
Applied Statistical Analysis in R

A graduate course for Psychology, Human Factors, and

Data Science

Shane T. Mueller
shanem@mtu.edu

Michigan Technological University

December 9, 2022

Contents

1 Introduction 3
1.1 Why R? . 3
1.2 Installing R on your computer . 4

1.2.1 Walkthrough of RStudio functions . 4
1.3 Getting Started . 6

1.3.1 Simple Math Calculations . 6
1.3.2 Numbers and vectors . 7
1.3.3 Your first graphics . 7
1.3.4 Functions and Function Arguments . 8

1.4 Data arrays, frames, and matrices . 10
1.4.1 Exercise . 11

1.5 Accessing sub-elements . 11
1.5.1 Accessing elements by name . 12
1.5.2 Naming columns of a data frame . 12

1.6 Data types . 12
1.7 Filtering and Selecting or Removing Data Points 15
1.8 Report Generation in RStudio . 17
1.9 File Management . 19
1.10 Summary . 20
1.11 Solutions to Exercises . 20

2 Handling Data: Reading, Filtering, Aggregating, and Applying functions
to data frames 25
2.1 Reading and Writing in data from files . 25

2.1.1 Reading Files . 25
2.1.2 Other Functions to Read Data . 29
2.1.3 Saving a Data Frame to a text file . 29

2.2 Examining data structures . 29
2.3 Sorting . 31
2.4 Aggregation . 33

2.4.1 Tables . 33
2.4.2 Functions aggregate and tapply . 36

2.5 The apply function: aggregating by rows or columns 39
2.5.1 Aggregating by row or column . 40

2.6 A Complete Example . 40
2.6.1 Plot the growth ‘cloud’ . 41

2.7 Summary . 47
2.8 Solutions to Exercises . 47

i

Chapter 0 Applied Statistics in R

3 Programming in R 49
3.1 Creating functions . 49

3.1.1 Optional and Default values . 52
3.1.2 Wrapping a function . 53
3.1.3 Nameless (Lambda) Functions . 54

3.2 Conditional Branching . 55
3.2.1 Alternatives to if statements . 56

3.3 Iteration and Looping . 58
3.3.1 The for loop . 59

3.4 Summary . 62
3.5 Solutions to Exercises . 63

4 Graphics Basics 67
4.1 Cumulative Example: Plotting trials of a multi-trial experiment 67

4.1.1 The Experiment . 68
4.1.2 Summary . 75

4.2 Histograms . 75
4.3 Box-and-whisker plots . 77

4.3.1 Advanced boxplots . 78
4.4 image plots . 79
4.5 Barcharts/Barplots . 83
4.6 Barcharts with multiple series . 85
4.7 Answers to exercises . 89

5 Advanced Graphics Topics 93
5.1 Pie charts: A Bad Idea . 93
5.2 Dot charts: an alternative to barplots and pie charts 95
5.3 Error bars/confidence intervals . 99

5.3.1 Built-in error bar functions . 100
5.3.2 Error bars on barplots . 101

5.4 Advanced Boxplotting . 103
5.4.1 Sideways boxplots . 104
5.4.2 Boxplots with three independent variables 105
5.4.3 Adding your own headers and legend to a boxplot 105

5.5 Adding images to a plot . 106
5.6 Violin plots . 108

5.6.1 The vioplot library . 108
5.6.2 The violinmplot library . 108
5.6.3 Adapting a custom violin plot function 110

5.7 Solutions to exercises . 113
5.8 Additional Resources . 114

6 Colors and Special-purpose graphics packages 115
6.1 Colors, Color palettes, and Color gradients 115

6.1.1 How R handles color . 115
6.1.2 Color Palettes . 116
6.1.3 Built-in color scheme generators . 117
6.1.4 Colorbrewer palettes . 121
6.1.5 ColorRamps . 123
6.1.6 Building colorblind-visible from RGB space 124

ii

Chapter 0 Applied Statistics in R

6.1.7 Some thoughts on color schemes . 125
6.1.8 Using Transparency . 127

6.2 Balloon Plots . 129
6.3 Gap Plot . 132
6.4 The barplot2 function . 135
6.5 The bandplot function . 137
6.6 The pyramid.plot function . 139
6.7 Other Graphics Packages of Note . 142
6.8 Solutions to Exercises . 143

7 Random Variables, Probability, and Parameter Estimation 145
7.1 Randomness, the unknown, and models of reality 145
7.2 Random variables and sample spaces . 146

7.2.1 Discrete uniform: . 150
7.2.2 Discrete non-uniform: . 151
7.2.3 Continuous Uniform Distribution . 151
7.2.4 Binomial distribution . 151
7.2.5 The Normal distribution . 153

7.3 Comparing data to a theoretical distribution 155
7.4 Inferential Statistics . 158
7.5 Parameter Estimation . 158

7.5.1 Summary of ad hoc parameter estimation 166
7.6 Parameter estimation with statistics . 166

7.6.1 Statistics . 166
7.6.2 Using statistics for parameter estimation 167
7.6.3 Example: The Binomial distribution. 168

7.7 The Normal Distribution . 171
7.7.1 More on Comparing Distributions . 171

7.8 Biases in Parameter Estimation . 173
7.9 Summary . 177
7.10 Solutions to Exercises . 179

8 Inferential Statistical Tests 183
8.1 Hypothesis Testing with Statistical Tests . 184

8.1.1 Classic Null-hypothesis statistical tests 185
8.1.2 Non-parametric tests of group differences 185
8.1.3 Bayes Factor Tests . 186
8.1.4 Other Bayesian tests . 186

8.2 Example: Simulating the NULL hypothesis 187
8.3 The t-test approach . 187

8.3.1 Estimating the variability of the mean 189
8.3.2 One-sample t . 191
8.3.3 One-sample non-parametric equivalent to the t test 193
8.3.4 Example: One-sample Bayes Factor t test 195

8.4 Paired Sample tests . 197
8.4.1 Paired t test . 197
8.4.2 Non-parametric Paired Comparisons 198
8.4.3 Bayes Factor Paired Comparisons . 199

8.5 Comparing two independent samples. 201
8.5.1 Independent samples t-test . 201

iii

Chapter 0 Applied Statistics in R

8.5.2 Independent-samples non-parametric tests 202
8.5.3 Bayesian independent samples comparisons of group means 204

8.6 Estimating Covariance and Correlation . 205
8.7 A statistical test for correlation . 207
8.8 Robust non-parametric Correlation Estimates 212
8.9 Correlations among a set of variables . 214

8.9.1 Bayes Factor test for correlation . 214
8.10 Comparison of Categorical Variables . 216

8.10.1 Exercise . 222
8.10.2 Technical issues . 222

8.11 Special considerations for comparing group means 224
8.11.1 Non-normal and skewed data . 224
8.11.2 Different sample sizes between independent groups 225
8.11.3 Between versus within studies . 226
8.11.4 Effect sizes for t tests . 227
8.11.5 Effect sizes for Wilcox test . 228
8.11.6 The effectsize Library . 228

8.12 Exercise Solutions . 230

9 Introduction to Linear Regression 233
9.1 Linear Regression: The Eyeball Method . 233
9.2 Least-squares fitting with one variable . 233

9.2.1 Estimating a slope-only model . 239
9.3 Estimating parameters with quantile regression 240
9.4 Least-squares fitting with two variables . 242
9.5 Examining Models with multiple predictors 247
9.6 Solutions to Exercises . 248

10 Testing the Linear Model 251
10.1 Estimating the variability of the linear regression model 251

10.1.1 Analogy to simpler tests . 251
10.2 Inferential statistics about parameter estimates 253
10.3 The estimate of sigma provided by lm . 257
10.4 Summarized results from a linear model . 258

10.4.1 What is the std. error and what does the t-test for a coefficient compute?258
10.4.2 What is Multiple R2 and Adjusted R2 260
10.4.3 How do you interpret the F-statistic? 262

10.5 Bayes Factor Regression Model . 262
10.6 Categorical Predictors . 264

10.6.1 Caveats and Warnings . 266
10.6.2 Category by slope interactions . 267
10.6.3 Variable Selection . 269

10.7 Solutions to exercises . 269
10.7.1 Stat500 data . 269

11 Comparing Regression Models, Variable Selection, Prediction 273
11.1 Comparing (nested) Regression Models . 273

11.1.1 Parameter selection versus model testing 273
11.2 Parameter selection/Model testing using F Tests and the Analysis of Variance

procedure . 275

iv

Chapter 0 Applied Statistics in R

11.2.1 Parameter selection/Model comparison using AIC and BIC 281
11.2.2 Stepwise variable selection . 283

11.3 Using Bayes Factor for Model Selection . 284
11.4 Parameter Selection when using Regression for Prediction 285

11.4.1 Predicting Categorical Variables . 290
11.5 Worked Example: Categorical and linear predictors 290

11.5.1 Compare end weight or weight gain or end/start ratio 293
11.5.2 Exercise . 295
11.5.3 Categorical outcome variables . 295

12 Identifiability, Orthogonality, linear independence, and Multi-colinearity
in Regression Models 299

12.0.1 Terminology . 299
12.1 Orthogonality of Predictors . 300

12.1.1 Orthogonal Predictors in Regression 303
12.2 Non-orthogonality in regression . 305

12.2.1 Summary of Orthogonality . 308
12.3 Identifiability . 309

12.3.1 Example: Dependent Predictors . 311
12.3.2 More predictors than observations . 311
12.3.3 How to handle non-identifiability . 314

12.4 Detecting and Managing Multi-Colinearity . 314
12.4.1 Dealing with Correlated and non-orthogonal predictors 316

12.5 Uses and limitations of the linear model in human behavioral Data 317
12.6 Summary . 318

13 Polynomials, non-parametric regression, and Transformations 319
13.1 Polynomial Regression . 319

13.1.1 Polynomial regression for scientific hypotheses 324
13.1.2 Exercise: . 327

13.2 Non-parametric regression approaches . 327
13.2.1 Moving average properties . 328

13.3 The loess regression . 328
13.4 Generalized Additive Models (GAMs) and Spline regression 331
13.5 Fitting regression interactions . 334
13.6 Transformations of the Outcome or Predicted Variable 336

13.6.1 Additional Transformation . 339
13.7 Solution to exercises . 343

14 Determining how good your model is: Diagnostics and Outliers 345
14.1 Assessing the overall goodness of fit of the model 346
14.2 Testing assumptions of models . 348
14.3 Detecting and Handling Influential Observations and Outliers 349

14.3.1 Examining Residuals and standardized residuals 351
14.3.2 Leverage . 353
14.3.3 Studentized Residuals . 355

14.4 Measures of Influence . 356
14.4.1 Jackknife Methods . 358

14.5 Impact on inferential statistics . 362
14.6 Downside of transformation to normalize variance 363

v

Chapter 0 Applied Statistics in R

15 Example: Houghton County Snowfall 365
15.1 Graphing the major trends . 365
15.2 Climate Change? . 368
15.3 Did the snowiest month change? . 370
15.4 Highest snowfall month . 372
15.5 Prediction: March Snowfall . 372
15.6 Predictions based on el nino and sunspots records 375

16 Categorical Predictors in lm, the One-Way ANOVA, and post-hoc tests 381
16.1 Categorical Predictors and their Underlying Contrasts 381

16.1.1 Helmert coding . 383
16.1.2 Successive difference coding . 386
16.1.3 Sum-to-zero or Deviation coding . 387
16.1.4 Example regressions with different contrasts 389
16.1.5 Regression and the One-way ANOVA 392

16.2 Testing ANOVA Assumptions . 395
16.2.1 Bartlett’s K-squared Test of Homogeneity of Variance 395
16.2.2 Levene’s equality of variance Test . 396
16.2.3 Fligner test . 396

16.3 Dealing with unequal variance . 396
16.4 Kruskal-Wallis H . 397
16.5 Bayesian One-way ANOVA . 398
16.6 Testing differences between levels of a predictor in ANOVA and Multiple Com-

parisons . 398
16.6.1 Multiple comparisons and post-hoc tests in ANOVA 400
16.6.2 Post-Hoc test with BayesFactor ANOVA 401

17 Multi-Way (Factorial) ANOVA 407
17.1 Interpreting the Analysis of Variance (ANOVA) Table 409

17.1.1 Post-hoc testing in multi-way ANOVA 411
17.1.2 Interpreting Bayes Factor Multi-way ANOVA 412
17.1.3 Exercise . 413

17.2 Non-orthogonal predictors . 413
17.2.1 What do you do? . 418

17.3 Type I, II, and III ANOVA tests . 419
17.4 ANOVA Model Lattice . 421
17.5 The Model Lattice and ANOVA Types . 421
17.6 Solutions to exercises . 425

17.6.1 Orchard spray ANOVA . 425

18 Factorial ANOVA: Main effects and interactions 427
18.1 Interactions Between Factors in a balanced ANOVA model 427

18.1.1 Exercise . 429
18.2 The model lattice with interactions . 431

18.2.1 Dealing with Interactions: Worked Example 433
18.2.2 Approach 0: Type II and III ANOVAs 440
18.2.3 Approach 1: Post-hoc Tukey test on individual pairs 441
18.2.4 Approach 2: subset on one variable, t-test/ANOVA for each level: . . 441
18.2.5 Approach 3: subset to get rid of 3-level, interpret 2x2 interaction . . . 442

18.3 Effect sizes and ANOVA models . 443

vi

Chapter 0 Applied Statistics in R

18.3.1 Effect size for condition and gender in the ultimatum game data. . . . 447

19 Analysis of Covariance 449
19.0.1 ANCOVA with a single covariate . 449
19.0.2 ANCOVA with interactions . 454

20 Advanced ANOVA: Within-Subject Designs, Repeated Measures, and Ran-
dom versus Fixed Factors 459
20.1 Terminology . 459

20.1.1 Repeated Measures and within-subject variables 460
20.1.2 Fixed versus Random effects . 460
20.1.3 Nested effects . 460
20.1.4 Mixed Models . 460
20.1.5 Why should we care? . 461

20.2 ANOVA with Repeated Measurement . 461
20.2.1 Exercise . 469

20.3 Repeated Measures . 471
20.4 Repeated measures and the ezANOVA . 473
20.5 Mixed Designs: ANOVA models with between and within variables 474
20.6 Sphericity, and corrections for sphericity . 477
20.7 Post-hoc tests with repeated measures ANOVA 479
20.8 Answers to exercises . 480

21 Mixed effects models, lmer, and nlme models 483
21.1 Mixed effects models: A modern approach . 486

21.1.1 Interpreting the linear mixed effects models 488
21.1.2 Exercise: Chick Weight . 496

21.2 Using ezMixed . 499
21.3 Summary . 500

vii

Forward

This book is a collection of lecture notes and materials prepared for a graduate level statistics
course for Human Factors/Cognitive Science students at Michigan Technological University.
It is meant as a practical course in learning to do statistics using R, and will sometimes
point to other texts for better background on statistical theory. One important text it makes
substantial reference to is Julian Faraway’s Practical Regression in R, which is available as
a free download on many R websites. Other useful resources include John Fox and Sandford
Weisberg’s ”An R Companion to Applied Regression”, which cover a much of the same
material as this book, and Robert Kabacoff’s ”R in Action”.

This book is intended as a roadmap for teaching graduate students in psychology and
social science, who have introductory-level statistics behind them, and will typically have
experience using SPSS to conduct their statistical tests. The class is taught using R Com-
mander as a basic interface, which is polished and provides a lot of nice features that students
are able to take advantage of. The philosophy of this book recognizes that the actual statisti-
cal tests you run are usually at the tail-end of a lot of informal data processing, visualization,
head-scratching, and data management. Thus, it is organized first to give a gentle introduc-
tion to the R syntax, data handling, and graphics abilities. This is where huge benefits can
be gained, because frequently a task that would otherwise take days of copy-pasting in a
spreadsheet can be done with a line or two of R code. The second third of the book covers a
core set of statistical tests, focusing on regression as a generalization of ANOVA. The final
third of the book includes appendix chapters contributed to by students in the class, and
involve special topics that each might rightly take an entire course to explore fully.

1

Chapter 0 Applied Statistics in R

2

Chapter 1

Introduction

Most books on statistics start with basic probability theory and simple hypothesis testing.
In my experience, the actual statistical tests encompass only part (maybe less than half)
of the work involved in designing an experiment and determining what happened. There
are many other processing involved centered on handling data, aggregating, sorting, coding,
etc., that are as important as the statistical tests.

Consequently, this book will start not with introductory statistics, but rather introduction
to using R for data management, programming, graphing, and simulation. Once you are
comfortable with its syntax and usage, learning statistical tests will be much more clear
and intuitive. I recommend using R 3.0 or later, and RStudio, which provides a modern
front-end.

1.1 Why R?

R is an open source statistical computing platform. It has become the de facto platform for
statistical computing in many fields. It is free, and has very good support (from user groups,
mailing lists, blogs, and published books, companies offering support, and example source
code is abundant). Also, there are hundreds (maybe thousands) of free add-on packages
available for doing almost any advanced statistical procedures. R is available at http:

//http://www.r-project.org/. R is based on a proprietary software system called S+,
but it has essentially overtaken S+ in its use and capability. However, should you want a
commercial stats package, you can typically use S+ with little learning costs.

The de facto standard stats package in the field of psychology is probably SPSS. SPSS is
expensive, and must be licensed annually. Consequently, there is no guarantee that the work
you do today using SPSS will be available to you in the future. Individual additional packages
are more expensive, and aspects of the system’s design can prevent you from learning about
the statistical tests it supports. Furthermore, IBM (the latest owner of SPSS) appears has
focused SPSS on being a ’Business Analytics’ tool, whose goals and cost structure differ from
what is useful in academic and applied research contexts.

In terms of features, R does not offer as simple of a menu interface for selecting statistical
tests as does SPSS, and so in terms of its learning curve, R can be a bit more challenging.
This is partly because it is so much more powerful, and partly because once you learn how
to use command-line R, it is actually usually simpler and easier than a menuing system.
Furthermore, R is unparalleled in its ability to manage and process data, the R graphics
system is much more flexible and powerful than anything available elsewhere, and because

3

http://http://www.r-project.org/
http://http://www.r-project.org/

Chapter 1 Applied Statistics in R

the source code is available, you can always determine exactly what steps are being taken.
There was a time when open source stats software lagged behind what commercial products
were producing, but the opposite is true today. Researchers will release their analytics
software to R, with no guarantee that commercial tools will ever be released.

As you are learning, you will get the best benefit from diving into the software completely.
So, while you are doing this course, I would encourage you to use R for for all of your data
analyses. This investment will pay dividends for the rest of your career.

1.2 Installing R on your computer

To begin, you will need to install R on your computer, or have it done for you by your IT
staff. R itself has its own (sort of clunky) front end, but a company called RStudio has
created an open source graphical front-end that I recommend using. You may have to install
both R and RStudio in order for them to work together. You may prefer a different front-end
to R, such as emacs or the standard R GUI, but RStudio is probably the most advanced and
professional front-end that exists. A few projects have attempted to create a menu-driven
stats front-end with R akin to SPSS, but most seem to have limited usage and be a bit
clunky.

1.2.1 Walkthrough of RStudio functions

A screenshot of RStudio is shown below. A video walkthrough of its functions is available
here: http://www.rstudio.com/ide/

RStudio is referred to as an ’Integrated Development Environment (IDE)’. There are
several parts important to data analysis it brings together:

1. Command console: The lower left, this will allow you to type commands into R that
get executed. You can also see, copy, and paste from the history of commands you
typed. This is the most important way of interacting with R.

2. Script window One tab on the upper left. This allows you to save sets of commands
for later use.

4

http://www.rstudio.com/ide/

Chapter 1 Applied Statistics in R

3. Data views. Another tab of the upper left. Data objects (tabular data like spread-
sheets) will be displayed here.

4. Workspace One tab on the upper right, this shows a listing of all the data objects you
have created so far.

5. History. Another tab on the upper right, this shows your past history of executed
commands.

6. Plots. On the lower right, graphics you create will be displayed here. From here, they
can be exported into files you can insert in other documents.

7. Files A tab on the lower left; lets you look for files (data and .R) you have created

8. Packages A list of available packages, allowing you to load them into the workspace,
and also access help documentation

9. Help Basic help search window.

10. Project. In the upper right, this allows you to save a set of files as an all-in-one project.

There are a few basic caveats:

• RStudio will save the current state of your analysis as a workspace when you exit.
This might include a number of open source files, and a workspace containing specific
objects. I recommend that you avoid relying on this. You should be sure that when
doing an analysis, every step is recorded in a .R file, so that it could be re-created from
scratch.

• Unlike SPSS, you can have many data tables loaded at the same time. This data is
listed in the upper right. This means that you generally need to tell an R command
which data object you are interested in using for an analysis.

• Along this line, a number of menu options are available that will make it easier to do
things like visualize and input data from files. This can be handy, but it will always
create a command that gets copied to the command-line window. I recommend copying
that line and saving it in a text .R file for later use.

• R looks for and saves files in a so-called ’working directory’. You should be diligent
about setting this (under the ’session’ menu), to help manage your analysis projects.
For example, each project might have its own directory. This will make it easier to
share, archive, and understand if you ever come back to the project.

• Hitting ctrl-enter on a line in an R script will automatically copy that line over to the
console window. Hitting ctrl-enter when you have selected a range of lines will copy
and execute the entire selection. ctrl-alt-R will run the entire text file using the source
command.

• R is case-sensitive. That means that Data is different from data. Furthermore, function
names can be identical to data names, so you might have a function and a data structure
called plot. This usually does not cause trouble. Finally, it is typical practice to use
the ‘.’ inside variable names to indicate related information, such as data.mean and
data.sd. This is because the hyphen character ‘-’ is the minus operation, and the
underscore character ‘ ’ was traditionally overloaded as an assignment operator.

5

Chapter 1 Applied Statistics in R

1.3 Getting Started

On the lower left is the command window or console. This command window will wait for
you to type a command, and then execute it. It also allows you to examine data. It is really
useful for exploratory data analysis, and also to incrementally process data, allowing you to
do multiple-step operations and examine the intermediate results.

As a simple first step, the following command displays many different built-in graphics
capabilities:

1 demo(graphics)

Here, demo() is a function, which takes the command called graphics. Other options
are available for demo as well, which you can see if you type demo() into the console. After
typing demo(graphics) and hitting enter, watch the results in the ’Plots’ tab as you press
enter on the console. For each graph, a set of commands was automatically copied into the
console and executed. Take a look at the commands needed to create each graph. When
you are done, use the arrow buttons on the plots tab to scroll back through graphics. Try
the ‘zoom’ button, and then export the graphic to an image. Try also copying it to your
clipboard and pasting it into a word processing document.

You can get details about any function by typing ? or help()

1 help(plot)

?barplot

1.3.1 Simple Math Calculations

R supports doing simple and complicated math, and can be useful as a calculator. Some
examples follow:

3 + 3

2 [1] 6

9 * 6*3.45

4 [1] 186.3

9 + 6*3.45

6 [1] 29.7

(9 + 6)*3.45

8 [1] 51.75

(9 + 6) ^3.45

10 [1] 11416.02

(9 + 6) ^3.45/33.0

12 [1] 345.9401

(9 + 6) ^3.45/0

14 [1] Inf

Notice that when we try to divide by 0, we get the number Inf, which is code for ‘infinity’.

