Introduction to Electromagnetic Theory

Lecture topics

• Laws of magnetism and electricity
• Meaning of Maxwell’s equations
• Solution of Maxwell's equations

Electromagnetic radiation: wave model

• James Clerk Maxwell (1831-1879) – Scottish mathematician and physicist
• Wave model of EM energy
 • Unified existing laws of electricity and magnetism (Newton, Faraday, Kelvin, Ampère)
 • Oscillating electric field produces a magnetic field (and vice versa) – propagates an EM wave
 • Can be described by 4 differential equations
 • Derived speed of EM wave in a vacuum
 • ‘Speed of light’ measured by Fizeau and Foucault between 1849 and 1862
Electromagnetic radiation

- EM wave is:
 - Electric field (E) perpendicular to magnetic field (M)
 - Travels at velocity, $c \approx 3\times10^8$ m s$^{-1}$, in a vacuum

Dot (scalar) product

If \mathbf{A} is perpendicular to \mathbf{B}, the dot product of \mathbf{A} and \mathbf{B} is zero
Cross (vector) product

\[\mathbf{a} \times \mathbf{b} = [(a_2 b_3 - a_3 b_2), (a_3 b_1 - a_1 b_3), (a_1 b_2 - a_2 b_1)] \]

\[\mathbf{a} \times \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \sin \theta \hat{n} \]

If \(\mathbf{a} \) is parallel to \(\mathbf{b} \), the cross product of \(\mathbf{a} \) and \(\mathbf{b} \) is zero

Div, Grad, Curl

Types of 3D vector derivatives:

The **Del** operator:

\[\vec{\nabla} = \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z} \right) \]

The **Gradient** of a scalar function \(f \) (vector):

\[\vec{\nabla}f = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \right) \]

The gradient points in the direction of steepest ascent.
Div, Grad, Curl

The Divergence of a vector function (scalar):
\[\nabla \cdot \mathbf{f} = \frac{\partial f_x}{\partial x} + \frac{\partial f_y}{\partial y} + \frac{\partial f_z}{\partial z} \]

The Divergence is nonzero if there are sources or sinks.

A 2D source with a large divergence:

Div, Grad, Curl

The Curl of a vector function \(\mathbf{f} \):
\[\nabla \times \mathbf{f} = \left(\frac{\partial f_z}{\partial y} - \frac{\partial f_y}{\partial z}, \frac{\partial f_x}{\partial z} - \frac{\partial f_z}{\partial x}, \frac{\partial f_y}{\partial x} - \frac{\partial f_x}{\partial y} \right) \]

Functions that tend to curl around have large curls.

http://mathinsight.org/curl_idea
Div, Grad, Curl

The Laplacian of a scalar function:

\[\nabla^2 f = \nabla \cdot \nabla f = \frac{\partial f}{\partial x} \frac{\partial}{\partial x} + \frac{\partial f}{\partial y} \frac{\partial}{\partial y} + \frac{\partial f}{\partial z} \frac{\partial}{\partial z} \]

The Laplacian of a vector function is the same, but for each component of \(f \):

\[\nabla^2 f = \left(\frac{\partial^2 f_x}{\partial x^2} + \frac{\partial^2 f_y}{\partial y^2} + \frac{\partial^2 f_z}{\partial z^2} \right) \left(\frac{\partial^2 f_y}{\partial x^2} + \frac{\partial^2 f_y}{\partial y^2} + \frac{\partial^2 f_z}{\partial z^2} \right) + \frac{\partial^2 f_z}{\partial x^2} + \frac{\partial^2 f_z}{\partial y^2} + \frac{\partial^2 f_z}{\partial z^2} \]

The Laplacian tells us the curvature of a vector function.

Maxwell’s Equations

- Four equations relating electric (\(E \)) and magnetic fields (\(B \)) – vector fields
 \[\nabla \cdot E = \frac{\rho}{\varepsilon_0} \]
 \[\nabla \cdot B = 0 \]
 \[\nabla \times E = -\frac{\partial B}{\partial t} \]
 \[\nabla \times B = \mu_0 J + \varepsilon_0 \mu_0 \frac{\partial E}{\partial t} \]

- \(\varepsilon_0 \) is electric permittivity of free space (or vacuum permittivity - a constant) – resistance to formation of an electric field in a vacuum
 \(\varepsilon_0 = 8.854188 \times 10^{-12} \text{ Farad m}^{-1} \)

- \(\mu_0 \) is magnetic permeability of free space (or magnetic constant - a constant) – ability of a vacuum to support formation of a magnetic field
 \(\mu_0 = 1.2566 \times 10^{-6} \text{ T m A}^{-1} \) (T = Tesla; SI derived unit of magnetic field)

Note: \(\nabla \cdot \) is ‘divergence’ operator and \(\nabla \times \) is ‘curl’ operator
Biot-Savart Law (1820)

