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• Use of complex numbers to represent EM 
waves

• The complex refractive index
– Scattering = real part
– Absorption = imaginary part

• Absorption and skin depth
– Beer’s Law

Mathematical description of 
EM waves
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What is a wave?
A wave is anything that moves.

To displace any function f(x) to the 
right, just change its argument from 
x to x-a, where a is a positive 
number.

If we let a = v t, where v is positive 
and t is time, then the displacement 
will increase with time.

So               represents a rightward, 
or forward, propagating wave.

Similarly,                represents a 
leftward, or backward, propagating 
wave, where v is the velocity of the 
wave.

f(x)
f(x-3)

f(x-2)
f(x-1)

x0        1        2        3

f(x - v t)

f(x + v t)

For an EM wave, we could have E = f(x ± vt)
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The one-dimensional wave equation
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The one-dimensional wave equation for scalar (i.e., non-vector) 
functions, f:

where v will be the velocity of the wave.

( , ) ( v )f x t f x t= ±

The wave equation has the simple solution:

where f (u) can be any twice-differentiable function.
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What about a harmonic wave?

€ 

E = E0 cos k(x − ct)

E0 = wave amplitude (related to the energy 
carried by the wave).

= angular wavenumber

(λ = wavelength;     = wavenumber = 1/λ)

Alternatively:

Where ω = kc = 2πc/λ = 2πf = angular 
frequency (f = frequency)

€ 

k =
2π
λ

= 2π ˜ ν 

€ 

˜ ν 

€ 

E = E0 cos(kx −ωt)

5



1/29/24

3

The argument of the cosine function represents the phase of the wave, 
ϕ, or the fraction of a complete cycle of the wave.

What about a harmonic wave?

€ 

E = E0 cos k(x − ct); φ = k(x − ct)

In-phase waves

Out-of-phase 
waves

Line of equal phase = wavefront = contours of maximum field
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The Phase Velocity

How fast is the wave traveling?  

Velocity is a reference distance
divided by a reference time.

The phase velocity is the wavelength / period:   v =  l / t

Since f = 1/t :

In terms of k, k = 2p / l, and 
the angular frequency, w = 2p / t, this is:

v = l f 

v = w / k 

7
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The Group Velocity

This is the velocity at which the overall shape of the wave’s amplitudes, 
or the wave ‘envelope’, propagates. (= signal velocity)

Here, phase velocity = group velocity (the medium is non-dispersive)

8

Dispersion: phase/group velocity depends on frequency

Black dot moves at phase velocity. Red dot moves at group velocity.

This is normal dispersion (refractive index decreases with increasing λ)
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Normal dispersion of visible light

Shorter (blue) wavelengths refracted more than long (red) wavelengths.

Refractive index of blue light > red light.
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Dispersion: phase/group velocity depends on frequency

Black dot moves at group velocity. Red dot moves at phase velocity.

This is anomalous dispersion (refractive index increases with increasing λ)
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Complex numbers

So, instead of using an ordered pair, (x,y), we write:

P  =  x + i y
=  A cos(j) +  i A sin(j)

where i =   √(-1)

Consider a point,
P = (x,y), on a 2D 
Cartesian grid.

Let the x-coordinate be the real part 
and the y-coordinate the imaginary part 
of a complex number.

…or sometimes j = √(-1) 

12

Euler’s Formula 

Links the trigonometric functions and the complex exponential function

exp(ij)  =  cos(j) + i sin(j)

so the point, P = A cos(j) + i A sin(j), can also be written: 

P =  A exp(ij) = A eiφ

where
A =  Amplitude

j =  Phase

13
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Waves as rotating vectors

14

The argument of the cosine function represents the phase of the wave, 
ϕ, or the fraction of a complete cycle of the wave.

Using complex numbers, we can write the harmonic wave equation as:

i.e., E = E0 cos(j) + i E0 sin(j), where the ‘real’ part of the expression 
actually represents the wave.

We also need to specify the displacement E at x = 0 and t = 0, i.e., the 
‘initial’ displacement.

Waves using complex numbers

€ 

E = E0 cos k(x − ct); φ = k(x − ct)

€ 

E = E0e
ik(x−ct ) = E0e

i(kx−ωt )

15
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Amplitude and Absolute phase

E0 = Amplitude
q = Absolute phase (or initial, constant phase) at x = 0, t = 0

p

kx

E(x,t) = E0 cos[(k x – w t ) – q ]

16

So the electric field of an EM wave can be written:

E(x,t) =  E0 cos(kx – wt – q)

Since  exp(ij) = cos(j) + i sin(j), E(x,t) can also be written:

E(x,t)  =  Re { E0 exp[i(kx – wt – q)] }

Recall that the energy transferred by a wave (flux density) is 
proportional to the square of the amplitude, i.e., E02. Only the 
interaction of the wave with matter can alter the energy of the 
propagating wave.