6

Chapter 1 Applied Statistics in R

Exercises 1.3.1

• Compute your height in inches, by multiplying your height in feet by 12 and
adding the remainder

• Compute your height in meters, using the identity that 1 inch = .0254 meters.

• Compute the average height in meters of at least three people (one who is 5
foot 2, one who is 6 feet 5 inches, one who is 4 feet 8.5 inches).

1.3.2 Numbers and vectors

So far, we have looked at numbers–either integers or real (floating-point) numbers. When
doing data analysis, we usually have a series of numbers–which are referred to as a vector.
This might be a set of values you have collected; maybe the speed of processing for 100 dif-
ferent people, or their ages, or heights. R actually treats all numbers as vectors of numbers–a
single number like we calculated above is just a vector of length 1. This is why output of
numbers is preceded by a bracketed [1], like this:

3+1

2 [1] 4

The [1] indicates that 4 is the first element of the vector. If the vector gets longer or
more complex, other values will be printed to help you know where the values are. There
are many ways vectors are produced. You can create a vector using the c function (c is for
combine):

c(1,3,5)

2 [1] 1 3 5

This again tells you that the 1 is element 1. You can make a sequence with the colon (:)
character:

1:20

2 [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

[19] 19 20

Here, each printed-out line starts with the element of the vector that the next value starts
at. This is just for printing purposes, and does not impact anything else.

1.3.3 Your first graphics

We can easily create random numbers and plot them with a set of graphing functions.

7

Chapter 1 Applied Statistics in R

1 par(mfrow=c(1,3))

x <- runif (100)

3 plot(x)

barplot(x)

5 hist(x)

The commands above do the following: This sets up the display window so it will plot 1
row with three columns. Changing the first or second number can change how many plots
are on a single page.

1 par(mfrow=c(1,3))

This command does two things. The right-hand part creates a vector with 100 numbers
randomly chosen between 0.0 and 1.0. The x<- part assign this vector to a named object
you can access later. R traditionally used the two-symbol assignment operator <-, because
the alternative = can be easily confused with the test for equality (==). However, the = will
also work for assigning values to variables.

1 x <- runif (100)

Now, we can create three plots to examine the data, all on the same page. The first just
plots the 100 numbers in sequence. The second is similar, but plots the numbers as a bar-
graph. The third one creates a histogram of the numbers, to help see its distribution. Notice
that although they were sampled from a uniform distribution, the histogram is probably not
exactly flat.

1 plot(x)

barplot(x)

3 hist(x)

Now, lets suppose we want to create a data structure using the one we just created.
We can use the object name in arithmetic just like we did earlier with numbers. R will
apply those operations to entire objects, not just single numbers. Notice how below, we can
multiple a vector of numbers by .2, and each will be multiplied by .2, or add 3 and 3 will
be added to each value. But we can add a vector of 100 numbers to another vector of 100
numbers too. Finally, we will use the cor() function to compute the correlation between
the two vectors, which will be high because one is composed of the other.

1 tmp <- runif (100)*.2

tmp2 <- tmp + 3

3 y <- x + tmp2

plot(x,y)

1.3.4 Functions and Function Arguments

Previously, we used functions that took a single argument. Many take multiple arguments,
which can change their behavior. For example, the plot function used previously will create

8

Chapter 1 Applied Statistics in R

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

0 20 40 60 80

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Index

x

0
.0

0
.2

0
.4

0
.6

0
.8

Histogram of x

x

F
re

q
u
e
n
c
y

0.0 0.4 0.8

0
2

4
6

8
1
0

1
2

1
4

a scatter plot when given two arguments. When given just one argument, it will be plotted
in order along the x axis and the values along the y axis. When given tow arguments, the
first argument will be the x value, and the second argument will be the y value. See the
output on the left panel of the figure.

plot(x,y)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
● ●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

0.0 0.4 0.8

0
.2

0
.4

0
.6

0
.8

1
.0

x

y

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
● ●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

0.0 0.4 0.8

0
.2

0
.4

0
.6

0
.8

1
.0

x

y

Functions also often return a value or object. For example, if we useth cor function, it will
compute the correlation between two sets of numbers, and return the value to the command
line, printing it out along the way. Correlation is a scaled measure of how two variables
covary, ranging from -1 (meaning perfectly negatively associated), to 0 (unassociated) to 1
(perfectly positively associated).

9

Chapter 1 Applied Statistics in R

1 cor(x,y)

[1] 0.979622

If we wanted to save that value for later, we could have assigned it to a variable name:

xycorr <- cor(x,y)

2 xycorr

[1] 0.979622

Exercises 1.3.3

• Create z1, a set of 100 random numbers like we did above, but make it less
highly correlated with x (try to aim for a correlation of .8).

• Create a z2, a set of 100 random numbers, but make them negatively correlated
with x.

• Compute the correlation between z1 and z2

Most functions take multiple arguments that allow you to control their operation in more
detail. They will typically have default values for most of the (optional) arguments. These
values are either specified in the order they were defined in, or by writing the argument name
in the function execution. Let’s say we want to change the symbol used to plot data. This
is done using the pch argument, which takes an integer between 0 and 32, controlling the
symbol used. We can specify the pch we want as below; the results are shown in the right
panel of the previous figure. Notice how the circles are filled, rather than empty.

1 plot(x,y,pch =16)

1.4 Data arrays, frames, and matrices

The above x and y are arrays or vectors—they represent a sequence of data.
A 2-d or higher matrix can be formed using the matrix function. The elements of a

matrix must all have the same types of data (which we will discuss next). Thus, it is usually
not appropriate for holding tabular data like a spreadsheet, because you often want to mix
data types together, with one column being nominal, another being text, a third being
numeric, and so on.

The following creates a 10x10 matrix of random numbers, then prints out a rounded-off
version of this.

1 m <- matrix(runif (100) ,10,10)

print(round(m,3))

10

Chapter 1 Applied Statistics in R

1.4.1 Exercise

Exercise 1.4.1

• Create a 10x20 matrix of uniform random numbers.

Most of the time, your data will be in what is called a data frame. This allows putting
together a set of tabular data, where different columns may have different data types (text,
factors, numbers, etc.). Vectors such as m can be transformed into a data frame easily.

n <- as.data.frame(m)

Unlike a matrix, the columns of a data frame are named. They are given default names
if none are provided. Like a matrix, data frames must be ’rectangular’; each column must
have an equal number of rows, and each row must have an equal number of columns.

1 print(n)

You can examine the data frame n in the data view in RStudio by clicking on it in the
workspace. Or you can type the following (note the capital V):

1 View(n)

1.5 Accessing sub-elements

Accessing a sub-element of a vector is simple, using the [] operator to tell it which element
or elements (by number) you want.

1 print(x[20])

An entire row or column of a matrix can be accessed too:

1 print(m[1,]) ##get first row

print(m[,3]) ##get third column

3 print(m[1 ,3]) ##get a specific element

In a Data frame, columns can be accessed by name

1 print(n$V2)

or by index:

1 print(n[,2])

11

Chapter 1 Applied Statistics in R

1.5.1 Accessing elements by name

Elements of a vector (and the rows/columns of a matrix) can be named. This may seem sort
of overkill, but it has some nice uses, because elements can be referred to by name instead
of position. It makes for an easy lookup table too. For example, let’s create a vector with
the phonetic alphabet, but name them with their corresponding letter:

1

lookup <- c(A = "Alfa", B = "Bravo",

3 C = "Charlie", D = "Delta")

> lookup

5 A C B D

"Alfa" "Charlie" "Bravo" "Delta"

7

> lookup["B"]

9

B

11 "Bravo"

13 > lookup [2]

B

15 "Bravo"

Notice that it returns the labeled responses. The bottom is the actual value, and the top
shows what the label was. lookup[2] is the same as lookup["B"].

This allows us to do recoding easily. A useful application might be transforming Likert-
scale responses in a survey to more uniform values 1 through 7.

lookup[c("A","A","C","B")]

2 A A C B D

"Alfa" "Alfa" "Charlie" "Bravo" "Delta"

1.5.2 Naming columns of a data frame

Similarly, columns of a data frame are accessed by name, but we can add new named columns
using the $ symbol. New data columns can be added to a data frame (but not as easily to
a matrix):

1 n$new <- 43 #This puts 43 in each row

print(n)

3 n$new2 <- c(44 ,45) #this recycles the shorter list to fill

print(n)

5 n$new3 <- 1:10

1.6 Data types

There are a number of data types you will run into. You can tell what type you are dealing
with by using the typeof() function.

12

Chapter 1 Applied Statistics in R

Integers

These are positive and negative whole numbers. They are only used in a few specific situa-
tions in which they are really used in R, but they can save storage room and sometimes be
faster to do math on.

1 c(1,3,3,44,5)

typeof (5)

3 typeof(as.integer (5))

numeric/floating point

Most numbers used in R are floating point values that are referred to as a "double". Even
integer values are usually stored as double-precision floating point values.

1 33.0

1.223

3 c(1,3,3,44.3,5)

typeof (33.0)

Character strings:

bb <- "HELLO"

2 c("one","two","three")

typeof("H")

Logical

Logical values are TRUE and FALSE (T and F). T is actually equal to 1, and F is equal to
0,so adding 1 to T produces 2.

1 a <- c(TRUE ,FALSE)

typeof(T)

3 [1] "logical"

T + 1

5 [1] 2

Factors (nominal-scale values)

When you have categorical data, these will often be stored as factors. A factor can often
masquerade as either a numeric or a character string. There are times, especially for some
statistical analyses, when using a character instead of a factor to specify a factor will produce
different results. So, be careful!

13

Chapter 1 Applied Statistics in R

1 factor1 <- as.factor(c("greg","jan","marsha","bobby",

"tom","cindy","peter"))

3 [1] greg jan marsha bobby tom cindy peter

Levels: bobby cindy greg jan marsha peter tom

Note that the original order is preserved, but there is an implied numeric order which is
their alphabetic order. Thus, bobby is level 1, and is equal in value to 1).

Coercing between types

You will sometimes need to change one type to another type. This happens frequently with
factors and characters. There are a set of functions that permit transforming between types,
just like the as.factor function used previously.

For example, the names of factors do not have to be characters, they can be numbers.
This can be confusing, especially when the values do not map directly onto their integer
values they represent:

bb <- as.factor(c(5.5 ,1 ,2 ,3.2 ,3.3))

2 bb

[1] 5.5 1 2 3.2 3.3

4 Levels: 1 2 3.2 3.3 5.5

Notice how the levels are sorted in numeric (actually alphabetic) order. Here, “1” is equal
to 1, but “3.3” is equal to 4. What really happened is that the numbers got transformed
into character labels, and these got used to label the levels of the factor. Suppose we wanted
to get the character values back from the factor. This is pretty simple:

as.character(bb)

2 [1] "5.5" "1" "2" "3.2" "3.3"

But to get the numeric value can be tricky. The following won’t work:

as.numeric(bb)

2 [1] 5 1 2 3 4

This fails because the factor values get converted to their numeric equivalent, in terms
of the alphabetically-sorted factor names. Instead, you need to do:

as.numeric(as.character(bb))

2 5.5 1.0 2.0 3.2 3.3

Sometimes, you have a variable that is a number, but you want to treat it like a factor.
For example, suppose you have three different doses of a drug: 0, 50, or 2000 mg. You know
that the drug has a non-constant effect–maybe the first 50 mg has the greatest impact, and it
then levels off, but by 2000 mg the immune system reacts to the drug and produces negative
effects. If you wanted to use this in an analysis, you might not want to try treat this as a
categorical variable with three levels, rather than a numeric variable.

14

Chapter 1 Applied Statistics in R

doses <- c(0 ,2000 ,50 ,2000 ,50 ,2000 ,0 ,50 ,50)

2 dosefactor <- as.factor(doses)

benefit <- c(5,6,20,3,18,2,4,22,17)

4 dosefactor

dosefactor

6 [1] 0 2000 50 2000 50 2000 0 50 50

Levels: 0 50 2000

Notice that the levels of the factor appear in numerical order, which is handy.

1.7 Filtering and Selecting or Removing Data Points

If you have slightly complicated data set, you will need to sort and filter data. You might
want to remove outliers, or select one condition, or compare values graphically. Let’s suppose
that you want to compare low and high values of x, and display these subsets graphically.
graphically. The low/high split might be at 0.5. So, first, make a filtering variable. This will
be TRUE or FALSE depending on the value of x (output is edited for space)

1 set.seed (1111)

x <- rnorm (100)

3 y <- x + runif (100,-.3,.3)

tmp <- (x>.5)

5 tmp

[1] FALSE TRUE TRUE TRUE FALSE FALSE TRUE TRUE TRUE TRUE FALSE ...

7 [18] FALSE FALSE FALSE TRUE TRUE FALSE FALSE TRUE FALSE FALSE TRUE ...

[35] FALSE FALSE TRUE FALSE TRUE FALSE FALSE FALSE TRUE FALSE FALSE ...

9 [52] FALSE FALSE FALSE TRUE FALSE FALSE FALSE TRUE FALSE FALSE TRUE ...

[69] FALSE TRUE FALSE TRUE FALSE FALSE TRUE FALSE FALSE TRUE FALSE ...

11 [86] FALSE FALSE TRUE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE ...

TRUE and FALSE values are essentially the same as 0/1. A data vector can be filtered
in two ways: either by using an equal-length vector of T/F values, or by specifying a integer-
vector specifying which elements to select. Here, we will use the first method. Because tmp
is a T/F vector, using the [] subset operator will pull out just the elements for which tmp is
TRUE:

1 x[tmp]

[1] 1.3225244 0.6397020 1.1747866 0.6775081 1.1177719 1.3840475 1.2839409

3 [8] 0.9908363 0.8639047 1.4834263 0.6776003 1.5275207 2.2391646 1.7539743

[15] 1.2205099 2.6151287 1.7615008 0.5105179 0.9630118 2.2282912 0.5919149

5 [22] 0.5851085 1.4398071 2.2851474 1.3073765 2.0673478 0.5210748 1.3947472

[29] 0.5897699 0.8865532 0.7917236 0.6321438 2.0379155 0.8297592 1.5149127

7 [36] 1.7132959 0.9951573 2.5028453 2.9734652

Notice how it picks out all the numbers greater than .5. It does this in their original
order. We can use this to create plots that pick out certain values. Here, I will pick out
those that are > .5, and plot them in one color, then pick out the ones less than .5, and
plot them in another color: We could get the values less than .5 by negating tmp with the
! character, which means ’not’:

1 x[!tmp]

[1] -0.086580111 0.116290309 -2.930846364 -0.976479813 -1.534281566

15

Chapter 1 Applied Statistics in R

3 [6] -1.817001602 0.355633083 -0.080512606 -0.962480325 0.112310964

[11] -0.257651852 -0.718621221 -0.547872283 -0.039941426 0.384087275

5 [16] -0.786009593 -0.176356978 0.094705820 0.127134851 -1.248214152

[21] 0.307956642 -0.541231591 0.295591914 -1.551084024 -0.679109184

7 [26] -1.136255216 -1.200430574 -1.753429287 0.159120433 -0.705527410

[31] -0.591079069 -0.279641026 -1.320978222 0.019832320 -0.553447159

9 [36] -0.175629520 -1.105246204 -0.437523927 -0.655892874 0.387796710

[41] -0.504953477 -0.055572118 -0.641058315 0.285135127 -0.324987285

11 [46] 0.382917618 -0.471192741 0.369884879 0.200547942 -0.486043023

[51] -0.516570926 -0.196642334 -0.242465523 0.466707755 -1.337070225

13 [56] -1.517031873 -0.100654867 -0.008265104 -0.216710897 0.216307660

[61] -0.758359383

15

This subsetting trick is incredibly useful for comparing groups, plotting in different colors,
and so on. A simple example, shown on the left side of the figure below:

plot(x[tmp],y[tmp],col="darkgreen",xlim=c(0,1),ylim=c(0,1))

2 points(x[!tmp],y[!tmp],col="red",pch =16)

Also, R uses a graphics drawing method where you add multiple layers onto a graph in
order to add additional detail. Notice that each consecutive command has an additional
effect on the figure. This can be used to layer fairly complex data visualizations.

plot(x[tmp],y[tmp],col="darkgreen",xlim=c(0,1),ylim=c(0,1),

2 xaxt="n",yaxt="n",xlab="",ylab="")

points(x[!tmp],y[!tmp],col="red",pch =16)

4 axis (1 ,0:10/10)

axis (2 ,0:10/10,las =1)

6 abline(0,1,lty =1)

abline (.5,0,lty=3)

8 abline(v=.5,lty=3)

Here, we tell the plot function that we don’t want it plotting the x and y axes (using
xaxt="n" and yaxt="n"), and also set its x and y labels to ””. Then, we add individual axes
ourselves. Finally, we use the abline to draw lines (the first argument specifies intercept,
the second slope, and v indicates a vertical line at point x).

We can also use a numerical vector to pull out indices of another vector. For example,
just as x[20] picked out the 20th value, x[c(20,21,30)] picks out a sequence that includes
the 20th, 21st, and 30th values. We can use this trick to make the above plot easier. Note
that FALSE+0 = 0, and TRUE+0=1. If we executed the following command:

c("red","darkgreen")[tmp +1]

We get a vector of color names that depend on the value. When plot is given a single
color, it will use that color for everything it plots. But if it is given a set of colors the same
length as the data, it will set each color individually (the same is true for other graphical
parameters such as plot characterpch, size cex, and the like). So, to set the colors more
easily:

1 plot(x,y,pch=18,col=c("red","darkgreen")[tmp +1])

16

Chapter 1 Applied Statistics in R

●

●

●

● ●●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●
●

●

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

x[tmp]

y
[t

m
p

]

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●
●

●

●
● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●
●

●

●
● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Maybe we want the symbol dependent on the y value. Use the same trick for pch, which
controls the plot symbol.

1 plot(x,y,col=c("red","darkgreen")[tmp+1],

pch=c(1,16) [1+(y>.5)])

Exercise 1.7

• The cex argument sets the size of the symbol. Use the distance from the origin
to impact the size. Choose two distance thresholds. If a point is closer to
(0,0) than the smaller threshold, plot it in a small point size. If the point is
greater than the larger threshold, plot it in a larger size. If it is between the
two thresholds, plot it in a normal size.

• The points and lines commands will overplot lines or points on an existing
plot, whereas rnorm acts like runif but for the normal distribution. Use this
to first plot 500 random normal numbers having mean 0 and sd 1, and then
plot any values that are greater than 2 or less than -2 in red. Finally, draw
horizontal lines at + and - 2.0, showing this outlier threshold. You can use the
lines command or the segments command for this.

1.8 Report Generation in RStudio

R provides a number of methods for automatically generating high-quality reports from data.
The simplest ways are built-in to RStudio, using something called RMarkdown. This section

17

Chapter 1 Applied Statistics in R

will cover the basics, but RMarkdown is rapidly improving, so you are likely to get better
tutorials on using it elsewhere.

• https://www.rstudio.com/wp-content/uploads/2015/03/rmarkdown-reference.pdf

You begin by creating a new document from the File—New File— R Markdown menu.
This will bring up the following dialog:

There are ways to create reports for the web (html), for dynamic web pages (shiny), for
presentations, as a pdf, as a word document, and others. Here, select Document and Word,
put your name in the author list and edit the title (this can mostly be change after the
template is created as well.) By choosing ’word’ format, you can go in and edit the report
to make whatever tweaks or additions you will eventually need.

It will create a template document that has some example markdown in it already. It
starts with the following text:

2 title: "Homework Set 1"

author: "Shane Mueller"

4 date: "08/31/2016"

output: word_document

6 ---

After the three dashed line, any text you write will eventually appear as normal text
in the report. IF you want headers,italic fontface, lists, and minimal formatting, there are
special ways of writing in this text section that will produce it. It is similar to how wikipedia
markdown works. For example, headers can be indicated with a line starting with the #
symbol, with subheaders multiple ## in a row. A quick reference guide for this markdown
is embedded within RStudio, under the Help—Markdown Quick Reference menu option.

One important markdown you will want to use is for R code. If you use three left-quote
symbols in a row, this delimits a code block:

‘‘‘

2 a <- 1:10

18

https://www.rstudio.com/wp-content/uploads/2015/03/rmarkdown-reference.pdf

Chapter 1 Applied Statistics in R

b <- a + runif (1)

4 cor(a,b)

‘‘‘

In the above example, the lines will appear exactly as you type them, and will display in
a fixed-font to demonstrate that it is code. However, an even more powerful markdown will
actually execute the code you write. Here, follow the quotes with {r};

1 ‘‘‘{r}

a <- 1:10

3 b <- a + runif (10)

cor(a,b)

5 ‘‘‘

This will tell the processor to execute the code in the section and send the results to the
report file. There are other options available, like suppressing the code completely

1 ‘‘‘{r echo=FALSE}

a <- 1:10

3 b <- a + runif (10)

cor(a,b)

5 ‘‘‘

This would be useful for a true report you are generating for a client or employer who
does not want to see code.

This can also be used to create images. Each back-quoted environment can specify the
size of the figures you want to create:

1 ‘‘‘{r echo=FALSE ,}

a <- 1:10

3 b <- a + runif (10)

cor(a,b)

5 ‘‘‘

Exercise 1.8

• Create an R Markdown document. In the document, incorporate the following:
section header, section subheader, numeric bulleted lists, italic and bold text, R
code that calculates the mean of four numbers, and R code that make a barplot
of those four numbers.

1.9 File Management

There are a number of practices you can use to make file management easier. Here are some
I have found useful:

19

Chapter 1 Applied Statistics in R

• Make a folder or subdirectory containing everything related to a project. You can put
your data in a subdirectory called data, and other materials there as well. Analysis
files can be placed there, output files and figures will be generated there, and R project
files will be saved there. Then, you can access the entire project easily, even if you
move to a new computer or share your project with someone else.

• Be sure to set the working directory to your R analysis file location so it can find the
data.

• Avoid hard-coding file locations on your computer. If you share the analysis folder
with someone else, it will not work.

• Even if you use a markdown file, you might want to put functions you create in a
library file and load them using the source function.

• Try to make any changes to your data through well-documented R file, rather than by
hand via excel. You should always be able to redo all of the steps from raw data to
analysis, without relying on intermediate hand-copying or sorting.

1.10 Summary

This chapter gave a basic introduction to R, as well as some of its basic plotting and filtering
abilities. Many of these will become second-nature in later chapters, but be sure you both
understand these functions, and can use them yourself in new contexts.

1.11 Solutions to Exercises

Exercises 1.3.1 Solution

Compute your height in inches, by multiplying your height in feet by 12 and adding
the remainder.
If a were 7 feet, 2.5 inches, I would type:

1 > 7 * 12 + 2.5

86.5

Compute your height in meters, using the identity that 1 inch = .0254 meters. This
is just multiplying the height computed above by the scaling factor.

>86.5 * .0245

2 2.11925

Compute the average height in meters of at least three people, (one who is 5 foot 2,
one who is 6 feet 5 inches, one who is 4 feet 8.5 inches).