- Jean-Baptiste Biot and Felix Savart (French physicist and chemist)
- The magnetic field B at a point a distance R from an infinitely long wire carrying current I has magnitude:
 \[B = \frac{\mu_0 I}{2\pi R} \]
- Where μ_0 is the magnetic permeability of free space or the magnetic constant
- Constant of proportionality linking magnetic field and distance from a current
- Magnetic field strength decreases with distance from the wire
- $\mu_0 = 1.2566 \times 10^{-6}$ T m A$^{-1}$ (T = Tesla; SI derived unit of magnetic field)

Coulomb’s Law (1783)

- Charles Augustin de Coulomb (French physicist)
- The magnitude of the electrostatic force (F) between two point electric charges (q_1, q_2) is given by:
 \[F = \frac{q_1 q_2}{4\pi \varepsilon_0 r^2} \]
- Where ε_0 is the electric permittivity or electric constant
- Like charges repel, opposite charges attract
- $\varepsilon_0 = 8.854 \times 10^{-12}$ Farad m$^{-1}$
Maxwell’s Equations (1)

\[\nabla \cdot \mathbf{E} = \frac{\rho}{\varepsilon_0} \]

- Gauss’ law for electricity: the electric flux out of any closed surface is proportional to the total charge enclosed within the surface; i.e. a charge will radiate a measurable field of influence around it.

- \(\mathbf{E} \) = electric field, \(\rho \) = net charge inside, \(\varepsilon_0 \) = vacuum permittivity (constant)

- Recall: divergence of a vector field is a measure of its tendency to converge on or repel from a point.

- Direction of an electric field is the direction of the force it would exert on a positive charge placed in the field

- If a region of space has more electrons than protons, the total charge is negative, and the direction of the electric field is negative (inwards), and vice versa.

Maxwell’s Equations (2)

\[\nabla \cdot \mathbf{B} = 0 \]

- Gauss’ law for magnetism: the net magnetic flux out of any closed surface is zero (i.e. magnetic monopoles do not exist)

- \(\mathbf{B} \) = magnetic field; magnetic flux = \(\mathbf{B} \mathbf{A} \) (\(\mathbf{A} \) = area perpendicular to field \(\mathbf{B} \))

- Recall: divergence of a vector field is a measure of its tendency to converge on or repel from a point.

- Magnetic sources are dipole sources and magnetic field lines are loops – we cannot isolate N or S ‘monopoles’ (unlike electric sources or point charges – protons, electrons)

- Magnetic monopoles could theoretically exist, but have never been observed
Maxwell’s Equations (3)

\[\nabla \times E = -\frac{\partial B}{\partial t} \]

- Faraday’s Law of Induction: the curl of the electric field (\(E \)) is equal to the negative of rate of change of the magnetic flux through the area enclosed by the loop.
- \(E \) = electric field; \(B \) = magnetic field
- Recall: curl of a vector field is a vector with magnitude equal to the maximum ‘circulation’ at each point and oriented perpendicularly to this plane of circulation for each point.
- Magnetic field weakens \(\Rightarrow \) curl of electric field is positive and vice versa.
- Hence, changing magnetic fields affect the curl (‘circulation’) of the electric field – basis of electric generators (moving magnet induces current in a conducting loop).

Maxwell’s Equations (4)

\[\nabla \times B = \mu_0 J + \varepsilon_0 \mu_0 \frac{\partial E}{\partial t} \]

- Ampère’s Law: the curl of the magnetic field (\(B \)) is proportional to the electric current flowing through the loop AND to the rate of change of the electric field. \(\leftarrow \) added by Maxwell
- \(B \) = magnetic field; \(J \) = current density (current per unit area); \(E \) = electric field
- The curl of a magnetic field is basically a measure of its strength.
- First term on RHS: in the presence of an electric current (\(J \)), there is always a magnetic field around it; \(B \) is dependent on \(J \) (e.g., electromagnets).
- Second term on RHS: a changing electric field generates a magnetic field.
- Therefore, generation of a magnetic field does not require electric current, only a changing electric field. An oscillating electric field produces a variable magnetic field (as \(\delta E/\delta t \) changes).
Putting it all together….

- An oscillating electric field produces a variable magnetic field. A changing magnetic field produces an electric field….and so on.
- In ‘free space’ (vacuum) we can assume current density (J) and charge (ρ) are zero i.e. there are no electric currents or charges.
- Equations become:

\[
\nabla \cdot E = 0 \\
\nabla \cdot B = 0 \\
\n\nabla \times E = -\frac{\partial B}{\partial t} \\
\n\nabla \times B = \varepsilon_0 \mu_0 \frac{\partial E}{\partial t}
\]

Solving Maxwell’s Equations

Take curl of:

\[
\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t} \\
\n\nabla \times [\nabla \times \vec{E}] = \nabla \times [-\frac{\partial \vec{B}}{\partial t}]
\]

Change the order of differentiation on the RHS:

\[
\nabla \times [\nabla \times \vec{E}] = -\frac{\partial}{\partial t} [\nabla \times \vec{B}]
\]
Solving Maxwell’s Equations (cont’d)

But (Equation 4):
\[\vec{\nabla} \times \vec{B} = \mu \varepsilon \frac{\partial \vec{E}}{\partial t} \]