Remote sensing exploits this modulation of energy.

Waves using complex numbers

20
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Waves using complex amplitudes

We can let the amplitude be complex:

Where the constant stuff is separated from the rapidly changing stuff.  

The resulting "complex amplitude”: 
is constant in this case (as E0 and θ are constant), which implies that the 
medium in which the wave is propagating is nonabsorbing.

What happens to the wave amplitude upon interaction with matter?

€ 

E(x,t) = E0 exp[i(kx −ωt −θ)]
E(x,t) = E0 exp(−iθ)[ ]exp[i(kx −ωt)]

€ 

E0 exp(−iθ)[ ]

21

Vector fields
We also need to account for the fact that light is a 3D vector field.

A 3D vector field assigns a 3D vector (i.e., an arrow having both 
direction and length) to each point in 3D space.

A light wave has both electric and magnetic 3D vector fields:

And it can propagate in any direction, and point in any direction in space.

23
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The 3D wave equation for the electric field and its 
solution

whose solution is:

Where is a constant, complex vector

And                          is a complex wave vector – the length of this 
vector is inversely proportional to the wavelength of the wave. 
Its magnitude is the angular wavenumber, k = 2π/λ.

is a position vector


∇2E −µε ∂

2E
∂t2

= 0
A light wave can propagate in any 
direction in space. So we must allow 
the space derivative to be 3D:

  

€ 

E(x,y,z,t) =
 
E 0 exp(−

 
k "⋅ x )exp([i(

 
k '⋅ x −ωt)]

  

€ 

 
E 0

  

€ 

 
k =
 
k '+i
 
k "

  

€ 

 x = (x,y,z)

24

The 3D wave equation for the electric field and its 
solution

The vector        is normal to planes of constant phase (and hence 
indicates the direction of propagation of wave crests)

The vector        is normal to planes of constant amplitude. Note that 
these are not necessarily parallel.

The amplitude of the wave at location     is now:

So if        is zero, then the medium is nonabsorbing, since the 
amplitude is constant.

  

€ 

E(x,y,z,t) =
 
E 0 exp(−

 
k "⋅ x )exp([i(

 
k '⋅ x −ωt)]

  

€ 
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€ 
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EM propagation in homogeneous materials

The speed of an EM wave in free space is given by: 

e0 = permittivity of free space, µ0 = magnetic permeability of free space  

To describe EM propagation in other media, two properties of the medium 
are important, its electric permittivity ε and magnetic permeability μ. 
These are also complex parameters.

e = e0(1+ c) + i s/w =  complex permittivity

s = electric conductivity 
c = electric susceptibility (to polarization under the influence of an 
external field)

Note that ε and μ also depend on frequency (ω).

€ 

c =
1

µ 0ε0
=
ω
k

26

EM propagation in homogeneous materials

In a non-vacuum, the wave must still satisfy Maxwell’s Equations:

We can now define the complex index of refraction, N, as the ratio of 
the wave velocity in free space to the velocity in the medium:

If the imaginary part of N is zero, the material is nonabsorbing, and v is 
the phase velocity of the wave in the medium. For most physical media, 
N > 1 (i.e., the speed of light is reduced relative to a vacuum). 

NB. N is a property of a particular medium and also a function of ω

€ 

v =
1
µε

=
ω
k

€ 

N =
µε

µ 0ε0
=
c
v
(ni = 0) or N = nr + ini

27
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EM propagation in homogeneous materials

Relationships between the wave vector and the refractive index (these 
are derived from Maxwell’s Equations):

These are the so-called ‘dispersion relations’ relating wavelength, 
frequency, velocity and refractive index.

€ 

" k =
ω nr

c
=
2π
λ

Real part of wave vector

€ 

" " k =
ω ni

c
=
2πνni

c
Imaginary part of wave vector

28

Absorption of EM radiation

Recall the expression for the flux density of an EM wave (Poynting 
vector):

When absorption occurs, the flux density of the absorbed frequencies is 
reduced.

€ 

F =
1
2
cε0E

2

29
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Absorption of EM radiation

The scalar amplitude of an EM wave at location     is: 

From the expression for the flux density we have:

  

€ 

 
E 0 exp(−

 
k "⋅ x )  

€ 

 x 

  

€ 

F = F0 exp(−
 
k "⋅ x )[ ]

2
= F0 exp(−2

 
k "⋅ x )

𝑭𝟎 =
𝟏
𝟐𝒄𝜺𝟎𝑬𝟎

𝟐

𝑭 =
𝟏
𝟐𝒄𝜺𝟎 𝑬𝟎 exp −𝒌

## - 𝒙 𝟐
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Absorption of EM radiation

Now substitute the expression for       :

And we have:

For a plane wave propagating in the x-direction. 
€ 

" " k =
ω ni

c
=
2πνni

c

€ 

" " k 

€ 

F = F0 exp(−
4πνni
c

x)
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Absorption coefficient and skin depth

Where βa is known as the absorption coefficient:

The quantity 1/βa  gives the distance required for the wave’s energy to be 
attenuated to e-1 or ~37% of its original value, or the absorption/skin 
depth. It’s a function of frequency/wavelength.

€ 

F = F0 exp(−
4πνni
c

x) = F0e
−β a x

€ 

4πνni
c

=
4πni
λ

32

Absorption coefficient and skin depth

Within a certain material, an EM wave with λ = 1 µm is attenuated to 
10% of its original intensity after propagating 1 cm. Determine the 
imaginary part of the refractive index ni.

33
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The Forced Oscillator:  
The relative phase
of the oscillator 
motion with 
respect to the 
input force 
depends on the 
frequencies.

Below 
resonance
w  << w0

Force Oscillator

On 
resonance 
w  = w0

Above 
resonance
w  >> w0

Let the oscillator’s 
resonant frequency be w0, 
and the forcing frequency 
be w.

We could think of the 
forcing function as a light 
electric field and the 
oscillator as a nucleus of 
an atom in a molecule.

Weak 
vibration.
In phase.

Strong 
vibration.
90° out of 
phase.

Weak 
vibration.
180° out 
of phase.

Courtesy Prof. Rick Trebino, Georgia Tech
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The relative phase 
of an electron 
cloud’s motion 
with respect to 
input light depends 
on the frequency.

Electric field 
at atom

Electron 
cloud

Let the atom’s resonant 
frequency be w0, and 
the light frequency be w.

The electron charge is 
negative, so there’s a 
180° phase shift in all 
cases (compared to the 
previous slide’s plots).

Weak 
vibration.
180° out 
of phase.

Strong 
vibration.
-90° out 
of phase.

Weak 
vibration.
In phase.

Below 
resonance
w  << w0

On 
resonance 
w  = w0

Above 
resonance
w  >> w0

Courtesy Prof. Rick Trebino, Georgia Tech
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The relative 
phase of 
emitted light 
with respect to 
the input light 
depends on the 
frequency.

Electric field 
at atom

Electron 
cloud

The emitted light is 
90° phase-shifted 
with respect to the 
atom’s motion.

Emitted 
field

Weak 
emission.
90° out of 
phase.

Strong 
emission.
180° out 
of phase.

Weak 
emission.
-90° out 
of phase.

Below 
resonance
w  << w0

On 
resonance 
w  = w0

Above 
resonance
w  >> w0

Courtesy Prof. Rick Trebino, Georgia Tech
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Refractive index (n) – the dispersion equation

Lorenz Harmonic oscillator model
qe = charge on an electron
ε0 = electric constant
m = mass of an electron
Nk = number of charges (oscillators) of type k per unit volume
ω = angular frequency of the EM radiation
ωk = resonant frequency of an electron bound in an atom
γ = ‘damping coefficient’ for oscillator k (oscillation cannot be permanent)

What is the refractive index of visible light in air?
What happens as the frequency of EM radiation increases at constant ωk?
What happens if the resonant frequency is in the visible range?
What happens if w > wk? e.g., shine x-rays on glass, or radio waves on free 
electrons.

€ 

n =1+
qe
2

2ε0m
Nk

ω k
2 −ω 2 + iγ kωk

∑

(Feynman, 1963)
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Refractive index (n) of water and ice

38

Penetration depth of water and ice
(also called absorption depth or skin depth)
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Refractive index and color

Aqua MODIS: Flores, Indonesia; Feb 2, 2013 (250 meters) 

Paluweh volcano

40

Color of suspended sediment

Aqua MODIS: Flores, Indonesia; Jan 23, 2013 (250 meters) 
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Color of suspended sediment
Landsat 8: Portage Lake, 
Oct 10, 2018
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Complex refractive index of volcanic ash

From: Krotkov et al. (1997), Ultraviolet optical model of volcanic clouds for remote 
sensing of ash and sulfur dioxide. J. Geophys. Res., 102 (D18), 21891-21904.

• The complex refractive index indicates the relative importance of 
scattering (real part) and absorption (imaginary part) in a medium 
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