> .0245 * ((5*12+2) + (6*12+5) + (4*12+8.5))/3

2 1.596

20

Chapter 1 Applied Statistics in R

Exercises 1.3.3 Solution

Create z1, a set of 100 random numbers like we did above, but make it less correlated
highly with x.

x <- runif (100)

2 z1 <- runif (100) * .5 + x

cor(z1 , x)

4 [1] 0.8807643

This was too highly correlated. Let’s try this:

> x <- runif (100)

2 > z1 <- runif (100) + 1.4 * x

> cor(z1, x)

4 [1] 0.804588

That’s better. I could have gotten here either by increasing the weighting of x, or
decreasing the weighting of the random numbers.
Create z2, a set of 100 random numbers, but make them negatively correlated with x.
Notice that this does not work:

z2 <- x -runif (100) * .5

2 > cor(z2, x)

[1] 0.9133155

But this does:

1 z2 <- runif (100) * .5 - x

> cor(z1, x)

3 [1] -0.8807643

The difference here is that the new values must have a negative component of the
original values.
Compute the correlation between z1 and z2.

1 > cor(z1,z2)

[1] -0.8090315

Notice that although these were not directly created based on one another, they
were both created to be related to a third variable (x) but in opposite directions.
Thus, they themselves will be correlated negatively. This is like how many spurious
correlations occur (wearing certain clothing may correlate with being a victim of
crime if crime goes up when the weather is hot, and people wear different clothing
when the weather is hot). This could lead to things like victim-blaming even if the
cause is elsewhere.

21

Chapter 1 Applied Statistics in R

Exercise 1.4.1 Solution

Create a 10x20 matrix of uniform random numbers.

x <- matrix(runif (10*20) ,10,20)

Exercises 1.7 Solution

The cex argument sets the size of the symbol. Use the distance from the origin to
impact the size.
The distance to the origin (0,0) can be computed using the Pythagoras theorem:

1 x <- runif (100)

y <- runif (100)

3 distance <- sqrt(x ^2 + y^2)

We could use dist directly as the cex argument because the distance will always be
less than sqrt(2):

1 plot(x,y,cex=distance)

However, we want to do this with two thresholds. The simplest way to do that is to
create a vector if three cex sizes to use: c(.5,1,3), and then a vector to select which
ones.

1 choosepoint1 <- (distance > .4)

choosepoint2 <- (distance > .8)

3 choosepoint <- choosepoint1 + choosepoint2 + 1

plot(x,y,cex=c(.5,1,3)[choosepoint])

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

0.0 0.4 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

y

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

● ●

●

●

●

●

●

●

●
●

● ●
●

●

● ●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

● ●

●

●
●

●

●

●● ●

●

●

●

●

●

0.0 0.4 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

y

22

Chapter 1 Applied Statistics in R

Exercises 1.7 Solution cont.

Use the functions plot, points, and lines to create 500 random normal, and highlight
the outliers more than 2.5 units from the mean.
First, lets create the numbers, plus an ’index’ vector that we will use later.

nums <- rnorm (500)

2 index <- 1:500

Now, plot the numbers with open circles:

plot(index ,nums)

Now, create a filter like we have done before, and overplot the ones we care about.
Here, we filter both the index and the numbers with the filter. Also pch=16 plots in
a solid point.

1 filter <- abs(nums) >2.5

points(index[filter],nums[filter],col="red",pch =16)

Finally:

segments (0 ,2.5 ,500 ,2.5)

2 segments (0,-2.5,500,-2.5)

●

●

●

●

●

●●

●●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●
●

●
●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●●

●
●

●

●●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●
●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●●

●●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●
●
●

●

●

●

●

●

●
●
●

●

●

●●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●
●

●

●
●

●

●

●

0 100 200 300 400 500

−
3

−
2

−
1

0
1

2

index

nu
m

s

●

●

● ●

● ●
●●

23

Chapter 1 Applied Statistics in R

Exercise 1.8 Solution

Create an R Markdown document. In the document, incorporate the following: section
header, section subheader, numeric bulleted lists, italic and bold text, R code that
calculates the mean of four numbers, and R code that make a barplot of those four
numbers.
The following file should address each of these.

2 title: "R Markdown Example"

author: "Shane Mueller"

4 date: "08/31/2016"

output: word_document

6 ---

Top -level header

8

Subsection title

10 This is is normal text. You can also do:

12 * **bold**

* *italic*

14

Or:

16 1. First

2. Second

18 3. Third

20 ## Display and execute code

This will both display and execute the code:

22 ‘‘‘{r}

(33+55+192+12)/4

24 barplot(c(33 ,55 ,192 ,12))

‘‘‘

24

Chapter 2

Handling Data: Reading,
Filtering, Aggregating, and
Applying functions to data
frames

2.1 Reading and Writing in data from files

R is very flexible about reading in data, and can ingest and accept data in many different
formats. It is happiest reading in data that are stored in tabular text files with simple
separators. A .csv file is a perfect way to save your data so that R can ingest it. But space
or tab-separated files are also handled without any hassle. If use the right package, you can
also read in simple .xls/.xlsx files (xlsReadWrite), as well as some other stats package data
formats such as SPSS using the “foreign” package.

2.1.1 Reading Files

One of the most difficult aspects about reading in data is letting R know where the data is.
RStudio has an ‘Import dataset’ option under the Tools menu that lets you select a file and
read it in, helping you through different formatting options. This will write out a command
to the console that will let you read in a file, and then save the command for later use.

This can be useful, but it is pretty easy to write the command yourself in an R script.
To do this, you need to know where R will look for your files. R has a concept of a ‘working
directory’, which is where it will load and save files during a session. You might want to
use a single directory for all of your work, or deliberately set it for each session/project.
Typically, you will change the working directory for any distinct data project you have so
that different analyses stay separate. You can set the working directory via the setwd()

function, in RStudio under the workspace menu option. The easiest method is to set the
working directory to the source file directory, which is an option under the Session—Set
Working Directory menu option.

Suppose you have a file named c5data.txt, that looks like:

25

Chapter 2 Applied Statistics in R

Figure 2.1: Screenshot of the RStudio data import dialog. The dialog creates an R command
that can be reused later.

1 15 1 0 6668 0 652 300 653 300 1 0 0 1 1

15 1 1 6701 33 652 306 653 300 1 33 33 6.08276 7.08276

3 15 1 2 6732 64 652 313 653 300 1 31 64 13.0384 20.1212

15 1 3 6771 103 652 321 653 301 1 39 103 20.025 40.1462

5 15 1 4 6797 129 651 327 653 301 0 26 103 26.0768 66.223

15 1 5 6820 152 650 332 653 301 0 23 103 31.1448 97.3678

7 15 1 6 6843 175 650 336 653 301 0 23 103 35.1283 132.496

15 1 7 6876 208 649 343 653 301 0 33 103 42.19 174.686

9 15 1 8 6902 234 648 349 653 301 0 26 103 48.2597 222.946

the data file is available for download as a companion to this coursebook. Notice that
each row represents an observation or record, and each column represents some distinct
independent or dependent variable in an experiment. We would like to read this into a data
frame, where each column represents a different variable, and they are all tied together in a
tabular format.

Now, to read in the data file: RStudio lets you read this in with a menu command
under Workspace—import data set. It also allows you to set various options, including the
delimiter–the character that separates each data value (in this case a space). Figure 2.1 is a
screenshot of the dialog, showing how you can specify a number of aspects of the data.

26

Chapter 2 Applied Statistics in R

Exercise 2.1.1

Read in data file from menu, after setting the working directory. Then, copy the
generated command into an .R file, and load it directly from there.

You can also read the data in using a command on the console. Notice that the menu
command created the following command, automatically determining the data name and
providing some default arguments.

1 ’c5data ’ <- read.table("~/Documents/data/c5data.txt", quote="\"")

Really, the read.table command is pretty smart; it handles whitespace as the default
separator, and so we could have named the data set explicitly as ’data’, and foregone giving
the quote argument and the full path of the file (as long as it was in the working directory):

1 data <- read.table("c5data.txt")

data

Notice that when we read the file in, it automatically generates headers with the names
V1 through V14.

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14

2 1 15 1 0 6668 0 652 300 653 300 1 0 0 1.00000 1.00000

2 15 1 1 6701 33 652 306 653 300 1 33 33 6.08276 7.08276

4 3 15 1 2 6732 64 652 313 653 300 1 31 64 13.03840 20.12120

4 15 1 3 6771 103 652 321 653 301 1 39 103 20.02500 40.14620

6 5 15 1 4 6797 129 651 327 653 301 0 26 103 26.07680 66.22300

But the headers for this data file should be as follows, even though they didn’t appear
in the file. You can open the file via RStudio:

subcode trial step time trialtime targx targy

2 mousex mousey ontarget dtime totaltime distoff sumdistoff

To get the headers on the data frame you can:

1. Edit the file directly, and paste in the header. The file data2.txt is edited using
an external editor.

data <- read.table("c5data2.txt",header=T)

27

Chapter 2 Applied Statistics in R

2. Set the column names when you read it in. This sets a variable with the header
names, then uses a parameter of read.table to set it on read-in.

1 head <- c("subcode","trial","step","time","trialtime",

"targx","targy","mousex","mousey","ontarget",

3 "dtime","totaltime","distoff","sumdistoff")

data <- read.table("c5data.txt",col.names=head)

3. Set the column names afterward. You can give the header as an argument when
reading in the data:

data <- read.table("c5data.txt")

2 colnames(data) <- head

4. Possible Problems Things can go wrong if you turn the header off but there really is
a header, or you specify a header that doesn’t exist. Now, because each column will likely
have a text value, all the numbers will be coded as categorical labels instead of numerical
values. For example, you might read in data with a header, but specify header=F:

data <- read.table("c5data2.txt",header=F)

2 data [1:10 ,]

V1 V2 V3 V4 V5 V6 V7 V8 V9

4 1 subcode trial step time trialtime targx targy mousex mousey

2 15 1 0 6668 0 652 300 653 300

6 3 15 1 1 6701 33 652 306 653 300

4 15 1 2 6732 64 652 313 653 300

8 5 15 1 3 6771 103 652 321 653 301

Or, you might read in a file without a header, but turn it on:

data <- read.table("c5data.txt",header=T)

2 data [1:5,]

X15 X1 X0 X6668 X0.1 X652 X300 X653 X300.1 X1.1 X0.2 X0.3 X1.2 X1.3

4 1 15 1 1 6701 33 652 306 653 300 1 33 33 6.08276 7.08276

2 15 1 2 6732 64 652 313 653 300 1 31 64 13.03840 20.12120

6 3 15 1 3 6771 103 652 321 653 301 1 39 103 20.02500 40.14620

4 15 1 4 6797 129 651 327 653 301 0 26 103 26.07680 66.22300

8 5 15 1 5 6820 152 650 332 653 301 0 23 103 31.14480 97.36780

Notice that it turns the first row of data into the header, prepending an X in front of
numbers. Finally, you can use the ’skip’ argument to skip over the first few lines of a data
file, in case the headers in the file are inappropriate and you want to create a new set:

##Skip the first line of the data file

2 data <- read.table("c5data2.txt",skip=1, header=F)

colnames(data) <- head

28

Chapter 2 Applied Statistics in R

2.1.2 Other Functions to Read Data

The functions read.table and read.csv are essentially two names for the same function,
just with different default arguments. Consequently, comma-separated values (.csv) files can
be read in either with:
read.table("filename",sep=",")

or with:
read.csv()

1 dat2 <- read.table("c5data.csv",sep=",")

dat2 <- read.csv("c5data.csv")

There are also several other related functions: read.delim which reads tab-separated
files, read.fwf, for reading fixed-width formatted files, and scan, which is a bit more flexible
and will read data into a vector.

2.1.3 Saving a Data Frame to a text file

You can save files using write.table or write.csv:

> write.csv(data ,"data.csv")

2 > write.table(data ,"data.txt")

We can then look at the file we created. Here is data.csv:

"","subcode","trial","step","time","trialtime","targx","targy",

2 "mousex","mousey","ontarget","dtime","totaltime","distoff","sumdistoff"

"1" ,15,1,0,6668,0,652,300,653,300,1,0,0,1,1

4 "2" ,15 ,1 ,1 ,6701 ,33 ,652 ,306 ,653 ,300 ,1 ,33 ,33 ,6.08276 ,7.08276

"3" ,15 ,1 ,2 ,6732 ,64 ,652 ,313 ,653 ,300 ,1 ,31 ,64 ,13.0384 ,20.1212

6 "4" ,15 ,1 ,3 ,6771 ,103 ,652 ,321 ,653 ,301 ,1 ,39 ,103 ,20.025 ,40.1462

"5" ,15 ,1 ,4 ,6797 ,129 ,651 ,327 ,653 ,301 ,0 ,26 ,103 ,26.0768 ,66.223

Notice that the headers are all written out, and each record is separated by a comma.
These will be saved in your working directory. Any factors will be turned into character
strings, and all character strings will be quoted.

Exercise 2.1.3

Generate a matrix of random numbers in a table that is 10 columns and 100 rows.
Name the columns after the first ten letters of the alphabet (letters[1:10]). Save
it out to a .csv data file, and then read it in again.

2.2 Examining data structures

29

Chapter 2 Applied Statistics in R

1 data(trees) #Load the trees data

The variable trees is what is known as a data frame. It is essentially a spreadsheet data
object, where each column has a name, and rows are numbered. You can examine trees by
using the attributes() function, or look at the first few columns with the head() function.

1 > dim(trees)

[1] 31 3

3

> str(trees)

5 ’data.frame’: 31 obs. of 3 variables:

$ Girth : num 8.3 8.6 8.8 10.5 10.7 10.8 11 11 11.1 11.2 ...

7 $ Height: num 70 65 63 72 81 83 66 75 80 75 ...

$ Volume: num 10.3 10.3 10.2 16.4 18.8 19.7 15.6 18.2 22.6 19.9 ...

9

> attributes(trees) #look at what trees is made of.

11

$names
13 [1] "Girth" "Height" "Volume"

15 $row.names
[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

25

17 [26] 26 27 28 29 30 31

19 $class
[1] "data.frame"

21

23 > summary(trees)

Girth Height Volume

25 Min. : 8.30 Min. :63 Min. :10.20

1st Qu .:11.05 1st Qu.:72 1st Qu .:19.40

27 Median :12.90 Median :76 Median :24.20

Mean :13.25 Mean :76 Mean :30.17

29 3rd Qu .:15.25 3rd Qu.:80 3rd Qu .:37.30

Max. :20.60 Max. :87 Max. :77.00

We can look at the different data series across the different observations using matplot.
This does not make a lot of sense, because the horizontal axis is just the order they appear
in the data set. A better plotting function would be boxplot.

par(mfrow=c(1,2))

2 matplot(trees)

boxplot(trees)

It is important to get a sense for what the data will look like, how many observations
there are, etc., so you will know what to expect.

Suppose you want to look at the data in a tabular format. In RStudio, we can use the
View function, or click on the data object in the Workspace tab. But we can quickly look at
the first few lines of the data using the head function:

1 head(data)

30

Chapter 2 Applied Statistics in R

111111111111111111111111111111
1

0 5 10 15 20 25 30

20
40

60
80

tr
ee

s

2
22

2

22

2

2
2

2
2

22

2
22

22

2

2

22
22

2
22222

2

333
333

3
3

3
3

3
3333

3

3
333

3
3

33
3

33
3

33

3 ●

Girth Height Volume
20

40
60

80

Which is essentially identical to:

1 > data [1:5 ,]

This type of subsetting was covered in detail in Chapter 1. You can also use subsetting
to remove a column, by giving the negative column index. The following two statements are
identical for the three-column trees data set.

1 plot(trees [,1:2])

plot(trees[,-3])

Although we haven’t done much yet, we can tell that this data set has 31 observations of
trees. They seem to be organized from smallest to largest in girth, and although both height
and volume are correlated with girth, the relationship with volume seems much clearer.

2.3 Sorting

The same subsetting commands can be used to sort data frames, vectors, and matrices.
Suppose we want to sort the values of two vectors x and texttty by the values of y. To do
this, it will be easiest if they are in a data frame first:

x <- runif (500)

2 y <- x + runif (500,-.3,.3)

dat <- data.frame(x=x,y=y)

4 print(dat)

Now, to sort, we start feeding the values of y into the order function. This will create
a set of numbers that indicate the index of the smallest, then next smallest, and then third
smallest elements of the vector. For example, notice that the smallest value is in the second
position, the next smallest is in the third, and the fourth smallest is in the first position of
the original vector:

31

Chapter 2 Applied Statistics in R

> order(c(2,.5 ,1 ,1.5,2,2.5))

2 [1] 2 3 4 1 5 6

Don’t get order confused with rank:

> rank(c(2,.5 ,1 ,1.5 ,2 ,2.5))

2 [1] 4.5 1.0 2.0 3.0 4.5 6.0

4 > order(order(c(2,.5,1,1.5,2,2.5)))

[1] 4 1 2 3 5 6

Rank is essentially equivalent to the order of the order. Rank replaced each element with its
rank order; order specifies the indices in order of their values.

The order function allows us to easily reorder a data set from smallest to largest, or to
sort another data set based on the values of the first.

ord <- order(dat$y)
2 dat2 <- dat[ord ,]

> head(dat2)

4 x y

309 0.006156245 -0.2875007

6 128 0.040296487 -0.2252086

158 0.026100303 -0.2203838

8 449 0.084372839 -0.2135331

47 0.070928196 -0.2050974

10 466 0.057561985 -0.1802051

Notice that when we look at dat2, a sorted version of dat1, the rows are in a different
order. They retain the original row names, and now the smallest value of y is in the first row.
When we plot them, if we just plot the points, it won’t matter, but if we connect points,
they get connected to adjacent points in the figure:

par(mfrow=c(1,2),mar=c(3,3,0,0)) ##Make two plots

2 plot(dat ,type="b") ##Plotted in random order

plot(dat2 ,type="b") ##sequentially ordered by x

Exercise 2.3

The type argument of plot allows you to plot points connected by lines, using the
type="b" argument. First, plot tree height by volume in its original order, connecting
adjacent values, using the type="b" argument. Then re-sort them by tree height and
re-plot. Finally, re-sort them in a random order, and re-plot.

32

Chapter 2 Applied Statistics in R

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

y

●●

●
●●

●●
●●

●● ●

●

●
● ●●● ●

●●●
●●

● ●●
●● ● ●● ●

●●
●●

●
●

●

● ●● ●
●●●●

●● ●●
●

●● ● ●● ●●●● ●●●●● ● ●● ●
●

● ●●●
● ●● ●● ● ●● ●●● ● ●●

● ● ●

●●

●
● ●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

y

2.4 Aggregation

2.4.1 Tables

The simplest way of aggregating is with a “crosstab” table. If you think about a set of ob-
servations for which you have categorized along several dimensions, you might want to know
how many fit into each combination of categories. For example, you might poll individuals
and ask them their gender, their political affiliation, and who they would vote for (candidate
A or B). Your raw data might look like this:

1 party <- c("R","R","D","R","R","D","D","D","R","R","D")

gender <- c("M","M","F","F","F","F","M","M","F","M","M")

3 vote <- c("A","B","A","A","A","B","A","A","B","B","A")

survey <- data.frame(party ,gender ,vote)

In survey, each row is a person you surveyed. The table function allows us to create a
count of the categories within a data set.

> table(survey$party)
2 party

D R

4 5 6

> table(survey$gender)
6 gender

F M

8 5 6

> table(survey$vote)
10 vote

A B

33

Chapter 2 Applied Statistics in R

12 7 4

The table function will take multiple arguments, and compute counts for every combination
of levels of the variables:

1 > table(survey$gender ,survey$vote)
A B

3 F 3 2

M 4 2

5

> table(survey$party ,survey$vote)
7 A B

D 4 1

9 R 3 3

>

Here, we see that both men and women in the sample prefer A slightly to B. On the other
hand, Democrats prefer A 4:1, whereas Republicans are equally split.

Table doesn’t stop at two dimensions–you can make a table of as many dimensions as
you have categories:

xtab <- table(survey)

2 xtab

, , vote = A

4

gender

6 party F M

D 1 3

8 R 2 1

10 , , vote = B

gender

12 party F M

D 1 0

14 R 1 2

This creates a 2x2x2 table with counts for each cell. We can access slices of this table the
same way we accessed rows/columns of a matrix:

1 > xtab[1,,] #party D

vote

3 gender A B

F 1 1

5 M 3 0

> xtab[2,,] #party R

7 vote

gender A B

9 F 2 1

M 1 2

11 > xtab["D",,] #party = D

vote

13 gender A B

F 1 1

15 M 3 0

17 > xtab[1,2,] #Democratic Men

34

Chapter 2 Applied Statistics in R

A B

19 3 0

Here is a larger example with more observations:

1

x <- sample(c("a","b","c") ,50,replace=T)

3 y <- sample(c("unicorns","pegasuses") ,50,replace=T)

z <- sample(c("chocolate","vanilla","strawberry") ,50,replace=T)

5

table(x)

7 x

a b c

9 20 18 12

11 table(x,y)

y

13 x pegasuses unicorns

a 11 9

15 b 9 9

c 3 9

17

table(x,y,z)

19 , , z = chocolate

21 y

x pegasuses unicorns

23 a 7 3

b 4 6

25 c 1 5

27 , , z = strawberry

29 y

x pegasuses unicorns

31 a 1 4

b 5 2

33 c 1 2

35 , , z = vanilla

37 y

x pegasuses unicorns

39 a 3 2

b 0 1

41 c 1 2

43 table(data.frame(x,y,z))

, , z = chocolate

45

y

47 x pegasuses unicorns

a 7 3

49 b 4 6

c 1 5

51

, , z = strawberry

53

y

55 x pegasuses unicorns

a 1 4

35

Chapter 2 Applied Statistics in R

57 b 5 2

c 1 2

59

, , z = vanilla

61

y

63 x pegasuses unicorns

a 3 2

65 b 0 1

c 1 2

67

>

69 > cross <- table(x,y,z)

>

71 > cross[1,,]

z

73 y chocolate strawberry vanilla

pegasuses 7 1 3

75 unicorns 3 4 2

77 cross["a" ,,]

z

79 y chocolate strawberry vanilla

pegasuses 7 1 3

81 unicorns 3 4 2

83 cross[,2,]

z

85 x chocolate strawberry vanilla

a 3 4 2

87 b 6 2 1

c 5 2 2

89

cross[,2,3]

91 a b c

2 1 2

93 > cross [1,1,2]

[1] 1

95 > cross [1:2,2,3]

a b

97 2 1

Notice that for a table, you can refer to rows/columns by their index or their quoted
name, and you can access sub-tables of a larger-dimensional table.

2.4.2 Functions aggregate and tapply

A table computes counts of each category. Oftentimes, we want to compute another measure
over the data. Two of the most useful functions in R to do this are aggregate and tapply

The both create a new data set by applying a function to subsets of other values. The
subsetting variable will be treated as a categorical variable, even if it is a number. These
functions are similar to what can be done using pivot tables in a spreadsheet or database,
but many stats programs have no easy equivalent. R is good at this because it lets you store
multiple data frames. So you can have your raw data loaded in one variable, and then an
aggregated set in another.

An example:

36

Chapter 2 Applied Statistics in R

1 set.seed (111)

x <- rnorm (500)

3 y <- x + runif (500,-.3,.3)

dat3 <- data.frame(x=x,y=y)

5 dat3$factor <- factor(round(dat3$x/10,1)*10) ##make bins from x

dat3.agg <-

7 aggregate(dat3$y,list(bin=dat3$factor),mean)
dat3.agg$xvals <-

9 aggregate(dat3$x,list(bin=dat3$factor),mean)$x
dat3.tab <- tapply(dat3$y,list(bin=dat3$factor),mean)

11

> dat3.agg

13 bin x xvals

1 -3 -2.9694215 -3.00802536

15 2 -2 -1.8622799 -1.84992413

3 -1 -0.8908935 -0.89592586

17 4 0 0.0382442 0.04730851

5 1 0.9096850 0.91197362

19 6 2 1.7929266 1.82510517

7 3 2.6943167 2.69485129

21 > dat3.tab

bin

23 -3 -2 -1 0 1 2 3

-2.9694215 -1.8622799 -0.8908935 0.0382442 0.9096850 1.7929266 2.6943167

Look at the difference between the aggregated data and the table data. When you have
just a single factor, there is not much, but when you start using multiple factors, aggregate
keeps your data in a “long” format, with condition tagged for each row, but tapply makes a
table.

Another way to make bins in a slightly different way the rank function, which will
transform the actual value to a rank (the smallest will equal 1, the next smallest 2, etc.).
You can make bins of equal numbers of observations. This will make bins each having ten
observations:

dat3$factor2 <- floor(rank(dat3$x)/20)
2 dat3.agg2 <- aggregate(dat3$y,list(bin=dat3$factor2),mean)

dat3.agg2$xvals <-aggregate(dat3$x,list(bin=dat3$factor2),mean)$x

We can compare the plots made by aggregrating over equal widths versus equal numbers
of observations. The blue are the original bins, and the red triangles are equal-sized bins.

1 plot(dat3.agg$xvals ,dat3.agg$x,col="blue",pch=16,
xlab="Mean values of x bins",ylab="Values of y")

3 col2 <- rgb(1,0,0,.6) # a see -through red

col1 <- rgb(0,0,1,.6) # a see -through blue

5 points(dat3.agg2$xvals ,dat3.agg2$x,cex=3,col=col2 ,pch =17)
points(dat3.agg$xvals ,dat3.agg$x,cex=1,col=col1 ,pch =16)

Notice how, in the figure, the blue dots are equally spaced, and the red triangles are
clustered. Although there are many cases when equal-width bins are preferred, in this case
it hides the fact that the bins on the outside are formed from relatively few observations,
whereas the bins in the middle are formed from many.

37

Chapter 2 Applied Statistics in R

●

●

●

●

●

●

●

−3 −2 −1 0 1 2

−
3

−
2

−
1

0
1

2

Mean values of x bins

V
al

ue
s

of
 y

Exercise 2.4.2

Overplot the mean of each bin on a plot of x versus y.

The difference between these tapply and aggregate two are more critical when you
aggregate over multiple factors.

Let’s create a random independent variable:

dat2 <- as.data.frame (1:100)

2 dat2$factor1 <- sample(factor(c("X","Y","Z")) ,100,replace=T)

dat2$factor2 <- sample(factor(c("A","B")) ,100,replace=T)

4 dat2$y <- rnorm (100)

Now, we will use aggregate to compute means by each level of the two factors.

dat2.agg2 <- aggregate(dat2$y,list(factor1=dat2$factor1 ,
2 factor2=dat2$factor2),mean)

4 dat2.agg2

factor1 factor2 x

6 1 X A 0.21732846

2 Y A -0.18088944

8 3 Z A 0.02998482

4 X B 0.18830125

10 5 Y B -0.00255622

6 Z B 0.28403348

12

38

Chapter 2 Applied Statistics in R

14 dat2.tab2 <- tapply(dat2$y, list(dat2$factor1 , dat2$factor2),mean)

16 dat2.tab2

A B

18 X 0.21732846 0.18830125

Y -0.18088944 -0.00255622

20 Z 0.02998482 0.28403348

The table is MUCH easier to plot

par(mfrow=c(1,1))

2 matplot(dat2.tab2 ,type="o")

A similar plot can be done all-in-one using:

interaction.plot(dat2$factor ,dat2$factor2 ,dat2$y)

Exercise 2.4.2

For dat2, plot x vs. y, with the color dependent on the value of factor2. Do this in a
single plot command.

2.5 The apply function: aggregating by rows or columns

Sometimes, you have a special function you want to apply, perhaps variance (var). We can
use the apply function to apply a function repeatedly on each row or column of a matrix.

1 m <- matrix(runif (28) ,7,4)

m

3 [,1] [,2] [,3] [,4]

[1,] 0.21104813 0.4577078 0.7834887 0.7875471

5 [2,] 0.55996277 0.6619420 0.6980809 0.9733729

[3,] 0.70762780 0.7811945 0.8346006 0.9457420

7 [4,] 0.54502749 0.9287212 0.5339969 0.7487509

[5,] 0.54972281 0.7647778 0.7075352 0.3891058

9 [6,] 0.27248057 0.7018390 0.0667138 0.8204995

[7,] 0.09511412 0.5343559 0.3036206 0.2537405

11

round(apply(m,1,var) ,3) ##By row

13 [1] 0.084 0.159 0.142 0.068 0.089 0.010 0.092

mins <- apply(m,2,min) ##By column

15 maxs <- apply(m,2,max) ##By column

mins

17 [1] 0.007168949 0.197287780 0.026100020 0.025987033

maxs

19 [1] 0.7173192 0.9756417 0.9555009 0.5591875

39

Chapter 2 Applied Statistics in R

Plot the points, and connect the minimums and maximums.

1 par(mfrow=c(1,1))

matplot(t(m),type="p",pch=16,col="black")

3 points(apply(m,2,mean),type="o",lwd=3)

points(mins ,type="l")

5 points(maxs ,type="l")

●

●

●

●

1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.
2

0.
4

0.
6

0.
8

t(
m

)

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

2.5.1 Aggregating by row or column

Sometimes you want to aggregate over the columns or rows of a matrix. There are some
built-in functions for this

1 rowSums(m)

[1] 2.151442 2.011602 1.676169 1.459006 1.881610 2.224717 2.628655

3 > colMeans(m)

[1] 0.4198381 0.4675921 0.5113267 0.6059859

2.6 A Complete Example

This end-to-end example uses aggregation, filtering, and multiple layers of plotting to illus-
trate some of the capabilities of R.

R includes a data set called ChickWeight. Load the data set, and look at what it involves:

40

Chapter 2 Applied Statistics in R

data(ChickWeight)

2 > attributes(ChickWeight)$labels
$x

4 [1] "Time"

6 $y
[1] "Body weight"

8

> attributes(ChickWeight)$units
10 $x

[1] "(days)"

12

$y
14 [1] "(gm)"

An easy way to see the first few lines of a data set is with the head() command. Alter-
nately, open with the View() command in RStudio, or by clicking on the variable name in
the upper right-hand corner of the program.

head(ChickWeight)

2

> head(ChickWeight)

4 weight Time Chick Diet

1 42 0 1 1

6 2 51 2 1 1

3 59 4 1 1

8 4 64 6 1 1

5 76 8 1 1

10 6 93 10 1 1

It appears to include measures of weight (in grams) over time (in days), for a number of
chicks on a number of diets. How many chicks were there? How many diets? A simple way
to find this out is to make a table:

length(table(ChickWeight$Chick))
2 [1] 50

4 table(ChickWeight$Diet)

6 1 2 3 4

220 120 120 118

The first command shows we have 50 chicks. The second shows we have 4 distinct diets,
with between 118 and 220 observations per diet. But the observations are not distributed
equally across diets.

2.6.1 Plot the growth ‘cloud’

Let’s begin by plotting weight by time. We expect weight to increase by time, and all the
points of all the chicks to be overlaid in a growth cloud, shown in Figure 2.2:

1 plot(ChickWeight$Time ,ChickWeight$weight ,
ylab="Weight (g)",xlab="Age (days)")

41

Chapter 2 Applied Statistics in R

Figure 2.2: Initial plot showing the growth of chicks over time.

●
●

● ●
●

●
●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●
●

● ●

●
●

●

●

●

●

●

●
● ●

●
●

●
●

●
●

●
●

●

●
● ●

● ●
●

●

●

●

●

●

● ●

● ●

●
●

●

●

●

●

●
●

● ● ● ●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

● ● ●
● ● ●

● ●
●

●
●

●
●

● ●
●

● ●

●
●

●

●

●

●

●
● ● ● ●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
● ●

● ● ● ● ● ●
●

● ●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●
● ● ● ● ●

● ● ● ●
●

● ●
●

●
●

●
●

●
● ●

●
●

●
●

● ●
● ●

●
● ●

●
●

●

●
●

●
●

●
●

● ●
●

● ●
●

●
●

● ●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

● ●
● ●

●

●

● ●

●
●

●
●

●
●

●
●

●

●
● ●

●
●

●

●
● ● ● ● ● ● ● ●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●
●

●
●

●

●

●

●

●
●

●

● ●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●
●

● ●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

● ● ●

●
●

●
●

● ●

●
●

●

●
●

●

●
●

●
●

●
●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●
●

● ●

●
●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

● ●
● ● ● ●

●
●

●

●

●

●
●

●
● ●

●
●

●

●

●

●

●
●

●

●

● ●

●
●

●

●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

●
●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

● ●

0 5 10 15 20

50
10

0
15

0
20

0
25

0
30

0
35

0

Age (days)

W
ei

gh
t (

g)

We want to maybe distinguish different diets; To do this, we can use color. Let’s create
a vector with four different color names, one for each diet:

cscheme <- c("red","darkgreen","black","orange")

There are four diets. Let’s plot the cloud by diet (shown in Figure 2.3).

1 plot(ChickWeight$Time ,ChickWeight$weight ,
ylab="Weight (g)",

3 xlab="Age (days)",

pch=16,

5 col=cscheme[ChickWeight$Diet])

Now we can see basic color separations for the different diets. It would be nice to overlay
a mean growth curve for each diet. We can use tapply to aggregate growth over the diets
and times.

1 cw.agg <- tapply(ChickWeight$weight ,
list(time=ChickWeight$Time ,

3 diet=ChickWeight$Diet),mean)

1 cw.agg

diet

3 time 1 2 3 4

0 41.40000 40.7 40.8 41.0000

5 2 47.25000 49.4 50.4 51.8000

42

Chapter 2 Applied Statistics in R

Figure 2.3: Figure of color-coded chick weights with average growth trajectories for each
weight

●
●

● ●
●

●
●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●
●

● ●

●
●

●

●

●

●

●

●
● ●

●
●

●
●

●
●

●
●

●

●
● ●

● ●
●

●

●

●

●

●

● ●

● ●

●
●

●

●

●

●

●
●

● ● ● ●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

● ● ●
● ● ●

● ●
●

●
●

●
●

● ●
●

● ●

●
●

●

●

●

●

●
● ● ● ●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
● ●

● ● ● ● ● ●
●

● ●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●
● ● ● ● ●

● ● ● ●
●

● ●
●

●
●

●
●

●
● ●

●
●

●
●

● ●
● ●

●
● ●

●
●

●

●
●

●
●

●
●

● ●
●

● ●
●

●
●

● ●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

● ●
● ●

●

●

● ●

●
●

●
●

●
●

●
●

●

●
● ●

●
●

●

●
● ● ● ● ● ● ● ●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●
●

●
●

●

●

●

●

●
●

●

● ●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●
●

● ●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

● ● ●

●
●

●
●

● ●

●
●

●

●
●

●

●
●

●
●

●
●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●
●

● ●

●
●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

● ●
● ● ● ●

●
●

●

●

●

●
●

●
● ●

●
●

●

●

●

●

●
●

●

●

● ●

●
●

●

●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

●
●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

● ●

0 5 10 15 20

50
10

0
15

0
20

0
25

0
30

0
35

0

Age (days)

W
ei

gh
t (

g)

4 56.47368 59.8 62.2 64.5000

7 6 66.78947 75.4 77.9 83.9000

8 79.68421 91.7 98.4 105.6000

9 10 93.05263 108.5 117.1 126.0000

12 108.52632 131.3 144.4 151.4000

11 14 123.38889 141.9 164.5 161.8000

16 144.64706 164.7 197.4 182.0000

13 18 158.94118 187.7 233.1 202.9000

20 170.41176 205.6 258.9 233.8889

15 21 177.75000 214.7 270.3 238.5556

Also, the plot shows that the times recorded were not uniform–starting at Day 0, weight
was measured every 2 days until day 20, then again at day 21. To deal with that, we can
just manually record the times of measurement, or pull them out of cw.agg. But notice that
the time column in the table is actually a text label, and so we need to convert them back
to numbers.

1 ##It is easy to just write these down

times <- c(0,2,4,6,8,10,12,14,16,18,20,21)

3 ## We could pull them out of the table , and convert to numbers.

times <- as.numeric(rownames(cw.agg))

Now, let’s re-plot the points by diet, using a lightly different character scheme, and then
overlay the mean values for each diet using the matplot function. Notice that in order to
overlay, we need to use the add=T argument:

43

Chapter 2 Applied Statistics in R

plot(ChickWeight$Time ,ChickWeight$weight ,cex=.5,
2 ylab="Weight (g)",xlab="Age (days)",

pch=1, col=cscheme[ChickWeight$Diet])
4

matplot(times ,cw.agg ,add=T,type="l",lwd=3,

6 col=cscheme ,lty=1)

Figure 2.4: Basic color-coded chick weight cloud with mean weights for each diet overlaid.

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●
●

●

●
●

●

● ●
●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●
●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
● ● ●

● ● ●

●
●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
● ●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

● ●
● ● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
● ● ● ●

●
●

● ●
●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

● ● ● ● ● ●
● ●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ● ● ●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

0 5 10 15 20

50
10

0
15

0
20

0
25

0
30

0
35

0

Age (days)

W
ei

gh
t (

g)

The dot cloud is nice, but it would be helpful to be able to see each individual growth
path. To do so, we have sort of hit the limits of plot and points, but we want to put the
growth trends into a matrix, and then plot them as connected series with matplot. A way
to to this is to use tapply again. But this time, we aggregate by both time and chick. Note
that there will be only one observation per cell, and so taking the mean of a single number
is an easy way to get that number. We could also use the function I, which just returns the
value that it is passed.

cw.bysub <- tapply(ChickWeight$weight ,
2 list(time=ChickWeight$Time ,

chick=ChickWeight$Chick),mean)
4

6 ## look at just the first ten columns:

cw.bysub [,1:10]

8 chick

time 18 16 15 13 9 20 10 8 17 19

10 0 39 41 41 41 42 41 41 42 42 43

2 35 45 49 48 51 47 44 50 51 48

12 4 NA 49 56 53 59 54 52 61 61 55

6 NA 51 64 60 68 58 63 71 72 62

14 8 NA 57 68 65 85 65 74 84 83 65

44

Chapter 2 Applied Statistics in R

10 NA 51 68 67 96 73 81 93 89 71

16 12 NA 54 67 71 90 77 89 110 98 82

14 NA NA 68 70 92 89 96 116 103 88

18 16 NA NA NA 71 93 98 101 126 113 106

18 NA NA NA 81 100 107 112 134 123 120

20 20 NA NA NA 91 100 115 120 125 133 144

21 NA NA NA 96 98 117 124 NA 142 157

Now we can use matplot to plot this matrix, but what if we want to retain the color-
coding. We’d like a list of diets associated with each column. How can we get this? We
could use tapply again, but aggregating diet instead of weight. Alternately, we could use
aggregate, and find the minimum, mean, or median diet for each chick (which is OK because
they should all be the same). Note that in either case, we need to convert the diet, a category,
into a number.

1 diets <- tapply(as.numeric(as.character(ChickWeight$Diet)),
list(chick=ChickWeight$Chick),median)

3

5 diets <- aggregate(as.numeric(as.character(ChickWeight$Diet)),
list(chick=ChickWeight$Chick),median)$x

7 diets

[1] 1 2 2 2 2 2 2 2 2 2 2

9 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4

Now, replot the growth curves, using matplot, and use diets to select the color of each line.
Then, we will reuse the plot command from earlier (turning into points so it gets overlaid)
to plot the actual points. The results are shown in the first panel of Figure 2.5. I’ll add
gridlines using the segments command, but do it early so the lines and points get plotted on
top of the lines.

1 matplot(times ,cw.bysub ,col=cscheme[diets],type="l",lty=3,

ylab="Weight (mg)",xlab="Age (days)")

3

##Lets add some gridlines

5 segments (-10,0:15*25 ,25 ,0:15*25,lty=3,col="grey")

segments (-10,0:7*50,25 ,0:7*50,lty=1,col="grey")

7

points(ChickWeight$Time ,ChickWeight$weight ,cex=.5,
9 pch=1, col=cscheme[ChickWeight$Diet])

Next, to plot the means, lets first overlay a white line to erase some of the background
lines, then overlay the colored mean lines, shown in Figure 2.5.

1 #erase back of line

matplot(times ,cw.agg ,add=T,type="l",lwd=7, col="white",lty=1)

3 #replot line:

matplot(times ,cw.agg ,add=T,type="l",lwd=3, col=cscheme ,lty=1)

Finally, I’ll add a title and other blandishments. The gridlines can be made with a single
segments function. The results are in the final panel of Figure 2.5.

45

Chapter 2 Applied Statistics in R

title("Chick weights over time by diet")

2 ##Make a legend here.

legend (2,350, paste("Diet",c(1:4)),col=cscheme ,lty=1,lwd=5,bg="white")

Figure 2.5: Basic color-coded chick weight cloud with mean weights for each diet overlaid.

0 5 10 15 20

50
10

0
15

0
20

0
25

0
30

0
35

0

Age (days)

W
ei

gh
t (

m
g)

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●
●

●

●
●

●

● ●
●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●
●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
● ● ●

● ● ●

●
●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
● ●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

● ●
● ● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
● ● ● ●

●
●

● ●
●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

● ● ● ● ● ●
● ●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ● ● ●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

Chick weights over time by diet

Diet 1
Diet 2
Diet 3
Diet 4

46

Chapter 2 Applied Statistics in R

2.7 Summary

In this chapter, we covered ways to use aggregate and tapply to make summary data tables.
These can be useful in many contexts, including recoding data, aggregating across variables,
forming composite score, and they are especially useful for plotting summaries of raw data.

Some of the functions we used in this chapter were:

• read.table

• read.csv

• write.table

• write.csv

• matrix

• runif

• plot

• matplot

• points

• legend

• aggregate

• tapply

• table

• apply

2.8 Solutions to Exercises

Exercise 2.1.1 Solution

Read in data file from menu, after setting the working directory. Then, copy the
generated command into an .R file, and load it directly from there.

Exercise 2.1.3 Solution

Generate a matrix of random numbers in a table that is 10 columns and 100 rows.
Name the columns after the first ten letters of the alphabet (letters[1:10]). Save
it out to a .csv data file, and then read it in again.

1 dat <- matrix(runif (1000) ,100,10)

colnames(dat) <- letters [1:10]

3 write.csv(dat ,"random.csv")

newdat <- read.csv("random.csv")

47

Chapter 2 Applied Statistics in R

Exercise 2.3 Solution

The type argument of plot allows you to plot points connected by lines, using the
type=”b” argument. First, plot tree height by volume in its original order, connecting
adjacent values, using the type="b" argument. Then re-sort them by tree height and
re-plot. Finally, re-sort them in a random order, and re-plot.

data(trees)

2 par(mfrow=c(1,3))

plot(trees$Volume ,trees$Height ,type="b")
4 ord <- order(treesheight)

plot(trees$Volume[ord],trees$Height[ord],type="b")
6 ord <- sample (1: nrow(trees))

plot(trees$Volume[ord],trees$Height[ord],type="b")

Exercise 2.4.2 Solution

Overplot the mean of each bin on a plot of x versus y.

1 ##the mean xvalue is stored in dat3.agg$xvals
##the mean yvalue is stored in dat3.agg$x:

3 plot(dat2$x,dat2$y)
points(dat3.agg$xvals ,dat3.agg$x,pch=16,col="red")

Exercise 2.4.2 Solution

plot(dat2$x,dat2$y,col=c("red","blue")[dat2$factor2],pch =16)

48

Chapter 3

Programming in R

This chapter covers several core aspects of R as a programming language. This aspect offers
a lot of flexibility, especially for initial data coding and processing.

3.1 Creating functions

We have already used a lot of functions–ones built-in to R. For the most part, these functions
are themselves just a set of R commands bound together in a special way that lets you call
them. Anything with the form name(argument) is a function, and it will generally do
computation on the input values, return a value or data structure you can use later, and
sometimes have a side-effect–like printing out an analysis or graphic. On rare occasions,
a function will change the value of the input parameter, so that usually, the input values
will remain unchanged. The return value is generally how information is returned from a
function.

You can create functions yourself when you want to encapsulate a set of commands you
want to use repeatedly using the function command. The last value computed in the
function will be returned, or you can use return() to return something explicitly. Inside
the parentheses of function, you include a list of named arguments you want the user to
provide. Each of the following functions compute standard error, and produce the same
results, but are defined differently.

1 se <- function(x)

{

3 stdev <- sd(x)

se <- stdev/sqrt(length(x))

5 return(se)

}

7

se <- function(x)

9 {

stdev <- sd(x)

11 return(stdev/sqrt(length(x)))

}

13

se <- function(x)

15 {

stdev <- sd(x)

17 stdev/sqrt(length(x))

}

19

49

Chapter 3 Applied Statistics in R

se <- function(x) {sd(x)/sqrt(length(x))}

In each of the cases, you would call the function on a data set like this:

y <- runif (20)

2 se(y)

A few general facts about functions:

• Any variable created within a function will go away and be inaccessible outside the
function. You must return the value to make it available.

• A variable created prior to calling a function is accessible within a function. This power
should be used carefully, because if you try to access something that is not defined,
the function will crash.

• If you create a variable within a function with the same name as a variable defined
outside the function, it will use that local variable instead of the global one.

• Functions usually have names. In the case above, the function name is se. The name
of a function can be the same as the name of a variable, so it can be a bit confusing.

• You can use the eval and call functions with the name of another function and
arguments to call a function programmatically, like eval(call("mean",c(1,2,3))).
This might let you to allow a user to specify a function name as an argument to another
function.

• If you use the return keyword, it will return from the function immediately and not
execute code after that point.

Exercise 3.1

Make a function that computes the minimum, median, and maximum of a data set
x and returns them as a list of three elements. Create some fake data from at least
two different distributions and test it out.