Substituting for \(\vec{\nabla} \times \vec{B} \), we have:
\[\vec{\nabla} \times [\vec{\nabla} \times \vec{E}] = -\frac{\partial}{\partial t}[\vec{\nabla} \times \vec{B}] \Rightarrow \vec{\nabla} \times [\vec{\nabla} \times \vec{E}] = -\frac{\partial}{\partial t} [\mu \varepsilon \frac{\partial \vec{E}}{\partial t}] \]

Or:
\[\vec{\nabla} \times [\vec{\nabla} \times \vec{E}] = -\mu \varepsilon \frac{\partial^2 \vec{E}}{\partial t^2} \quad \text{assuming that } \mu \text{ and } \varepsilon \text{ are constant in time.} \]

Solving Maxwell’s Equations (cont’d)

Identity:
\[\vec{\nabla} \times [\vec{\nabla} \times \vec{f}] = \vec{\nabla} (\vec{\nabla} \cdot \vec{f}) - \nabla^2 \vec{f} \]

Using the identity, \[\vec{\nabla} \times [\vec{\nabla} \times \vec{E}] = -\mu \varepsilon \frac{\partial^2 \vec{E}}{\partial t^2} \]

becomes:
\[\vec{\nabla} (\vec{\nabla} \cdot \vec{E}) - \nabla^2 \vec{E} = -\mu \varepsilon \frac{\partial^2 \vec{E}}{\partial t^2} \]

Assuming zero charge density (free space; Equation 1):
\[\vec{\nabla} \cdot \vec{E} = 0 \]

and we’re left with:
\[\nabla^2 \vec{E} = \mu \varepsilon \frac{\partial^2 \vec{E}}{\partial t^2} \]
Solving Maxwell’s Equations (cont’d)

\[\nabla^2 \vec{E} = \mu \varepsilon \frac{\partial^2 \vec{E}}{\partial t^2} \quad \nabla^2 \vec{B} = \mu \varepsilon \frac{\partial^2 \vec{B}}{\partial t^2} \]

The same result is obtained for the magnetic field B.
These are forms of the 3D wave equation, describing the propagation of a sinusoidal wave:

\[\nabla^2 u = \frac{1}{v^2} \frac{\partial^2 u}{\partial t^2} \]

Where \(v \) is a constant equal to the propagation speed of the wave

So for EM waves, \(v = \sqrt{\frac{1}{\mu \varepsilon}} \)

Solving Maxwell’s Equations (cont’d)

So for EM waves, \(v = \sqrt{\frac{1}{\mu \varepsilon}} \).

Units of \(\mu = \text{T} \cdot \text{m/A} \)
The Tesla (T) can be written as \(\text{kg} \cdot \text{A}^{-1} \cdot \text{s}^{-2} \)
So units of \(\mu \) are \(\text{kg} \cdot \text{m} \cdot \text{A}^{-2} \cdot \text{s}^{-2} \)

Units of \(\varepsilon = \text{Farad} \cdot \text{m}^{-1} \) or \(\text{A}^2 \cdot \text{s}^4 \cdot \text{kg}^{-1} \cdot \text{m}^{-3} \) in SI base units
So units of \(\mu \varepsilon \) are \(\text{m}^2 \cdot \text{s}^2 \)
Square root is \(\text{m}^{-1} \) s, reciprocal is \(\text{m} \cdot \text{s}^{-1} \) (i.e., velocity)
\(\varepsilon_0 = 8.854188 \times 10^{-12} \) and \(\mu_0 = 1.2566371 \times 10^{-6} \)

Evaluating the expression gives \(2.998 \times 10^8 \) m \(\cdot \) s\(^{-1} \)

Maxwell (1865) recognized this as the (known) speed of light – confirming that light was in fact an EM wave.
EM waves carry energy – how much?

e.g., from the Sun to the vinyl seat cover in your parked car….

The energy flow of an electromagnetic wave is described by the **Poynting vector**:

\[\vec{S} = \frac{1}{\mu_0} \vec{E} \times \vec{B} \]

The intensity (I) of a time-harmonic electromagnetic wave whose electric field amplitude is \(E_0 \), measured normal to the direction of propagation, is the average over one complete cycle of the wave:

\[I = \frac{P}{A} = \frac{S_{\text{avg}}}{c} = \frac{1}{2\varepsilon_0} \frac{E_0^2}{c} = \frac{c\varepsilon_0}{2} \frac{E_0^2}{2} \, \text{WATTS/M}^2 \]

P = Power; A = Area; c = speed of light

Key point: intensity is proportional to the **square** of the amplitude of the EM wave

NB. \(\text{Intensity} = \text{Flux density} (F) = \text{Irradiance (incident)} = \text{Radiant Exitance (emerging)} \)

Summary

- Maxwell unified existing laws of electricity and magnetism
- Revealed self-sustaining properties of magnetic and electric fields
- Solution of Maxwell’s equations is the three-dimensional wave equation for a wave traveling at the speed of light
- Proved that light is an electromagnetic wave
- EM waves carry energy through empty space and all remote sensing techniques exploit the modulation of this energy
Summary

- EM wave propagation: