM wave can be written: $E(x,t) = E_0 \cos(kx - \omega t - \theta)$ Since $\exp(i\phi) = \cos(\phi) + i \sin(\phi)$, E(x,t) can also be written: $E(x,t) = \operatorname{Re} \{ E_0 \exp[i(kx - \omega t - \theta)] \}$ Necall that the energy transferred by a wave (flux density) is proportional to the square of the amplitude, i.e., E_0^2 . Only the interaction of the wave with matter can alter the energy of the propagating wave.Remote sensing exploits this modulation of energy.

Waves using complex amplitudes

We can let the amplitude be complex:

$$E(x,t) = E_0 \exp[i(kx - \omega t - \theta)]$$
$$E(x,t) = \left[E_0 \exp(-i\theta)\right] \exp[i(kx - \omega t)]$$

Where the constant stuff is separated from the rapidly changing stuff.

The resulting "complex amplitude": $[E_0 \exp(-i\theta)]$ is constant in this case (as E₀ and θ are constant), which implies that the medium in which the wave is propagating is *nonabsorbing*.

What happens to the wave amplitude upon interaction with matter?

The 3D wave equation for the electric field and its solution $E(x,y,z,t) = \vec{E}_0 \exp(-\vec{k}^{"}\cdot\vec{x})\exp([i(\vec{k}^{'}\cdot\vec{x}-\omega t)]$ The vector $\vec{k}^{'}$ is normal to planes of constant phase (and hence indicates the direction of propagation of wave crests) The vector $\vec{k}^{"}$ is normal to planes of constant amplitude. Note that these are not necessarily parallel. The amplitude of the wave at location \vec{x} is now: $\vec{E}_0 \exp(-\vec{k}^{"}\cdot\vec{x})$ So if $\vec{k}^{"}$ is zero, then the medium is nonabsorbing, since the amplitude is constant.

EM propagation in homogeneous materials

In a non-vacuum, the wave must still satisfy Maxwell's Equations:

$$v = \frac{1}{\sqrt{\mu\varepsilon}} = \frac{\omega}{k}$$

We can now define the *complex index of refraction*, N, as the ratio of the wave velocity in free space to the velocity in the medium:

$$N = \sqrt{\frac{\mu\varepsilon}{\mu_0\varepsilon_0}} = \frac{c}{v} \quad (n_i = 0) \quad or \quad N = n_r + in_i$$

If the imaginary part of N is zero, the material is *nonabsorbing*, and v is the phase velocity of the wave in the medium. For most physical media, N > 1 (i.e., the speed of light is reduced relative to a vacuum).

NB. N is a property of a particular medium and also a function of ω

Wavelength, nm	El Chichon Ash, April 6, 1982 [Patterson et al., 1983]	WMO Volcanic Ash [WMO, 1986]	St. Helens Volcanic Ash [Patterson, 1981]	Fucgo Volcanic Ash [Patterson et al., 1983]	Sulfate Aerosol [Bhartia et al., 1993
312.5	1.5-0.003i	1.5-0.0093i	1.5-0.018	1.5-0.0734i	1.4660.0i
317.5	1.5-0.0027i	1.5-0.0091i	1.5-0.012	1.5-0.0709i	1.464-0.0i
331.25	1.5-0.00251	1.5-0.0083i	1.5-0.010i	1.5-0.0644i	1.461-0.0i
339.68	1.5 - 0.0023i	1.5-0.0080i	1.5 - 0.0080i	1.5 - 0.0610i	1.458 - 0.0i
360.0	1.5 - 0.0020i	1.5 - 0.0080i	1.5 - 0.0050i	1.5-0.0581i	1.452-0.0i
380.0	1.5 - 0.0018i	1.5-0.0080 <i>t</i>	1.5-0.0040	1.5-0.0460	1.446-0.0i
500.0	1.5-0.0015i	1.5 - 0.0080i	1.5 - 0.0030i	1.5 - 0.020i	1.432 - 0.0i
• Th	e complex refrac attering (real part	tive index in and absor	dicates the re ption (imagina	lative importance iry part) in a med	e of ium