Many functions that compute statistics, such as mean and sd, will produce an NA result
if any of the data it is applied to are NA. This makes sense because you want to be able
to determine how you want to handle these, but it can be frustrating as well. The mean

function includes an argument na.rm, which if set to T will ignore those NA values. We can
create a wrapper function that uses this argument as its default:

cleanmean <- function(x)

2 {

mean(x, na.rm=T)

4 }

6 x <- runif (1000)

50

Chapter 3 Applied Statistics in R

x[x>.95] <- NA ##Mark the highest ones as NA=missing

8

> mean(x)

10 [1] NA

> cleanmean(x)

12 [1] 0.485776

Functions can have more than one argument. You can specify default arguments within
the function command using the equal sign. This allows you to create ’wrapper’ functions
around functions you use a lot but tend to use different default arguments. An example,
plotnice, is shown below, whose output is shown in Figure 3.1.

x <- runif (500)

2 y <- 2 *x + 25 - 2.5*x^2 + .2*rnorm (500)

plotnice <- function(x,y, col="red",

4 lty=3, bty="L", pch=16,las=1)

{

6 plot(x,y,col=col ,lty=lty ,bty=bty ,pch=pch ,las=las)

}

8

plotnice(x,y)

10 plotnice(x,y,col="blue")

Figure 3.1: Two figures created with the plotnice function. plotnice is a wrapper for plot,
which defaults to some specific plotting conditions (via arguments) that can be overridden.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●●

●●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●
●

● ●

●

●

●

●

●

●
●

●

● ●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●● ●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●●

●

●

●●●

●●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

24.5

25.0

25.5

26.0

x

y

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●●

●●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●
●

● ●

●

●

●

●

●

●
●

●

● ●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●● ●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●●

●

●

●●●

●●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

24.5

25.0

25.5

26.0

x

y

51

Chapter 3 Applied Statistics in R

Exercise 3.1

Create a logplot() function which plots log(y) versus x. Test it on a new y values
computed as in:

x <- runif (1000)

2 y1 <- exp(x * 6 + runif (1000))

y2 <- exp(x * 6 + runif (1000)) + runif (1000)*100

3.1.1 Optional and Default values

You can specify optional parameters that have default values, and can check for missing
values in functions as well. The typical way to specify a default value is to set its value equal
to something in the function definition:

1 increment <- function(value , addend =1)

{

3 return(value + addend)

}

The optional argument can be computed as well. For example:

plotletters <- function(values ,labels=LETTERS [1: length(values)])

2 {

barplot(values ,names=labels)

4 }

6 plotletters(runif (5))

For more complex functions, you can use the missing and is.null() functions to check
whether a value is missing. There is also a special argument named ..., that scoops
up all arguments a user might specify that aren’t otherwise named. You can then look
through that, or even pass it on to another function, to permit easy pass-through arguments.

52

Chapter 3 Applied Statistics in R

addup <- function(x,y=NULL)

2 {

if(is.NULL(y))

4 {

return(x)

6 }else{

return (x+y)

8 }

}

10

plotxy <- function(x,y)

12 {

if(missing(y))

14 {

plot(x)

16 } else{

plot(x,y)

18 }

}

20 plotxy(runif (10))

plotxy(runif (10),runif (10))

22

24

plotlabeled <- function(x,y ,...)

26 {

plot(x,y,main="Special plot" ,...)

28 }

30 par(mfrow=c(1,2))

plotlabeled(runif (10),runif (10))

32 plotlabeled(runif (10),runif (10),pch=16,cex=2)

For more information about optional arguments, see also: http://stackoverflow.com/
questions/28370249/correct-way-to-specifiy-optional-arguments-in-r-functions

3.1.2 Wrapping a function

Sometimes, you want to use a function in aggregate, apply, or tapply, but it takes multiple
arguments, and these functions will only permit a single argument. In this case, wrap it in
a new function that hardcodes the argument(s) you want to fix. For example, to compute
the fifth percentile, you need to use quantile, which takes two argument–the data and the
quantile. Here is a way to define a function that just computes the 5th percentile:

q05 <- function(x){quantile(x ,.05)}

2 > q05(runif (1000))

5%

4 0.0480189

Doing this allows you to use a function that takes multiple arguments in an apply func-
tion, which requires only one argument.

matrix(runif (100 ,4 ,25))

2 mat <- matrix(runif (100) ,4,25) ##a 4 row x 25 column matrix of random numbers

apply(mat ,1,q05) ##get the 5-percentile from each row:

4 [1] 0.18653521 0.07055179 0.10283215 0.07423221

53

http://stackoverflow.com/questions/28370249/correct-way-to-specifiy-optional-arguments-in-r-functions
http://stackoverflow.com/questions/28370249/correct-way-to-specifiy-optional-arguments-in-r-functions

Chapter 3 Applied Statistics in R

3.1.3 Nameless (Lambda) Functions

In programming theory, the lambda function has a history that goes back to the early days
of logic, and plays an important role in computability theory and systems of logic called
”lambda calculus”. In R, it is typically used as a shortcut, but can be incredibly powerful
in a number of cases.

The key: YOU DON’T NEED TO NAME A FUNCTION IN ORDER TO USE IT.
Multiply the numbers in each column by 2:

set.seed (111)

2 a <- runif (10)

b <- runif (10)+a

4 c <- runif (10)+ b

x2 <- data.frame(a=a,b=b,c=c)

6

> lapply(x2, function(x){ x * 2})

8 $a
[1] 1.18596257 1.45296224 0.74084401 1.02984766 0.75532643 0.83667465

10 [7] 0.02131569 1.06459048 0.86432123 0.18736304

12 $b
[1] 2.2975224 2.6334192 0.8751263 1.1249434 1.0677315 1.7295302 0.3642031

14 [8] 2.9976591 1.4856541 1.4162958

16 $c
[1] 3.159644 3.204473 1.559429 1.898199 3.002786 2.373584 1.670662 3.564266

18 [9] 3.060510 2.608137

20 > sapply(x2, function(x){ x * 2})

a b c

22 [1,] 1.18596257 2.2975224 3.159644

[2,] 1.45296224 2.6334192 3.204473

24 [3,] 0.74084401 0.8751263 1.559429

[4,] 1.02984766 1.1249434 1.898199

26 [5,] 0.75532643 1.0677315 3.002786

[6,] 0.83667465 1.7295302 2.373584

28 [7,] 0.02131569 0.3642031 1.670662

[8,] 1.06459048 2.9976591 3.564266

30 [9,] 0.86432123 1.4856541 3.060510

[10,] 0.18736304 1.4162958 2.608137

Here is an example where we find the mean of the numbers in each column of x2, using
sapply and lapply:

1 lapply(x2, function(x){mean(x)})

$a
3 [1] 0.4069604

5 $b
[1] 0.7996042

7

$c
9 [1] 1.305085

11 sapply(x2, function(x){mean(x)})

a b c

13 0.4069604 0.7996042 1.3050845

54

Chapter 3 Applied Statistics in R

3.2 Conditional Branching

You can execute code conditionally with several methods The simplest and most common
of these is the if() statement. if() executes code within brackets only when the argument
in parentheses evaluates to TRUE. Any non-zero value is equivalent to TRUE

1 if(0)

{

3 print("This will never print")

}

5 >

7 if(1)

{

9 print("But this will")

}

11 >

[1] "But this will"

Often, you want to take two different actions, one depending on whether something is
true, and another if it is false. To start with, we can choose one of either T or F using the
sample function.

choice <- sample(c(T,F) ,1)

2

a <- NA

4 b <- NA

6 if(choice)

{

8 print("choice was true")

a <- 1100

10

} else {

12

print("choice was false")

14 b <- 13200

}

16

[1] "choice was false"

18 >

> a

20 [1] NA

> b

22 [1] 13200

You can also chain multiple ifs together. We will put this inside a function (which we
covered previously). Notice that the later else sections never get tested or evaluated if an
earlier one is true. So in the case below, a value of 3 will match the first condition, and never
get to the third condition.

test <- function ()

2 {

choice <- sample(c(1,2,3,16,40,80) ,1)

4

print(paste("choice was:",choice))

6 if(choice > 25 & choice < 90)

55

Chapter 3 Applied Statistics in R

{

8 print("one")

}else if(choice < 50)

10 {

print("two")

12 }else if(choice ==3){

14 print("three")

}else{

16 warning("This code should never execute")

}

18 }

20 > test()

[1] "choice was: 16"

22 [1] "two"

> test()

24 [1] "choice was: 1"

[1] "two"

26 > test()

[1] "choice was: 1"

28 [1] "two"

> test()

30 [1] "choice was: 80"

[1] "one"

32 > test()

[1] "choice was: 3"

34 [1] "two"

> test()

36 [1] "choice was: 80"

[1] "one"

3.2.1 Alternatives to if statements

An if + else chain can handle nearly any situation, but there are a few other similar
functions that make things simpler at times. These include the ifelse, switch, and which

functions, which are described below

The ifelse function

ifelse is a function, rather than an R keyword. It works like the if function in most
spreadsheets. It will return the second argument if the first argument is true, and otherwise
the third argument.

1 x <- sample(c(1,2) ,1)

3 ##The hard way:

if(x==1)

5 {

y <- "one"

7 } else {

y <- "two"

9 }

11 ##The easy way:

y <- ifelse(x==1,"one","two")

56

Chapter 3 Applied Statistics in R

Recoding vectors using ifelse

The nice part of ifelse is that it can recode all the elements of a vector in one statement:

x <- sample(c(1,2) ,10, replace=T)

2 print(x)

[1] 1 1 1 1 2 1 2 2 1 1

4 y <- ifelse(x==1,"one","two")

y

6 [1] "one" "one" "one" "one" "two" "one" "two" "two" "one" "one"

This can come in very handy for easily recoding outliers. For example, suppose I have
a task where I recorded response times, and know that any reasonable response should take
ten seconds or less. But in my data, there were a handful of responses between 10 and
60 seconds–perhaps the participant was taking a break before continuing on. The actual
responses may still be valuable, and so maybe I will recode response times so with a ceiling,
so that anything with a time greater than, say, 10 seconds will get recoded to 10 seconds.
Notice the tiny bump at 10 for the recoded data in Figure 3.2.

x <- exp(rnorm (10000)) #Create a fake RT distribution

2 par(mfrow=c(1,2))

hist(x,breaks =0:70, main="RT Distribution")

4 hist(ifelse(x>10,10,x),breaks =0:60, xlim=c(0,15),

main="Truncated \nRT Distribution")

Figure 3.2: Two histograms for a response time distribution. The right histogram recodes
all values greater than 10 to be equal to 10.

RT Distribution

x

F
re

qu
en

cy

0 10 20 30 40 50 60 70

0
10

00
20

00
30

00
40

00
50

00

Truncated
RT Distribution

ifelse(x > 10, 10, x)

F
re

qu
en

cy

0 5 10 15

0
10

00
20

00
30

00
40

00
50

00

57

Chapter 3 Applied Statistics in R

switch: a one-liner to pick one of multiple conditions

The switch function is like a multi-option if statement. It takes many arguments, and the
first indicates which of the other argument paths it should take. If the argument is 1, it
will go to the second argument, 2 it will go to the third, and so on. Or you can specify the
matching values using the = sign, which makes coding fairly easy. However, unlike ifelse,
switch does not work on vector arguments, and so you must use a loop to recode multiple
values.

1 x <- sample (1:5 ,1)

print(x)

3 switch(x, "one","two","three","four","five")

5 x <- sample(letters [1:5] ,1)

print(x)

7 switch(x, a="one",b="two",c="three",d="four",e="five")

which: select indices of a vector that match

The which function does not execute different branches based on the value, but it will help
you select the indices of a vector that match a value. Thus, it can also be used for selective
recoding.

##this changes lowercase a to uppercase:

2 x <- sample(letters [1:5],10 , replace=T)

x[which(x=="a")]<-"A"

Exercise 3.2.1

• Write a function that will take as its first argument a data vector (e.g., some-
thing produced by runif(1000)), and as its second argument a keyword which
tells the function whether to plot a histogram or a scatterplot.

3.3 Iteration and Looping

R allows several methods for looping. Looping or iterating over a data frame is usually the
slowest way to process data. You are almost always better off just computing a function
directly on the data series, or using something like apply, which we have already learned
about. But sometimes slow iteration is necessary...

The simplest is the while loop: Remember: you need to find your own way out of a
while loop.

1 continue <- T

i <- 1

3 while(continue)

58

Chapter 3 Applied Statistics in R

{

5 x <- runif (1)

print(paste(i,"--", x))

7 if(x >.99)

{

9 continue <- F

}

11

i <- i + 1

13 }

You can also get out of a while loop using the break keyword

while(T)

2 {

x <- runif (1)

4 print(paste(i,"--", x))

if(x >.99)

6 {

break

8 }

i <- i + 1

10 }

print(i)

The while(T) capability is essentially the same as repeat:

1

repeat

3 {

if(runif (1) <.1)

5 {

break

7 } else {

cat(".")

9 }

}

11 cat("\n")

3.3.1 The for loop

The most flexible and common loop is the for() loop. it iterates over a set of values within
a list.

1 x <- rnorm (100)

for(i in 1:100)

3 {

print(paste(i,x[i]))

5 }

59

Chapter 3 Applied Statistics in R

Iterate over lists

But it will iterate over any list, not just lists of integers

x <- c("one","two","three","four","five")

2 for(i in x)

{

4 print(i)

}

6 [1] "one"

[1] "two"

8 [1] "three"

[1] "four"

10 [1] "five"

Iterate through variable names of a data frame

set.seed (111)

2 a <- runif (100)

b <- runif (100) + a

4 c <- runif (100) + b

x2 <- data.frame(a=a,b=b,c=c)

6

for(i in x2)

8 print(mean(i))

10 [1] 0.5174984

[1] 0.9647387

12 [1] 1.469686

Iterate through subsets of a factor

Let’s add a factor (which could represent an independent variable). Here, we code a group
that will depend on the values of x$c.

x2$group <- as.factor ((x2$c>1) +(x2$c>2) + (x2$c>2.5))
2

par(mfrow=c(2,2))

4 for(i in levels(x2$group))
{

6 tmp <- x2[x2$group==i,]
plot(tmpa,tmpb,ylim=c(0,2),xlim=c(0,1))

8 }

Other loops you may sometimes use include lapply and sapply, which we already dis-
cussed, as well as the simple loop construct repeat

1. repeat: like while(T)

2. lapply: apply a function over a list

3. sapply: apply a function over a list;

60

Chapter 3 Applied Statistics in R

The functions lapply and sapply are similar, and are like the for example above except
they collect the values of the function into another data structure:

a <- runif (100)

2 b <- runif (100)+a

c <- runif (100)+ b

4 x3 <- data.frame(a=a,b=b,c=c)

>lapply(x3,mean)

6 $a
[1] 0.4791484

8

$b
10 [1] 0.988161

12 $c
[1] 1.437425

14 >sapply(x3,mean)

a b c

16 0.4791484 0.9881610 1.4374250

In some ways, these are like the apply function reviewed in the previous chapter, except
they only apply a function along the different elements of a data frame. Functions such as
apply, lapply, and sapply tend to be much faster than a function using explicit looping like
for, while, and repeat. For the most part, this increased speed will only have an impact
when you have very large data sets (thousands or millions of data points), but it can make
enough of a difference that you should be aware of it.

Exercise 3.3.1a

• Write a new mean function that does not return an error when given a factor.
Rather, it returns the modal (most common) value of that factor. Then use
that function in the lapply and sapply on x2. Use

x2 <- data.frame(a=runif (100),b=runif (100) ,c= as.factor(sample(

LETTERS ,100, replace=T)))

• Create a series of 1,000,000 letters of the alphabet using items <-

sample(letters,1000000,replace=T). Write functions that will replace all
‘a’ values with an ‘A’, and b with a ‘B’. Write one that uses an if statement,
on that uses ifelse, and one that uses which. Run the function inside a
system.time() statement, and see which is the fastest.

61

Chapter 3 Applied Statistics in R

Exercise 3.3.1b

To find the row means of the first three columns of x2, you can use the command
apply(x2[,1:3],2,mean) But the mean function won’t work if you have NA values.
To test this, turn any value of x2$a that is less than .5 into an NA value, with an
statement like:

1 x2[x2 <.5] <- NA

Do this, then find the row sums of a, b, and c using apply, and a lambda (nameless)
function that ignores NA values.

3.4 Summary

This chapter reviewed basic programming logic available within R, including defining/us-
ing functions, conditional logic, iterating, looping and alternatives to functional program
structure.

R functions introduced in this chapter:

• function

• length

• lapply

• sapply

• for

• while

• repeat

• break

• if

• else

• switch

• which

• ifelse

62

Chapter 3 Applied Statistics in R

3.5 Solutions to Exercises

Exercise 3.1 Solution

Make a function that computes the min, median, and max of a data set x and returns
them as a list of three elements. Create some fake data from at least two different
distributions and test it out.

1 mmm <- function(x)

{

3 min <- min(x)

med <- median(x)

5 max <- max(x)

c(min ,med ,max)

7 }

9 ##See how these change when you have more samples:

mmm(1/runif (1000))

11 mmm(1/runif (100))

13 data <- runif (100) + 1/rnorm (100)

mmm(data)

Exercise 3.1 Solution

Create a logplot() function that plots log(y) versus x. Test it on a new y.

logplot <- function(x,y)

2 {

plot(x,log(y))

4 }

6 x <- runif (1000)

y1 <- exp(x * 6 + runif (1000))

8 y2 <- exp(x * 6 + runif (1000)) + runif (1000)*100

par(mfrow=c(1,2))

10 plot(x,y1)

logplot(x,y1)

12

plot(x,y2)

14 logplot(x,y2)

63

Chapter 3 Applied Statistics in R

Exercise 3.2.1 Solution

Write a function that will take as its first argument a data vector (e.g., something
produced by runif(1000)), and as its second argument a keyword which tells the
function whether to plot a histogram or a scatterplot.

myplot <- function(x,type="scatter")

2 {

if(type=="scatter")

4 {

##Plot a regular plot here

6 plot(x)

}else if(type=="histogram")

8 {

##Plot a histogram here

10 hist(x)

}else{

12 warning("Unable to create specified plot type")

}

14 }

16 myplot(x,"histogram")

myplot(x,"scatter")

64

Chapter 3 Applied Statistics in R

Exercise 3.3.1a Solution

Write a new mean function that does not return an error when given a factor. Rather,
it returns the modal (most common) value of that factor. Then use that function in
the lapply and sapply on x2.

1 a <- runif (100)

b <- runif (100)+a

3 c <- sample(LETTERS ,n=100, replace=T)

x2 <- data.frame(a=a,b=b,c=c)

5

newmean <- function(data)

7 {

if(is.factor(data))

9 {

tab <- table(data)

11 names(tab)[which.max(tab)]

} else {

13 return(mean(data))

}

15 }

17 newmean(x2)

Create a series of 1,000,000 letters of the alphabet. Write functions that will replace
all ‘a’ values with an ‘A’, and ‘b’ with a ‘B’. Write one that uses an if statement, one
that uses ifelse, and one that uses which. Run the function inside a system.time()

function, and see which is the fastest.

1 items <- sample(letters ,1000000 , replace=T)

f1 <- function(items)

3 {

for(i in 1: length(items))

5 {

if(items[i]=="a")

7 items[i] <- "A"

if(items[i] =="b")

9 items[i] <- "B"

}

11 return(items)

}

13 f2 <- function(items)

{

15 return (ifelse(items=="a","A",

ifelse(items=="b","B",items)))

17 }

19 f3 <- function(items)

{

21 items[which(items=="a")] <- "A"

items[which(items=="b")] <- "B"

23 return (items)

}

25 system.time(f1(items))

system.time(f2(items))

27 system.time(f3(items))

65

Chapter 3 Applied Statistics in R

Exercise 3.3.1b Solution

Find the row sums of x2$a, b, and c using apply, and a lambda (nameless) function
that ignores NA values.

1 x2[x2 <.5] <- NA

apply(x2[,1:3],2, function(v){sum(v,na.rm=T)})

66

Chapter 4

Graphics Basics

In this chapter, we will look at using some of the primitive graphics functions–some of which
we have already used a bit, to create more interesting graphical displays of data. This
chapter will focus on using the following built-in R graphics:

• plot A workhorse plotting function.

• points Overlay plotting.

• paste For combining text.

• matplot Plotting a matrix

• abline Plotting a line by slope/inter-
cept

• hist Histogram

• segments Plotting a line segment or
segments

• boxplot Box plot for visualizing distri-
bution

• image Visualize a matrix.

• barplot Height of columns

• text Plot text in x,y location(s)

This chapter does not provide a complete description of each function. Rather, it demon-
strates some of the ways each one can be used. You should consult the R help documenta-
tion for details about the arguments available for each graphing function. For each example
graphics function, we will discus when it should be used, when it should not, and ways to
customize it to help you understand your data better.

4.1 Cumulative Example: Plotting trials of a multi-trial
experiment

One of the great things about R graphics is that you can create your own custom plotting
function for your data. Once you customize the function on one condition, you can apply
it to all conditions and have identical graphs to compare. We have previously looked at
a number of components of plotting, including aggregating, filtering, looping, and simple
graphics functions. Our first graphics example will incorporate many of the skills learned
so far, to create a way of plotting a small subset of a larger data set. This type of graphic
has many uses, including initially looking at data to get a sense for what is going on, as well
as publication-ready graphics that give your paper or report a common graph and theme
throughout.

67

Chapter 4 Applied Statistics in R

4.1.1 The Experiment

. The data we have been reading in is from several trials of a ‘Pursuit Rotor’ task experi-
ment. (see http://sourceforge.net/apps/mediawiki/pebl/index.php?title=Pursuit_
Rotor). On each trial, the participant uses a mouse to follow the target. On every screen
refresh (usually about 60 times/second), the current mouse and target location are recorded,
as well as information regarding how far off-target the participant is, and whether the cursor
is on target. A screenshot is shown in Figure 4.1

Figure 4.1: Screenshot of the Pursuit Rotor task.

Goal: I want to create a function that will plot a single trial of the task in the data,
and then allow me to plot all the trials on a single page, and all participants in a single
document. We will start by trying to determine a sequence of commands that will achieve
this, when satisfied, we can put this in a function.

The data cane be read in from the provided data file:

dat2 <- read.csv("pooled -pursuitrotor.csv")

First, let’s look at the data frame to make sense of it.

1 head(dat2)

subnum trial steps timeNow timeElapsed targX targY mouseX mouseY ontarget

3 1 12887 1 0 17062 0 1213 540 1213 540 1

2 12887 1 1 17082 20 1212 544 1213 540 1

5 3 12887 1 2 17101 39 1212 548 1213 540 1

4 12887 1 3 17120 58 1212 552 1213 540 1

7 5 12887 1 4 17139 77 1212 556 1213 540 1

6 12887 1 5 17158 96 1212 560 1213 540 1

9 tdiff totaltime diff totaldev

1 0 0 0.00000 0.00000

68

http://sourceforge.net/apps/mediawiki/pebl/index.php?title=Pursuit_Rotor
http://sourceforge.net/apps/mediawiki/pebl/index.php?title=Pursuit_Rotor

Chapter 4 Applied Statistics in R

11 2 20 20 4.12311 4.12311

3 19 39 8.06226 12.18540

13 4 19 58 12.04160 24.22700

5 19 77 16.03120 40.25820

15 6 19 96 20.02500 60.28320

Notice that the first column indicates a participant code. The timeNow and timeElapsed
columns record a timer state, in ms, and so with recordings every 17 ms or so, that is about
60 recordings per second (in sync with the refresh rate of the screen). How many participants
do we have and how many observations per participant?

1 table(dat2$subnum)

3 12818 12837 12841 12861 12870 12887 12896 12916 12931 12938 12962 12963

3542 3939 3642 3907 3518 3697 3713 3673 3723 3478 3535 3424

The numbers 12818, 12837, etc indicate participant codes–there are 12 distinct participants
in this data set. Each participant has roughly 3500-4000 samples spread across trials. How
are these distributed across trials?

> table(dat2$subnum ,dat2$trial)
2

1 2 3 4

4 12818 896 898 872 876

12837 989 987 980 983

6 12841 901 920 930 891

12861 972 973 978 984

8 12870 895 881 887 855

12887 907 922 933 935

10 12896 930 959 936 888

12916 934 876 930 933

12 12931 933 917 935 938

12938 908 876 834 860

14 12962 875 892 936 832

12963 830 860 871 863

About 900 samples per trial. I’d like to isolate a single trial, which is thus going to be about
900 rows of the data frame.

1 tmp <- dat2[dat2$trial ==1 & dat2$subnum ==12818 ,]
dim(dat2)

3 dim(tmp)

See how tmp is 896 lines–it now consists of a single time series from a single trial, sampled
at roughly equal times. Let’s see how often and how regular. The tdiff variable records the
time between each sample, although we could compute that by hand if we wanted to (see
Figure 4.2).

1 table(tmp$tdiff)
0 16 17 19 20

3 1 292 559 43 1

69

Chapter 4 Applied Statistics in R

It looks like each record is about 16-17 ms apart. There are a few that are 19 apart and 1
that is 20, and 1 that is 0 (presumably the first recording). Thus, it is probably OK to treat
each recording as a regular time series. Looking at the time-differentials more carefully:

1 par(mfrow=c(1,3))

plot(tmp$timeElapsed , main= paste("Mean:" , round(mean(tmp$tdiff) ,3))
3 plot(tmp$tdiff)

hist(tmp$tdiff ,breaks =50,xlim=c(10 ,50))
5 abline(v=mean(tmp$tdiff))

The first plots absolute time in series. It looks like a straight line. The second plots the
diff. We see that the ’bad’ values occurred at the very beginning, which seems reasonable as
the computer started working. A histograph illustrates these delta values.

We can use the main title for easily displaying some statistics we compute. Here, the
mean tdiff is interesting. But mean(tmp$tdiff) has at least 10 digits displayed, so we can
round it off to 3 significant digits using the round function. Then, we can combine it with
a label using the paste function, which combines multiple text or text and numbers into
one character string. By default, it separates the elements you paste together with a space,
which you can change using the sep argument.

Figure 4.2: Timing of the Pursuit Rotor data. Each value shows the time between consecutive
samples.

●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●

0 200 400 600 800

0
50

00
10

00
0

15
00

0

Mean: 16.754

Index

tm
p$

tim
eE

la
ps

ed

●

●

●●●

●

●●●●●●●●●●●●●

●●●

●

●●●●

●●

●●

●

●

●

●●●●●

●●

●●●

●●

●●

●

●●

●

●

●

●●

●

●●●●●●

●●

●●●

●●

●●●●●●

●

●●

●●

●●●●

●

●●●

●

●

●●●

●

●

●●●

●

●●●

●●

●

●

●●●●

●

●

●

●●

●

●●

●

●●●

●

●

●

●●

●

●

●

●●●●

●

●

●

●●

●

●●●●●●

●●

●●

●●

●

●

●●●●

●

●

●

●●

●

●●●●●●

●●●

●●

●

●

●

●●●

●

●●

●

●●

●

●

●

●●●●

●

●

●

●●

●

●

●

●●●

●

●

●

●●●

●

●●●●●●

●●●

●●

●

●

●

●●●

●

●●

●

●●

●●

●●●●

●

●●

●

●●

●

●

●

●●●

●

●

●

●●

●

●●

●

●●●

●

●

●

●

●

●●

●

●●●

●

●●

●

●●●●●

●●

●●

●

●●

●

●

●

●●

●

●●●●●

●●●

●●●

●

●●●

●

●

●

●●

●

●●

●

●●●●●●

●

●

●

●

●●

●●●●●

●●

●

●

●●

●

●●●●●

●●

●

●

●●

●

●●●●●

●●●

●●●

●

●●●●●

●

●●

●

●

●●

●●●

●

●

●

●●

●

●●

●

●●●●●

●

●●

●●●

●●●●●●

●

●

●●

●

●

●●

●

●●

●

●●●●●●

●●

●●●●

●●●

●●

●

●

●

●●●

●

●●

●

●●

●

●●

●

●●●●●

●

●

●

●●●●●●●●

●●●●●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●

●

●●

●

●●●

●

●●

●

●

●

●●

●

●●●●●●

●●

●

●●

●●●●

●

●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●

●

●●

●

●●●

●

●●

●

●

●

●●●●●●●●

●

●

●

●●●

●

●

●

●●●

●●●●

●●●

●

●●

●

●

●

●●

●

●●●●●●●

●

●

●●●

●●●

●

●●

●

●●

●

●

●

●●●●●

●●

●●●●●●●

●●●

●

●

●●●

●●

●

●

●●●●

●

●●

●

●

●

●

●

●●●

●

●●●●

●●

●

●

●●●●●●

●

●●

●●

●●●●●●

●

●

●●●

●

●

●●●

●

●●●

●

●

●

●

●

●●●

●

●●●●●

●

●●●●

●

●●●●

●●●●

●●●●●●

●

●

●

●

●

●●●

●

●

●

●●●

●●●

●

●

●●●

●

●

●

●●●

●●

●●●●

●

●

●

●●

●

●

●

●●●●●●

●

●●

●

●

●

●●●●

●

●

●

●●●

●

●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●

●

●●●●●●●●

●●●

●

●

●●●

0 200 400 600 800

0
5

10
15

20

Index

tm
p$

td
iff

Histogram of tmp$tdiff

tmp$tdiff

F
re

qu
en

cy

0 5 10 15 20

0
10

0
20

0
30

0
40

0
50

0

Looking at the absolute time, it seem fairly consistent. But computing deltas between
observations, we see that it fluctuates between 16 and 17 ms.

Next, let’s do some initial plotting of the mouse coordinates. We can look at the x and
y coordinates of the target over time using matplot. This function takes a matrix of values
and plots each column as a separate series. Notice that matplot takes most of the same
arguments that plot takes. In the default plot, the vertical axis gets crowded and one of
the labels is removed automatically. We can rotate the direction of labels using the las=3

argument. We can make the plot a line plot by specifying type="l", and get rid of the
surrounding box with the bty="L" argument. Plus, add axis labels. A legend will help us
interpret what is going on. The result is shown in Figure 4.3

70

Chapter 4 Applied Statistics in R

1 matplot(cbind(tmp$targX ,tmp$targY),
type="l",bty="L",las=1,

3 xlab="Time step",ylab="Pixel location",

ylim=c(0 ,1500))

5 legend (550 ,1500 ,c("X position","Y position"),lty=1:2,col =1:2)

Figure 4.3: Target position over time in the Pursuit Rotor data.

0 200 400 600 800

0

500

1000

1500

Time step

P
ix

el
 lo

ca
tio

n

X position
Y position

The data are screen positions, which are coded from the upper left corner on a 800x600
screen, and so we transform the y coordinate. The results are shown in Figure ??.

The columns targx and targy specify the screen coordinates of the target (not the mouse)
at each time step. Let’s plot them against each other A screen will count pixels things from
the upper left, and R plots things from the lower right, so we subtract y from its mean to
reflect it vertically. We subtract the mean from x so we center it horizontally at 0, without
worrying about screen size:

1 xmid <- mean(tmp$targX) ## find the x center

ymid <- mean(tmp$targY) ## find they center

3 plot(tmp$targX -xmid ,ymid -tmp$targY ,pch=1,cex=.2,
xlim=c(-300 ,300),ylim=c(-300 ,300),

5 xlab="Horizontal pixel",ylab="Vertical pixel")

Now, plot the mouse locations as a connected points() graph (with type="l")
The mousex and mousey columns specify the mouse coordinates: Plot them to:

1 points(tmp$mouseX -xmid ,ymid -tmp$mouseY ,type="l",col="grey")

71

Chapter 4 Applied Statistics in R

This makes two paths, each one circles twice. Let’s connect the target to the mouse at
each step. This will be about 900 line segments, plotted with a single line of code:

We could have plotted each of these segments one at a time in a for loop, but by giving
it all the x/y starting and ending coordinates, it will plot all of the lines. This gives a nice
visualization. The ontarget data column indicates whether the mouse was on-target on any
sample. Let’s use this to draw red circles; I’ll do this with a for loop, checking each time,
but then show the one-liner. The results are shown in Figure 4.4.

1 for(i in 1:nrow(tmp))

{

3 if(tmp[i,]$ontarget)
{

5 points(tmp$mouseX[i]-xmid ,ymid -tmp$mouseY[i],col="red",cex =.3)
}else{

7 points(tmp$mouseX[i]-xmid ,ymid -tmp$mouseY[i],col="grey",cex =.3)
}

9 }

11 ##alternately:

points(tmp$mouseX -xmid ,ymid -tmp$mouseY ,
13 col=c("grey","red")[tmp$ontarget +1],cex =.3)

This is nice, but we wouldn’t want to repeat this code for every trial we want to plot. So
let’s put this inside a function:

1 plottrial <- function(tmp ,header="")

{

3 xmid <- mean(tmp$targX)
ymid <- mean(tmp$targY)

5 meanoffset <- round(mean(tmp$diff) ,2)
plot(tmp$targX -xmid ,ymid -tmp$targY ,pch=1,cex=.2,

7 xlim=c(-300 ,300),ylim=c(-300 ,300),

main=paste(header ,"\n","mean offset =", meanoffset),

9 xlab="Horizontal pixel",ylab="Vertical pixel")

11 #mousex , mousey specify the mouse coordinates: Plot them to:

points(tmp$mouseX -xmid ,ymid -tmp$mouseY ,type="l",col="grey")
13

segments(tmp$targX -xmid ,ymid -tmp$targY ,
15 tmp$mouseX -xmid ,ymid -tmp$mouseY ,col="grey")

17 ##I’ll the a faster points method than we did above:

points(tmp$mouseX -xmid ,ymid -tmp$mouseY ,
19 col=c("grey","red")[tmp$ontarget +1],cex =.3)

}

21

plottrial(tmp)

Now, we have a function that will plot a single trial. This can be handy for initially
looking at all the data on a single screen. How can we do this? First, let’s see if we can pull
out the individual trial numbers and iterate through them. We can try the levels function,
which will tell us the levels of a factor, and then later use those levels to select subsets.

for(i in levels(dat2$trial))
2 {

print(i)

4 }

72

Chapter 4 Applied Statistics in R

Figure 4.4: The samples when the pointer was on-target are shown in red.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●●
●

●●
●

●●
●●●

●●●●●●●●●●●●●
●●

●●
●●

●
●●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●
●

●
●

●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
● ●

●
● ●

●
● ●

● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ●

● ●
● ●

● ●
● ●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●●
●

●●
●

●●
●●●

●●●●●●●●●●●●●
●●

●●
●●

●●
●

●
●

●●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●

●
●

●

●
●

●
●

●
●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●
●

●
●

●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
● ●

●
● ●

●
● ●

● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ●

● ●
● ●

● ●
● ●

●
●

●
● ●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−300 −200 −100 0 100 200 300

−
30

0
−

20
0

−
10

0
0

10
0

20
0

30
0

Horizontal pixel

V
er

tic
al

 p
ix

el

●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●●
●

●
●

●
●

●

●

●

●
●

●

●

●

●

●●●●●●●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●
●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●●
●●

●●●●●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●
●
●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●●

●

●
●
●●●●●●●●●
●●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●
●

●
●

●

●

●

●
●
●●
●●●

●
●
●●
●●●
●●

●
● ●●

●
●

●

●
●

●

●
●

●
●

●
●

● ● ●●●●●●
●●●●●●●●●●●●●●●●

● ● ● ● ● ● ●● ● ● ● ● ●●●●●●● ●
●

●
●

● ●
●

●
●

●
●●

●
● ●

●
●● ●

●●
●

●
●

●
●

●
●

●
●

●
●

● ●
●●●●

●
●

●●●●
●

●
●

●
●

●

●

●

●

●

●

●

●
●
●
●
●
●
●

●

●
●
●

●●●●●●●●
●
●

●

●

●

●

●

●

●

●

●
●
●●
●
●

●

●
●
●

●

●

●

●

●

●

●
●

●
●
●

●
●

●
●

●
●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●●
●

●

●

●

●
●

●

●
●

●●●●
●

●

●
●

●

●

●
●

●
●

●
●

●●●●●●●●●●
●●●●●●●●●●●●●●●

●
●

●
●

●
●

●
●●

●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●
●

●

●
●

●
●

●
●

●
●

●●●
●

●
●

●

●
●

●●
●●●

●
●

●
●

●
●

●
●

●
●

●
●

●
●●

●
●●

●
●
●

●

●

●

●

●
●

●

●
●

●
●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●
●

●●
●●
●
●●
●●
●
●
●

●
●
●

●

●
●
●
●

●
●

●

●

●

●

●

●
●

●

●

●

●
●
●
●

●
●●
●●●●●●
●●

●●

●●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
● ●

●●●
●●

● ●
●

●●●
●

●
●

●
●

● ●
●

●● ●
● ● ●

● ● ● ● ● ●●●● ● ●● ● ● ● ● ●
● ●

● ● ●
● ●

●
● ●●●●●● ●●

●●●●● ●●●●●●●●
● ●

● ● ● ● ● ●
●

●
● ●●

●●●●●●
●

●

●

●
●

●
●

●
●
●●

●
●

●

●

●
●

●

●

●

●
●
●●

●
●
●●

●●
●●

●
●●

●
●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●●●●●●
●
●

●

This didn’t work–nothing printed. That is because trial wasn’t a factor:

> levels(dat2$trial)
2 NULL

We need to change the trial column into a factor using as.factor:

for(i in levels(as.factor(dat2$trial)))
2 {

print(i)

4 }

73

Chapter 4 Applied Statistics in R

[1] "1"

6 [1] "2"

[1] "3"

8 [1] "4"

Now it will work. There are 4 trials, so let’s plot them on a 2x2 grid. We will set up a
loop that plots each trial, and set the printing properties so that it will display one row and
two columns of plots:

par(mfrow=c(2,2))

2 for(i in levels(as.factor(sub1$trial)))
{

4

tmp <- sub1[sub1$trial==i,]
6 plottrial(tmp)

}

The results are shown in Figure 4.5. The file had just two trials, but if we had multiple
trials, or multiple participants, it would be easy to save these out to a single file and examine
each trial later, comparing it across conditions, participants, etc. Notice that we can tell
visually that the participant was on-target much more in the later trials than the first.

Figure 4.5: Four trials of the study, each plotted using the command encapsulated within a
function.

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●

●
●

●
●
●

●
●

●
●
●

●
●

●
●
●●

●
●

●●
●

●●
●●

●●
●●

●●●
●●●●

●●●
●●●●

●●
●●●

●●●
●

●●●
●●

●●
●

●
●●

●
●●

●
●

●
●

●
●

●
●

●
●
●

●
●

●
●
●

●
●
●

●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●

●
●
●
●●

●
●●

●
●●

●●
●●

●●
●
●●●

●●●
●●●

●●●●
●●

●●●●
●●

●●●
●●

●
●●

●
●●

●
●
●
●
●●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●

●
●

●
●

●
●

●
●

●
●

●●
●

●
●

●
●

●
●●

●
●

●●
●

●●
●●

●●●●
●●●●●●

●●●
●●

●●
●

●●
●

●●
●●

●●
●

●
●●

●
●

●
●●

●
●

●
●

●
●

●●
●

●
●

●
●
●

●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●

●
●
●●

●
●●

●●
●●

●●●●
●●●

●●●
●●●●

●●
●●

●●
●●

●
●●

●
●
●
●
●●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

−300 −100 100 300

−
30

0
−

10
0

10
0

30
0

 mean offset = 17.38

Horizontal pixel

V
er

tic
al

 p
ix

el

●●●●●●●●●●●●●●●●●●●●●
●

●
●

●

●
●
●
●
●●●●●●●●●●●●●
●

●
●

●
●

●
●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●●●
●●●●●●●●●●●●

●●
●

●●
●●

●●●
●●●●●

●●●●●●●
●●

●●
●●

●●●
●●

●●●
●●

●
●●

●●
●●

●
●

●
●

●
●
●●

●●
●
●●●
●●●
●●●●
●●●●●●●●●●

●●
●●
●
●
●
●
●
●
●
●
●
●
●●
●●●●●●●●●●

●●●●●
●●●●●

●●●
●●●●

●●
●●

●●
●●
●●●
●●
●●●

●●●●●
●●●●

●●●●●
●●●●●

●●●●●●●●●●●●
●●●●●●●● ● ● ●●●●●●●●●

●●● ● ●● ● ● ●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●

●
●

●
●●●●●●

●●●●
●
●●●●●●●●●●●●●●●●●●●

●●●●●●●●●
●
●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●

●●●
●●●●●

●●●
●●

●●●●●
●●

●●●
●●

●●●
●●

●●●
●●

●●●
●●

●●
●

●●
●●

●●
●●
●●

●●
●●
●●
●●
●●
●●
●
●●
●●
●●●
●●
●●
●
●●
●●
●
●●
●●
●●
●
●●
●●
●●●

●
●
●
●
●
●●
●●
●●●
●●●●●●
●●●●

●●●
●●
●●

●●●●
●●
●●●

●●●
●●●

●●●●
●●●●

●●
●●●●●●

●●●●●
●●●●

●●●●●●●● ●●●●●● ● ● ●●●
●●●●●●●●●●●●●●●●●●

●●●
●●●●●●●●●●●●●●●

●●
●
●
●●●●●
●●●●●●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●●

●
●

●●
●

●●
●●

●●
●●

●●●
●●●●●●

●●
●●●●●

●
●●

●●●
●

●●●
●●

●●
●●

●●
●

●●
●

●
●●

●
●
●

●
●

●
●

●
●

●
●

●
●

●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●
●
●
●
●
●
●●

●
●●

●
●●

●●
●●

●●
●●

●
●●●

●●●
●●●●

●●●●●●
●●

●●●
●●●

●●
●●

●●
●
●●

●
●●

●
●
●
●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●

●
●
●

●
●

●
●
●

●
●
●

●
●

●●
●

●
●●

●
●●

●●
●●

●●
●●●

●●●
●●●

●
●●●●

●●
●●●

●●
●

●●
●

●●
●

●
●

●
●●

●
●

●
●

●
●
●

●
●
●

●
●

●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●

●
●
●●

●
●●

●●
●●

●●●
●●●

●
●●●●●●●●

●●●
●●●

●●●
●●

●●
●
●●

●
●●

●
●
●●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

−300 −100 100 300

−
30

0
−

10
0

10
0

30
0

 mean offset = 23.47

Horizontal pixel

V
er

tic
al

 p
ix

el

●●●●●●●●●●●●●●●●●
●
●
●
●

●
●

●
●

●
●

●
●

●●●
●●●

●
●●●

●
●●

●
●

●
●

●
●

●
●●●

●
●

●
●●

●●●
●●
●
●●

●
●

●
●

●●
●

●
●●

●
●●

●●●
●●
●●
●●
●●
●●●●●

●●
●●
●●
●●
●●
●●
●

●
●
●
●
●●

●●
●●
●●●
●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●

●●
●●

●●●●
●●
●●●●

●●●
●●●●●

●●●●
●●●

●●
●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●
●
●
●
●
●
●

●
●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●

●
●

●
●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●

●●
●●

●●
●●

●●●
●

●
●

●
●

●
●●

●
●●

●●
●●
●●
●●●
●●●●●●
●●●●●●●●
●●●
●●
●●
●●
●
●●
●●
●
●
●●
●●
●●
●●
●●
●●
●●●
●●●●●
●●●●
●●
●●●
●●
●
●●
●●
●●
●
●
●●
●●
●●
●●
●●
●●●
●●●●
●●●
●●
●●
●●●

●
●●●●

●●
●●●●●●●

●●●●
●●●●●

●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●
●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●

●
●
●

●
●

●
●

●
●
●

●
●●

●
●
●

●●
●

●●
●

●●
●●

●●
●●●

●●●●
●●●

●●●●●
●●●

●●●
●●

●
●●●

●●
●●

●●
●

●●
●

●
●●

●
●

●
●

●
●

●●
●
●

●
●

●
●
●

●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●
●
●●

●
●●

●
●●

●●
●
●●

●●
●●●

●●
●●●

●●●●●
●●

●●●●●●
●●●

●●●
●●

●
●●

●●
●
●●

●
●
●
●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●

●
●

●
●

●
●

●
●
●

●
●

●
●

●●
●

●●
●

●●
●

●●
●●●

●●
●●●●●

●●
●●●●

●●●
●●●

●
●●●

●●
●●

●●
●●

●
●●

●
●

●●
●

●
●

●
●

●
●
●

●
●

●
●

●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●
●
●
●
●
●●

●
●●

●
●●

●●
●●

●●
●●

●
●●●

●●●
●●●●

●●●●●●
●●●

●●●●
●●●

●●
●●

●●
●
●●

●
●
●●

●
●
●
●
●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

−300 −100 100 300

−
30

0
−

10
0

10
0

30
0

 mean offset = 16.09

Horizontal pixel

V
er

tic
al

 p
ix

el

●●●●●●●●●●●●●●●
●●●●●

●
●

●
●
●
●●●
●●●●●●●●●●●●●

●●●●●●
●

●
●
●●●

●●●●
●●●

●●●
●●●●●●●

●●
●●●●

●●●
●●

●●●●●●
●●●●

●●
●●

●●
●●

●●
●●

●●
●●
●●

●●
●●
●●
●●
●●

●
●

●●
●●●
●●●
●●●
●●
●●
●●●
●●●
●●

●●
●●●
●●
●
●
●
●●
●●
●●
●●
●●●
●●
●●●
●●●
●●
●
●●
●●
●●
●●
●●
●●
●
●
●●
●●
●●
●●
●●●●

●●●●●
●●●●●

●●●●●●●●●
●●●●

●●●
●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●

●●●●●●●●●●●●●●●●● ●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●
●
●
●

●●
●
●●●

●●●●
●●●

●●●
●●●

●●●●
●●

●●
●●

●●
●●●●

●●●●
●●●

●●
●●

●
●

●
●

●
●

●●
●●

●●●
●●●●

●●●
●●●

●●
●●
●●

●●●
●●
●●
●●
●●
●●
●●
●●
●
●
●
●
●
●●
●●
●●
●
●●
●●
●●●●
●●●●●●●●●

●●●●●●
●●

●
●
●
●
●
●

●
●●●●

●●
●●●●●

●●●●
●●●●

●●●
●●●

●●
●●

●●●●●
●●●

●●●●●●●●●●●●●●●●● ● ●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●●●●●●●●●●●●●●●●●●
●●●●●

●
●●●●●●●●●●●●●●●●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●

●
●

●
●

●
●

●
●

●
●●

●
●

●
●●

●
●●

●
●●

●●
●●

●●●
●●●

●●●
●●●●●●●●

●●●●
●●●

●●
●

●●●
●●

●●
●●

●
●●

●
●●

●
●

●
●●

●
●

●
●
●

●
●

●
●

●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●

●
●
●●

●
●●

●●
●●

●●
●●

●
●●●

●●●
●●●

●●●●
●●

●●●●●●
●●●

●●
●●

●●
●●

●
●●

●
●
●●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●●

●
●

●●
●

●
●●

●●
●●●

●●
●●●●●

●●
●●●●●●

●●
●●●●

●
●●●

●●
●●

●●
●●

●
●●

●
●●

●
●
●

●
●

●●
●

●
●

●
●

●
●

●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●

●
●
●●

●
●●

●●
●●

●●
●●

●
●●●

●●●
●●●

●●●●●
●●

●●●●
●●●

●●
●●

●
●●

●
●●

●
●
●●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

−300 −100 100 300

−
30

0
−

10
0

10
0

30
0

 mean offset = 15.81

Horizontal pixel

V
er

tic
al

 p
ix

el

●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●
●●●●●●●●●●●●

●
●

●
●●●●●●●●●●●●●

●●
●

●
●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●●●●●●●●●●●●

●●●
●●●●●●●

●●●
●●●●

●●●
●●●

●●
●●

●●●
●●

●
●

●●
●●

●
●●
●●

●●
●●
●●

●
●●●

●●
●●

●●
●●
●●
●●
●●
●
●●
●
●
●
●
●
●
●●
●●
●●
●●
●●●
●●●
●●
●●
●●●●
●●
●●●
●●●

●●
●●
●●
●●
●
●
●
●●
●●
●●

●●
●●●
●●●●

●●●●●
●●●●●●

●●●●
●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ● ● ●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●

●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●
●
●
●
●
●●
●
●●●●●●

●●●
●●

●●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●●

●●
●●

●●●
●●

●●●
●●
●●

●●
●●
●●

●●
●●●
●●
●●
●●
●●
●
●
●●
●●
●●
●●
●●
●●
●●
●●
●●●
●●
●●
●●
●●
●●
●●

●
●●●

●●
●●
●●●
●●●●
●●
●●

●●
●●
●●

●●●
●●

●●●
●●
●●

●●
●●●
●●

●●
●●●●

●●●●●
●●●●●●●●●●●●● ●●●●●●●●●●●● ●●

●
●

●
●
●●
●
●
●
●
●
●●

●
●
●

74

Chapter 4 Applied Statistics in R

Finally, maybe I want to look at an entire set of participants. Now, I can just loop
through each participant, followed by each trial. Using the pdf() command will place plot
on a new page of a pdf document, or you can just have them output to a .docx file via
RMarkdown.

1 pdf("pr-experiment.pdf",width=7,height =8)

for(sub in levels(as.factor(dat2$subnum)))
3 {

par(mfrow=c(2,2))

5 tmp <- dat2[dat2$subnum ==sub ,]
for(trial in levels(as.factor(tmp$trial)))

7 {

print(paste("plotting subject:", sub , " trial: ", trial))

9 tmp2 <- tmp[tmp$trial==trial ,]
plottrial(tmp2 ,header=paste("plotting subject:", sub , " trial: ", trial))

11 }

}

13 dev.off()

A file named ’pr-experiment.pdf’ should appear in your working directory that you can open
and examine in detail.

The custom graphing function we created here is targetted to this specific experiment
and data type. When I get a new data set that has a within-participant design like this
(i.e., each participant completes the entire set of conditions) , I will almost always write a
function like this that attempts to examine the main manipulations in the study for each
participant. This way, I get a sense of how systematic the effect is across people, if there are
any problems in the data, and so on, before doing any statistical tests.

4.1.2 Summary

In this section, we covered creating a custom graphic that you could use repeatedly on a set
of data. Sometimes, a function already exists that does what you want, or that you could
customize slightly to do what you need. We will cover some of these next.

Exercise 4.1.2

• Remove the x and y labels from the plot by setting xlab and ylab

• Remove the x and y axes using xaxt/yaxt argument

• Change the box type using the bty argument

• Set the main title after you create the plot so that it tells which trial

4.2 Histograms

Histograms are way to visualize a distribution of data–how many observations fall into dif-
ferent bins. The hist() function will create a histogram, and the main argument used is
usually breaks. If breaks is a number, it will try to divide the data range into equal-sized

75

Chapter 4 Applied Statistics in R

bins with that many breaks between bins. The documentation says that this is a suggestion
only–it will not guarantee exactly that many breaks, and if you want more control, you
should compute the breaks yourself and feed them in as a vector of breakpoints. If breaks is
a vector, it will use the values given as breaks–even if those breaks are not equal-sized. How-
ever, hist() will produce an error message if your hand-coded breakpoints do not bracket
the data. That is, the smallest break must be smaller than the smallest data value, and the
largest break must be larger than the largest data value. If we stay with the pursuit rotor
data, we can get a mean offset by trial and subject:

1 pr.agg <- aggregate(dat2$diff ,list(dat2$subnum ,dat2$trial),mean)

3 par(mfrow=c(2,2))

hist(pr.agg$x,xlab="Mean deviation")

5 hist(pr.agg$x,xlab= "Mean deviation", col="navy",breaks =20)

hist(pr.agg$x,xlab= "Mean deviation", col="red",breaks=c(0:40))

7

##plots density instead of frequency:

9 hist(pr.agg$x,xlab= "Mean deviation",

col="darkgreen",breaks=c(0 ,10:20 ,25 ,30 ,40),freq=F)

Figure 4.6: Four alternatives for histograms of pursuit rotor data.

Histogram of pr.agg$x

Mean deviation

F
re

qu
en

cy

10 15 20 25 30 35

0
5

10
15

20
25

Histogram of pr.agg$x

Mean deviation

F
re

qu
en

cy

10 15 20 25 30

0
2

4
6

8

Histogram of pr.agg$x

Mean deviation

F
re

qu
en

cy

0 10 20 30 40

0
2

4
6

8

Histogram of pr.agg$x

Mean deviation

D
en

si
ty

0 10 20 30 40

0.
00

0.
05

0.
10

0.
15

Histograms also return a data structure containing the information that was computed.
You can even turn the plotting off and just extract these values if you want to make your
own. For example:

h1 <- hist(pr.agg$x,breaks =20,plot=F)

2 print(h1)

76

Chapter 4 Applied Statistics in R

Overall, histograms are a nice way of examining the distribution of values. This can be
critical in understanding which type of test or transformation to apply, and also may give
you an idea about why certain things are happening.

Exercise 4.2

Error values like diff are often skewed, because they cannot be smaller than zero,
they are difficult to make smaller once they are small, but they can get very large.
Transform diff to its natural logarithm using log(), then make two histograms side-
by-side (using par(mfrow=c(1,2))) that have a gold filled color, one with raw diff
scores and one with the transformed diff scores. Make the histogram filled with gold
color, and specify the breaks argument to most clearly see the distributions.

4.3 Box-and-whisker plots

A handy plotting function that helps you see the distribution of a dependent variable over a
number of independent variables is called the box and whisker plot, made with the boxplot
command. Rather than looking at each bin, this will visualize the middle, some aspect of the
main body of the data (like the inter-quartile range), and lines indicating something close
to the maximum and minumum of the data.

The boxplot in R is not well documented, and many aspects of the size of the box and
whiskers can be customized. The center line is the median, and the boxes indicate the inter-
quartile range–the 25th and 75th percentiles. The range parameter defaults to 1.5, which
controls the extent to which the whiskers extend–by default, to the most extreme data point
that does not exceed 1.5 times the inter-quartile range from the box. Any points outside
this range are plotted as individual points indicating possible outlier.

We will make one based on the OrchardSprays data which is built-in to R. The boxplot
command uses the symbol to indicate the factors by which the IV should be plotted.

The following example (shown in the left panel of Figure 4.7) makes a boxplot of the count
variable over the five levels of spray. Boxplots show the median value, the interquartile range
using a box, and ± 2 inter-quartile ranges as whiskers. Any values outside these are plotted
explicitly, to show potential outliers. I’ve overlaid two boxplots; one standard one in grey,
and another blue one that depicts a secondary measure of spread. Presumably, count is a
mortality rate for insects. Which ones are the best? Which ones worst?

77

Chapter 4 Applied Statistics in R

boxplot(InsectSprays$count~InsectSprays$spray)
2

##simpler to specify a data frame and refer to columns:

4 boxplot(count ~ spray , data = InsectSprays ,

col = "lightgray", xlab="Spray treatment",

6 ylab="Mortality count")

#This will add a notch layer.

8 boxplot(count ~ spray , data = InsectSprays ,

notch = TRUE , add = TRUE , col = "blue")

The notch is used as a crude difference test–if notches don’t overlap, this indicates that
the means are likely to differ statistically.

Figure 4.7: Two boxplots, for the insectSprays and OrchardSprays data sets.

●

●

A B C D E F

0
5

10
15

20
25

Spray treatment

M
or

ta
lit

y
co

un
t

●

●

A B C D E F

0
5

10
15

20
25

●

●

●

A B C D E F G H

0
20

40
60

80
10

0
12

0

Treatment

O
bs

er
ve

d
D

ec
re

as
e

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Another boxplot is also shown in the right panel of Figure 4.7. Notice how we can easily
overplot the actual values, to provide additional information when appropriate.

1 boxplot(decrease ~ treatment , data = OrchardSprays ,

col = "darkgreen",xlab="Treatment",ylab="Observed Decrease")

3

points(OrchardSprays$treatment ,OrchardSprays$decrease ,cex =.5)

4.3.1 Advanced boxplots

Boxplots can take two IVs. The following example does not show much, but its syntax is
correct. It plots treatment by rowpos, which will contain only one observation per cell. To
make a boxplot, you should really have a minimum of ten points–ideally more.

boxplot(decrease~treatment+rowpos ,data=OrchardSprays)

In addition to the syntax using the s̃ymbol, boxplot will work with a data frame, plotting
each column. If your columns are not on the same scale, it will still plot all the boxes on
the same scale. See Figure 4.8–notice how in the plot on the right, the range is compressed
visually and you can’t tell what is going on. You’d be better off making separate boxplots
here.

78

Chapter 4 Applied Statistics in R

1 ##boxplot also works with a data.frame , plotting each column.

mallsales <-data.frame(Maurices =1000*exp(runif (365)),

3 JCPenney =2000*exp(runif (365)),

Sears = 3000*exp(runif (365)))

5 boxplot(mallsales ,las=3,col=c("red","orange","yellow"))

7 birthdate <- round (1950 + runif (100)*40)

tenure <- (2010- birthdate - 20) - runif (100)* 10

9 boxplot(data.frame(birthdate ,tenure),

main="Age and years worked\n at ACME corporation",

11 bty="n", cex.main =.8)

Figure 4.8: Example boxplots made with a data frame. Distinct variables on different ranges
will still bo plotted on the same range (right panel), even if the results are not helpful.

Maurices JCPenney Sears

10
00

30
00

50
00

70
00

birthdate tenure

0
50

0
10

00
15

00
20

00

Age and years worked at ACME corporation

Boxplots can be nice to give a quick look at the data, but they often hide detail. First
of all, if you only have a few data points, the boxplot can hide this fact and make you think
you have a much more systematic distribution than you really do. Also, skewness can be
hidden, especially for distributions with long tails, which may get plotted as outliers. You
may consider plotting raw data, or histograms instead. As an alternative, the violinplot
provides a vertical histogram that is like a boxplot but better represents the shape of the
distribution.

4.4 image plots

An image() plot can be useful for visualizing spatial data, or for looking at correlation
matrices, or simple bitmaps. It takes as an argument a matrix (not a data frame), and so
it will return an error message if you try to make an image from a data frame. You may
need to convert a data frame to a matrix using as.matrix(data), and the values need to be

79

Chapter 4 Applied Statistics in R

numeric. An image() plot simply makes a grid from the matrix, with the color dependent on
each value of the matrix. One word of caution: a matrix is plotted from the lower left-hand
corner of the image. The first row of the matrix is the bottom row of the image. Be careful
when labeling the axes so that you get this right.

The orchard spray example is perfect for the image plot. We have observations at each
point in an 8x8 grid. To convert the tagged data to a matrix, we can use the tapply function.

1 layout <- tapply(OrchardSprays$decrease ,
list(OrchardSprays$rowpos ,OrchardSprays$colpos),mean)

3 image (1:8 ,1:8 ,layout ,xlab="Row",ylab="Column")

text(OrchardSprays$rowpos ,OrchardSprays$colpos ,OrchardSprays$decrease)

Figure 4.9: Effects of different Orchard sprays based on the physical layout of the specimens.
8 treatments were counterbalanced over each row and column.

2 4 6 8

2
4

6
8

Row

C
ol

um
n

57 95 8 69 92 90 15 2

84 6 127 36 51 2 69 71

87 72 5 39 22 16 72 4

130 4 114 9 20 24 10 51

43 28 60 5 17 7 81 71

12 29 44 77 4 27 47 76

8 72 13 57 4 81 20 61

80 114 39 14 86 55 3 19

We can create a matrix by hand as well:

data <- matrix(c(8,1,1,1,1,1,8,

2 1,0,0,0,0,0,1,

1,0,3,3,3,0,1,

4 1,0,0,0,0,0,1,

1,0,0,4,0,0,1,

6 1,0,0,0,0,0,1,

1,0,5,0,5,0,1,

8 1,0,0,0,0,0,1,

8,1,1,1,1,1,8) ,7)

10 image(data ,xlab="",ylab="")

Another use for image plots is to visualize a correlation matrix. Rows or columns that
are highly correlated will brighter (whiter) than those uncorrelated. For example, consider
the iris data set, which involves three main groups of species (see Figure 4.11).

data(iris)

2 cor(iris [,1:4])

image(cor(t(iris [,1:4])),

4 main="Correlation map of iris data")

80

Chapter 4 Applied Statistics in R

Figure 4.10: Image created with a matrix command.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 4.11: Using image to visualize the correlation of a set of irises.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Correlation map of iris data

Notice that there the first group (the first 1/3 of the rows or columns; the bottom left
corner of the graph) is dissimilar from the others, but the second and third groups are
somewhat similar. This correlation plot can be used to help cluster groups and identify
similar participants or stimuli.

Yet another use is to create a 2-dimensional histogram. We will use this to visualize the
density of a bivariate normal distribution. To do this, we take our raw data, and create bins
so that we can count how many observations fall into each bin. A simple way of binning is to

81

Chapter 4 Applied Statistics in R

use ceiling(), which will round up to the next highest number (this will be a little better
than round, because the boundaries of each bin will be at the whole number). We could bin
into larger bins as well. Once we create the bins, then just create a contingency table using
table() and plot the resulting count matrix. For extra clarity, we can plot the raw data on
top of the image plot.

##Create a random bivariate normal with correlation between x and y

2 x <- rnorm (500 ,4 ,1.5)

y <- rnorm (500 ,2 ,1.5) + x*.2

4

par(mfrow=c(1,2))

6 plot(x,y)

8 ##Create a 2-D histogram with 1-wide cell grids.

txy <- table(ceiling(x),ceiling(y))

10

image(as.numeric(rownames(txy)) -.5,

12 as.numeric(colnames(txy)) -.5,txy ,xlab="X value",ylab="Y value")

14 points(x,y,col="yellow",pch=".",cex=3)

Figure 4.12: Image created showing density of bivariate normal.

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

0 2 4 6 8

−
2

0
2

4
6

x

y

0 2 4 6 8

−
2

0
2

4
6

X value

Y
 v

al
ue

Exercise 4.4

Add gridlines to an image plot using the segments command.

82

Chapter 4 Applied Statistics in R

4.5 Barcharts/Barplots

Another common plot function is the barchart or a barplot. These are useful especially when
you have a data type that is on a scale where the 0 value matters, because the height of the
bar represents the size of the value. Most people recommend only using bar charts when
your independent variable is categorical, but that advice is often violated. A simple bar
chart is available the plot function, and type="h", but more control is available with the
barplot command:

barplot (1:10)

2 plot (1:10 , type="h",lwd=3)

Figure 4.13: Simple bar chart examples.

0
2

4
6

8
10

2 4 6 8 10

2
4

6
8

10

Index

1:
10

We can make a number of improvements, by adding labels to the axis, changing colors,
and using las to change the orientation of axis labels, or try a horizontal barplot. Some
examples are:

par(mfrow=c(2,2))

2 barplot(c(1,11,4,5),names=c("one","three","five","eight"))

barplot(c(1,11,4),names=c("one","three","five"),las =1)

4 #barplot(c(1,11,4),names=c("one","three","five"),las =2)

xs <- barplot(c(1,11,4),names=c("one","three","five"),

6 col=c("red","green","black"),las=2, lwd =3)

text(xs ,c(9,9,9),c("A","B","C"))

8 barplot(c(1,11,4),names=c("one","three","five"),

col=c("red","green","black"),las=1, lwd=3,horiz=T)

If you have a bar chart with negative values, it will also work, but produce a ‘hanging’
chart. When the values are close to 0, even if they are both positive and negative, everything
will plot fine. You can also use the axis command to relabel your vertical axis so that negative
values are labeled as positives, as shown in Figure 4.15.

83

Chapter 4 Applied Statistics in R

Figure 4.14: More bar chart examples.

one three five eight

0
2

4
6

8
10

one three five

0

2

4

6

8

10

on
e

th
re

e

fiv
e

0

2

4

6

8

10

A B C

one

three

five

0 2 4 6 8 10

1 par(mfrow=c(1,3))

barplot (-5:5,names=LETTERS [1:11])

3 barplot (-5:-10,name=LETTERS [5:10])

barplot (-5:-10,name=LETTERS [5:10] , yaxt="n")

5 axis (2 ,0: -10 ,0:10)

Figure 4.15: Hanging bar chart examples, with the bars dropping from the top.

A B C D E F G H I J K

−
4

−
2

0
2

4

E F G H I J

−
10

−
8

−
6

−
4

−
2

0

E F G H I J

10
9

8
7

6
5

4
3

2
1

0

When your range of values is small and differs a lot from 0, barplots don’t work well. For
example, a barplot of the numbers 1000 to 1010 show up as identical. This might be a good
reason to avoid a barplot, because the bar implies that the magnitude from 0 matters a lot.
Maybe the Figure is showing you that the small differences is sort of not relevant. However,

84

Chapter 4 Applied Statistics in R

you might consider zooming in the vertical range. For example, suppose this is elevation
above sea level. Relative large absolute differences may be dwarfed by the baseline elevation
difference from sea level, so it could make sense truncating the bottom of the y axis using a
custom ylim argument. However, this does not usually turn out well, as in the center panel
of figure 4.16. The xpd argument fixes this bleed-over, although you have to be careful that
you are not deliberately misleading the reader–in many cases, the difference between 1009
and 1010 might not matter (e.g., average time in ms); whereas in other cases it might (year
of an important historical event).

1 par(mfrow=c(1,3))

barplot (1000:1010)

3 barplot (1000:1010 , ylim=c(1000 ,1010)) ##ugh

barplot (1000:1010 , ylim=c(999 ,1010),names =1000:1010 ,

5 col=c("orange","black"),xpd=F) ## chops off , but might be OK

Figure 4.16: Bar chart examples, truncating the bottom of the graph.

0
20

0
40

0
60

0
80

0
10

00

10
00

10
02

10
04

10
06

10
08

10
10

1000 1002 1004 1006 1008 1010

10
00

10
02

10
04

10
06

10
08

10
10

4.6 Barcharts with multiple series

Barcharts work well to compare values across multiple series. You can give the barchart a
matrix of values, and it will create separate series.

One way to use this is if you a set of survey questions with common answers. Suppose
you have a number of non-scalar survey questions with answers a through d–in which there
is not a correct answer, and thus ‘mean’ does not mean anything. Instead, you might want
to show the distribution of responses for each question. The following shows a five-item
multiple-choice test.

1 set.seed (100)

data <- data.frame(q1=sample(letters [1:5] ,100 , replace=T,

3 prob=c(1,1,3,2,5)),

q2=sample(letters [1:5] ,100 , replace=T,prob=c(3,1,3,2,1)),

5 q3=sample(letters [1:5] ,100 , replace=T,prob=c(1,5,1,2,1)),

q4=sample(letters [1:5] ,100 , replace=T,prob=c(1,2,8,2,2)),

85

Chapter 4 Applied Statistics in R

Figure 4.17: Two bar plots representing five-option survey questions horizontally.

Question 1

Question 2

Question 3

Question 4

Question 5

Proportion of each response

0 20 40 60 80 100

Question 1

Question 2

Question 3

Question 4

Question 5

Proportion of each response

0 20 40 60 80 100

7 q5=sample(letters [1:5] ,100 , replace=T,prob=c(1,5,2,4,3)))

9 datatable <-apply(data ,2,table)

> datatable

11 q1 q2 q3 q4 q5

a 7 33 10 10 9

13 b 9 12 49 18 31

c 28 26 14 55 14

15 d 17 19 20 11 28

e 39 10 7 6 18

17

19

par(mar=c(5,18,1,2)) ##change margins

21 barplot(datatable ,names=paste("Question" ,1:5),

col=1:5, horiz=T,las=1,

23 xlab="Proportion of each response",

cex.names =.5)

You can see that this created a stacked barplot. Stacked barplots imply that the ab-
solute number of observations in each column don’t really matter or are the same. This
seems appropriate for a test like this, but what if you were plotting ethnicity breakdown by
state. Looking at just five states for convenience, (see https://www.ojjdp.gov/ojstatbb/
ezacjrp/asp/State_Race.asp), we can examine “Juvenile residential placements” by state:

juvy <- read.table(text="State White Black Hispanic Native Asian Other

2 Alabama 300 507 27 0 3 9

Alaska 78 30 3 75 3 21

4 Arizona 237 114 255 54 9 51

Arkansas 198 315 33 0 6 3

6 California 900 1863 3729 42 138 54",header=T)

8 cols=c("darkgreen","bisque","navy","red","violet","orange")

juvymat <- as.matrix(juvy[,-1])

10 rownames(juvymat) <- juvy[,1]

86

https://www.ojjdp.gov/ojstatbb/ezacjrp/asp/State_Race.asp
https://www.ojjdp.gov/ojstatbb/ezacjrp/asp/State_Race.asp

Chapter 4 Applied Statistics in R

12 ##normalize within each state.

juvymat.normed <- juvymat/rowSums(juvymat)*100

14

par(mfrow=c(1,2),mar=c(8,5,3,0))

16

barplot(t(juvymat),las=3,legend=T,

18 args.legend=list(x=4,bty="n"),

ylab="Number of residents",

20 col=cols , main="Juvenile Residential Placements")

22

barplot(t(juvymat.normed),las=3,legend=F,

24 ylab="Percentage of residents",

col=cols , main="Juvenile Residential Placements")

Here, the stacked bar on the left of Figure ?? illustrates both the differential population
across state and the relative size of the sub-population within each state. The stacked bar
will not normalize on its own–but dividing the matrix by its rowsums will easily create this.

Sometimes you want a mini bar plot for each column (or row) of your matrix. the
beside=T argument will do this. You need to be careful about rows versus columns though.
If you want the opposite grouping, you can plot the transpose of a matrix using t(). These
are shown in the left to panels of Figure 4.18.

1 barplot(datatable ,col=1:5, beside=T)

barplot(t(datatable),beside=T,col =1:5)

3 barplot(datatable ,col=1:5, beside=F)

Figure 4.18: Alternates for plotting survey questions. Each plot represents the same data,
either by row or by column.

q1 q2 q3 q4 q5

0
10

20
30

40
50

a b c d e

0
10

20
30

40
50

q1 q2 q3 q4 q5

0
20

40
60

80
10

0

Question 1

Question 2

Question 3

Question 4

Question 5

Proportion of each response

0 20 40 60 80 100

87

Chapter 4 Applied Statistics in R

These first barplots are fine, but they hide the fact that the questions add up to the
same number. If we use beside=F (the default), a stacked barplot will be produced, and it
will show the relative proportion of each answer. Also, it is more compact. But it could be
difficult to read the question, which is why a horizontal plot might be better (lower right
panel). Here, you might need more room on the left margin, if you want to add the entire
text of the question. Use the following command to control this. Also, you could use mtext
to add additional text in the margin.

1 par(mar=c(5,18,1,2))

barplot(datatable ,names=paste("Question" ,1:5),

3 col=1:5, horiz=T,las=1,

xlab="Proportion of each response")

Overall, bar charts permit plotting by multiple categorical variables, and usually are best
when the absolute difference from 0 is meaningful. Truuncating the y axis is possible in other
cases, but can be misleading.

Exercise 4.6

• For the OrchardSprays data set, compute using tapply the average effect of each
treatment, each row, and each column position.

• Plot average decrease by each of these variables, on a single 1x3 plot.

• Use tapply to compute the average effect of each treatment x colpos and treat-
ment x rowpos.

• Make two stacked barplots with treatment as the main axis, and either row or
column position as the division within each bar (use the matrix just created)

• Make two stacked barplots with row or column position as the main axis, and
treatment as the division within each bar. Use the same matrix you just created.

• Look across the 7 plots you created and describe the relative importance of the
spray, versus the row and column position in the orchard grid.

88

Chapter 4 Applied Statistics in R

4.7 Answers to exercises

Exercise 4.1.2 Solution

• Remove the x and y labels from the plot by setting xlab and ylab

• Remove the x and y axes using xaxt/yaxt argument

• Change the box type using the bty argument

• Set the main title after you create the plot so that it tells which trial

2 ## To find out about the parameter settings for plots , try help(par)

##

4

plottrial <- function(tmp ,header="")

6 {

xmid <- mean(tmp$targX)
8 ymid <- mean(tmp$targY)

10 meanoffset <- round(mean(tmp$diff) ,2)
plot(tmp$targX -xmid ,ymid -tmp$targY ,pch=1,cex=.2,

12 xlim=c(-300 ,300),ylim=c(-300 ,300),

main=paste(header ,"\n","mean offset =", meanoffset),

14 xlab="",ylab="",

xaxt="n",yaxt="n",

16 bty="n")

18 #mousex , mousey specify the mouse coordinates: Plot them to:

points(tmp$mouseX -xmid ,ymid -tmp$mouseY ,type="l",col="grey")
20

segments(tmp$targX -xmid ,ymid -tmp$targY ,tmp$mouseX -xmid ,ymid -tmp$mouseY
,col="grey")

22

##I’ll use a faster points method than we did above:

24 points(tmp$mouseX -xmid ,ymid -tmp$mouseY ,col=c("grey","red")[tmp$
ontarget +1],cex =.3)

26

}

28 dat2 <- read.csv("pooled -pursuitrotor.csv")

sub1 <- dat2[dat2$subnum ==12887 ,]
30 par(mfrow=c(2,2))

for(i in levels(as.factor(sub1$trial)))
32 {

trial <- i

34 tmp <- sub1[sub1$trial==i,]
plottrial(tmp ,header=paste("Trial",i))

36 }

89

Chapter 4 Applied Statistics in R

Exercise 4.2 Solution

Error values like diff are often skewed, because they cannot be smaller than zero,
they are difficult to make smaller once they are small, but they can get very large.
Transform diff to its natural logarithm using log(), then make two histograms side-
by-side (using par(mfrow=c(1,2))) that have a gold filled color, one with raw diff
scores and one with the transformed diff sores. Make the histogram filled with gold
color, and specify the breaks argument to most clearly see the distributions.

1 par(mfrow=c(1,2))

hist(dat2$diff ,breaks =50,col="gold")
3 hist(log(dat2$diff),breaks =50,col="gold")

Exercise 4.4 Solution

Add gridlines to an image plot using the segments command.

1 tmpx <- rnorm (10000 , mean=8,sd=1.7)

tmpy <- tmpx/2 + 3 + rnorm (10000 , mean=3,sd=.7)

3 grid <- table(round(tmpx),round(tmpy))

image (1: nrow(grid) ,1:ncol(grid),grid ,col=grey (1:100/100))

5 segments (1:20 ,0 ,1:20 ,10 , col="red")

segments (0 ,1:20 ,20 ,1:20 , col="red")

7

##this doesn ’t quite look right. The gridlines are down the center of

each cell. Adjust by.5

9 image (1: nrow(grid) ,1:ncol(grid),grid ,col=grey (1:100/100))

segments (1:20+.5 ,0 ,1:20+.5 ,15 , col="red")

11 segments (0 ,1:20+.5 ,20 ,1:20+.5 , col="red")

90

Chapter 4 Applied Statistics in R

Exercise 4.6 Solution

• For the OrchardSprays data set, compute using tapply the average effect of each
treatment, each row, and each column position.

• Plot average decrease by each of these variables, on a single 1x3 plot.

• Use tapply to compute the average effect of each treatment x colpos and treat-
ment x rowpos.

• Make two stacked barplots with treatment as the main axis, and either row or
column position as the division within each bar (use the matrix just created)

• Make two stacked barplots with row or column position as the main axis, and
treatment as the division within each bar. Use the same matrix you just created.

• Look across the 7 plots you created and describe the relative importance of the
spray, versus the row and column position in the orchard grid.

1 par(mfrow=c(1,3))

barplot(tapply(OrchardSprays$decrease ,
3 list(OrchardSprays$treatment),mean),

main="Decrease by treatment",

5 col =1:8)

barplot(tapply(OrchardSprays$decrease ,
7 list(OrchardSprays$rowpos),mean),

main="Decrease by Row position",

9 col =1:8)

barplot(tapply(OrchardSprays$decrease ,
11 list(OrchardSprays$colpos),mean),

main="Decrease by Column position",

13 col =1:8)

15 print(tapply(OrchardSprays$decrease ,
list(OrchardSprays$rowpos ,OrchardSprays$treatment),mean))

17

tab2r <- tapply(OrchardSprays$decrease ,
19 list(OrchardSprays$rowpos ,OrchardSprays$treatment),mean)

21 tab2c <- tapply(OrchardSprays$decrease ,
list(OrchardSprays$colpos ,OrchardSprays$treatment),mean)

23

par(mfrow=c(2,2))

25 ##first by treatment , then by row/column

barplot(tab2r ,col=1:8, main="Treatment")

27 barplot(tab2c ,col=1:8, main="Treatment")

29 ##first by row/column , then by treatment:

barplot(t(tab2r),col=1:8, main="Row")

31 barplot(t(tab2c),col=1:8, main="Column")

91

Chapter 4 Applied Statistics in R

92

Chapter 5

Advanced Graphics Topics

The previous chapter examined how to use some of the most common built-in graphics
functions in R, and how to adapt and combine these to make custom graphics. The present
chapter expands on this, covering some additional less common graphics functions and plots
and functions to add adornments to graphics that are useful.

• pie Avoid at all costs.

• dotchart Preferred way of displaying
categorical distributions.

• error bars

• confidence intervals

• Advanced use of the boxplot

• Use of bitmapped images

• Violin Plots

Libraries used in this chapter:

• gplots

• plotrix

• jpeg

• pixmap

• vioplot

• violinmplot

5.1 Pie charts: A Bad Idea

Pie charts have been rightly derided by data bloggers and researchers: http://peltiertech.
com/use-dot-plots-for-better-categorical-comparisons/

R has a number of pie chart functions, but they have limitations. Here, we can see the
some of the problems with a side-by-side pie chart, shown in Figure 5.1.

1 pie(c(3,5,9),c("Dogs","Cats","Fish"))

3 cols <- c("red","red3","orange","gold","yellow","white")

what ’s worse than comparing category sizes between pie charts?

5 ##Comparing them between two pie charts

par(mfrow=c(1,2))

7 pie(c(3,5,9,3,5,9),c("Dogs","Cats","Fish","Gerbils","Horses","Rocks"),

main="Pet Cemetery",

9 col=cols)

pie(c(5,5,2,3,3,1),c("Dogs","Cats","Fish","Gerbils","Horses","Rocks"),

11 main="Pet Cremetorium",

col=cols)

93

http://peltiertech.com/use-dot-plots-for-better-categorical-comparisons/
http://peltiertech.com/use-dot-plots-for-better-categorical-comparisons/

Chapter 5 Applied Statistics in R

Figure 5.1: Pie charts are difficult to accurately interpret. The only thing linking corre-
sponding areas on graphs is the name and color

.

Dogs

CatsFish

Gerbils

Horses Rocks

Pet Cemetery

Dogs
Cats

Fish

Gerbils
Horses

Rocks

Pet Cremetorium

There are many problems with pie charts. They involve comparing the areas of regions
that are different shapes, oriented in different directions. They make comparison difficult.
They can hide the number observations in each cell. They doesn’t work well when you
have many categories. And 3D versions are even worse, because they distort the size of the
polygon such that the amount of area on the page no longer corresponds to the value they
are trying to represent. On top of all this, researchers have confirmed that people do not
judge values in pie charts correctly, so don’t use them. Anything that can be displayed in a
pie chart could be displayed in a bar chart–even a single column stacked bar.

Here is an example of using a pair of stacked bar graphs to show distributions. I have
added text directly onto stack using the text command, computing the center of each area.
This avoids some of the problems with pie charts, and comparing between categories is easier,
but by no means simple (see Figure 5.2).

##stacked bar compares area , but is easier to judge:

2 data <- cbind(c(3,5,9,3,5,9),c(5,6,3,4,3,4))

rownames(data) <- c("Dogs","Cats","Fish","Gerbils","Horses","Rocks")

4 colnames(data) <- c("Cemetery","Cremetorium")

xs <- barplot(data ,legend=F,col=cols ,

6 ylim=c(0,40),

main="Pet Burial Methods")

8

yvals <- apply(data ,2,cumsum)

10 yv2 <- (rbind(yvals ,0)+rbind(0,yvals))[1:6,]/2

text(xs[1],yv2[,1], rownames(yvals),cex =.8)

12 text(xs[2],yv2[,2], rownames(yvals),cex =.8)

94

Chapter 5 Applied Statistics in R

Figure 5.2: Stacked barplot and dotchart are nice alternatives to pie charts

.

Cemetery Cremetorium

Pet Burial Methods

0
10

20
30

40

Dogs

Cats

Fish

Gerbils

Horses

Rocks

Dogs

Cats

Fish

Gerbils

Horses

Rocks

●

●

●

●

●

●

Number of pets

●

●

●

●

●

●

Dogs

Cats

Fish

Gerbils

Horses

Rocks

●

●

Pet cemetery
Pet cremotorium

P
et

 ty
pe

0 1 2 3 4 5 6 7 8 9 10

5.2 Dot charts: an alternative to barplots and pie charts

Anything that can be shown in a pie chart can also be shown in what people refer to as
a ‘dot chart’. This is a horizontally-organized matplot, with each row a different category.
Especially with multiple series, it more easily permits comparing between series. The only
loss in comparison to a pie chart is that a pie chart may show proportions better, as the
total area is equal to 100%. We will start by showing a hand-made dot chart next to the
corresponding pie charts they replace. The dotchart uses a matplot function, but puts the
data matrix in the ‘x’ instead of y argument, and a set series of integers the ‘y’ argument–this
is the opposite of what you usually do in a matplot, but it turns the plot sideways. Then,
by drawing horizontal lines using segments and a few other things, we can create our own
dotchart, shown in the right panel of 5.2

data <- cbind(c(3,5,9,3,5,9),c(5,5,2,3,3,1))

2 ##do it ’by hand ’

matplot(data ,1:6,pch=16,xlim=c(0,10),yaxt="n",xaxt="n",

4 xlab="Number of pets",ylab="Pet type",

type="o",ylim=c(1,7),

6 col=cols)

segments (0,1:6,10,1:6,lty =3)

8 axis(2,1:6,c("Dogs","Cats","Fish",

"Gerbils","Horses","Rocks"),las=1)

10 legend(1,7,c("Pet cemetery","Pet cremotorium"),

lty=1:2,pch=16,col=1:2,bty="n")

95

Chapter 5 Applied Statistics in R

R has a built-in dotchart available with the dotchart() command. However, it plots
each series vertically, instead of putting them both on the same axis values, which the above
code does do. Nevertheless, the built-in dotchart can be useful. We will use it here to
show the extent to which different members of the Senate voted in support of 19 issues the
AFL/CIO identified as being related to union interests.

These first graphs show various settings I used to try and display the information better
or more clearly. The groups function will arrange the values according to the levels of another
variable–I’ll use party affiliation.

1 x <- read.table("aflcio -votes.txt")

votes <- x[,3:21]

3 senator <- paste(x$V1,x$V2)
votes2 <- rowSums(votes=="R") ##Recode for voting ’Right ’

5 dotchart(votes2)

dotchart(votes2 ,labels=senator)

7 dotchart(votes2 ,labels=senator ,groups=x$V2)
dotchart(votes2 ,labels=senator ,groups=x$V2,cex =.5)

At this scale, the senator names are almost readable. It might be interesting to ignore
party affiliation at first, and just look at the extent to which each senator is in support of
union issues. We can then use color to indicate party affiliation.

ord <- order(votes2)

2 dotchart(votes2[ord],labels=senator[ord],cex=.5,

col=c("blue","yellow","red")[x$V2[ord]],
4 pch =15)

96

Chapter 5 Applied Statistics in R

Figure 5.3: Iterative changes to the dotchart function to improve layout.

● ●●●●
● ● ● ●●● ● ●●

●●● ●● ● ●●●● ●● ●●● ●●●
●●

●● ● ● ● ●●
●●●● ●● ●●●

●●●
●● ●●●

● ●●● ●●
●● ● ●●●●
●●

●● ● ● ●●●
●●●

● ●●●
● ● ●●●

● ●● ● ●●●●

0 5 10 15

● ●●●●
● ● ● ●●● ● ●●

●●● ●● ● ●●●● ●● ●●● ●●●
●●

●● ● ● ● ●●
●●●● ●● ●●●

●●●
●● ●●●

● ●●● ●●
●● ● ●●●●
●●

●● ● ● ●●●
●●●

● ●●●
● ● ●●●

● ●● ● ●●●●

0 5 10 15

● ●●●●
● ● ● ●●● ● ●●

●●● ●● ● ●●●● ●● ●●● ●●●
●●

●● ● ● ● ●●
●●●● ●● ●●●

●●●
●● ●●●

● ●●● ●●
●● ● ●●●●
●●

●● ● ● ●●●
●●●

● ●●●
● ● ●●●

● ●● ● ●●●●

0 5 10 15 ●
●

●
●
●

●
●

●
●

●
●

●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●
●
●

●
●

●
●

●
●
●
●

●
●

●
●

●
●

●
●

●
●
●

●
●

●
●
●

●
●

●
●

●
●

●
●

●
●

●
●
●
●
●

●
●

●
●

●
●
●

●
●
●

●
●

●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

0 5 10 15

97

Chapter 5 Applied Statistics in R

Figure 5.4: Final dotchart function on Senate data. Color indicates party affiliation

Stevens (R)
Kyl (R)
Grassley (R)
Dole (R)
Sessions, J. (R)
Murkowski (R)
Brownback (R)
Roberts (R)
Bunning (R)
McConnell (R)
Cochran (R)
Bond (R)
Talent (R)
Ensign (R)
Santorum (R)
Frist (R)
Hutchison (R)
Bennett (R)
Hatch (R)
Allen, G. (R)
Warner (R)
Thomas, C. (R)
Shelby (R)
McCain (R)
Allard (R)
Martinez (R)
Chambliss (R)
Crapo (R)
Lugar (R)
Lott (R)
Burns (R)
Hagel (R)
Gregg (R)
Sununu (R)
DeMint (R)
Graham (R)
Thune (R)
Alexander,L. (R)
Enzi (R)
Isakson (R)
Domenici (R)
Burr (R)
Voinovich (R)
Coburn (R)
Inhofe (R)
Smith, G. (R)
Cornyn (R)
Craig (R)
Vitter (R)
Coleman (R)
Collins (R)
DeWine (R)
Specter (R)
Snowe (R)
Nelson, Ben (D)
Chafee (R)
Landrieu (D)
Salazar, K. (D)
Carper (D)
Jeffords (I)
Lincoln (D)
Feinstein (D)
Conrad (D)
Pryor (D)
Nelson, Bill (D)
Inouye (D)
Baucus, M. (D)
Bingaman (D)
Johnson, Tim (D)
Byrd (D)
Kohl (D)
Dodd (D)
Lieberman (D)
Obama (D)
Corzine (D)
Cantwell (D)
Rockefeller (D)
Durbin (D)
Bayh (D)
Mikulski (D)
Stabenow (D)
Clinton (D)
Schumer (D)
Dorgan (D)
Wyden (D)
Murray (D)
Biden (D)
Levin, C. (D)
Dayton (D)
Reid, H. (D)
Reed, J. (D)
Leahy (D)
Feingold (D)
Boxer (D)
Akaka (D)
Harkin (D)
Sarbanes (D)
Kennedy, E. (D)
Kerry (D)
Lautenberg (D)

0 5 10 15

98

Chapter 5 Applied Statistics in R

5.3 Error bars/confidence intervals

Scientific reporting guidelines typically include advice about presenting information about
the variability of the data along with the means. People take different approaches to this,
and so you should be sure to document which approach you took. Some people plot the
confidence interval of the mean–generally representing one standard error unit above or
below the mean. Standard error is an estimate of the variability of your estimate of the
mean, and is computed as:

se = sd/
√
N (5.1)

Another variation is to plot plus or minus two standard error units. Yet another is to plot
the standard deviation of the distribution, or to plot extreme percentiles of the distribution,
which is more like a boxplot. Thus, whatever you do, be sure to document what you did,
because some people may assume you did something different, and expect someone to mis-
understand. In any case, a simple and crude way to create error bars is using the arrows()
function, and bending the arrowhead so it has a 90 degree angle.

set.seed (100)

2 x <- rep(1:5, each =25)

y <- x *3 + sqrt(x)*rnorm (25*5)*8 + runif (25*5)*3

4

se <- function(x){sd(x)/sqrt(length(x))}

6

means <- aggregate(y,list(x),mean)

8 sds <- aggregate(y,list(x),sd)

ses <- aggregate(y,list(x),se)

10

##plot the means:

12 plot(x,y,pch=16,cex=.8,col="darkgrey",xlim=c(0,5))

points (1: nrow(means),means$x,cex=1.2,col="red",pch =16)

Arrows makes a line with arrowheads, which we can make into error bars with the code=3
(arrows on both ends), and angle=90.

Try making an error bars around the first one. Here, we will make both standard error
and standard deviation bars, but generally you only want one depending on the context.
This is shown in the left panel of Figure 5.5

arrows(1,means [1,]$x+ses[1,]$x,1,means[1,]$x-
2 ses[1,]$x,code=3,angle=90, length =.1,lwd=2)

arrows(1,means [1,]$x+sds[1,]$x,1,means[1,]$x-
4 sds[1,]$x,code=3,angle=90,col="red",lwd=2)

We can do all of them in one fell swoop like this (shown in the center panel of Figure 5.5:

arrows (1: nrow(means),means$x+ses$x,
2 1:nrow(means), means$x-ses$x,

code=3,angle=90, length =.1,lwd=2,col="blue")

99

Chapter 5 Applied Statistics in R

The command is kind of daunting, so let’s take a closer look. Each of the first four
arguments is a vector that is five elements long. The first and third are just the numbers
1 through 5, to specify the x coordinates of the error bars, matching the x coordinates of
the means. The second and fourth arguments are the means, plus and minus the standard
error values computed earlier. The code value indicates that both ends should have arrows
(otherwise just the second end will), and the angle=90 specifies the angle of the arrowheads.
Finally, length specifies the size of the arrows, and it is often useful to set this to be attractive.

These types of errors bars are common, but there are a lot of things you could do. What
about making rectangles instead? I’m not sure how wide I want this, so we’ll make it easy
to adjust by setting up a variable diff.

1 diff <- .2

plot(x,y,pch=16,cex=.2,type="n",xlim=c(0,5),xaxt="n")

3 rect (1:4-diff ,means$x-sds$x,1:4+ diff ,means$x+sds$x,col="grey")
points(x,y,cex=.8,pch =16)

5 segments (1:4-diff ,means$x,1:4+ diff ,means$x,lwd=3)
axis (1 ,1:4)

Figure 5.5: Examples of the use of the arrows() and rect functions to create error bars by
hand.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

0 1 2 3 4 5

−
20

0
20

40

x

y

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

0 1 2 3 4 5

−
20

0
20

40

x

y

●

●

●
●

●

−
20

0
20

40

x

y

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

1 2 3 4 5

5.3.1 Built-in error bar functions

Both the plotrix and gplots libraries have the (same) functions called plotCI, which will
make a plot with confidence intervals.

install.packages("plotrix")

2 install.packages("gplots")

library(plotrix)

4 library(gplots)

100

Chapter 5 Applied Statistics in R

The confidence interval alone is often fine, but sometimes you’d like to plot the actual
data with the error bars on top. Here, we’ll also adjust some parameters, including the color
of the bars.

plotrix :: plotCI (1: nrow(means),meansx,sesx,main="plotrix plotCI") # like

this one better

2 gplots :: plotCI (1: nrow(means),meansx,sesx,main="gplots plotCI") # this one

not as good

plotrix :: plotCI (1: nrow(means),meansx,sesx,add=F,lwd=2,cex=1.2, sfrac =.04,col
=1:4,

4 pch=16, main="plotrix plotCI with additions ")

The plotmeans function in gplots provides a wrapper to plotCI that does some additional
plotting and labeling:

plotmeans(y~x,main="Gplots plotmeans") #give it the original data!

Figure 5.6: Built-in error bar plotting functions, including plotCI from plotrix and plotCI
and plotmeans from the gplots library.

1 2 3 4 5

4
6

8
10

12
14

16
18

plotrix plotCI

1:nrow(means)

m
ea

ns
$x

●

●

●

●

●

1 2 3 4 5

4
6

8
10

12
14

16
18

gplots plotCI

1:nrow(means)

m
ea

ns
$x

●

●

●

●

●

1 2 3 4 5

4
6

8
10

12
14

16
18

plotrix plotCI with additions

1:nrow(means)

m
ea

ns
$x

●

●

●

●

●

5
10

15
20

Gplots plotmeans

x

y

●

●

●

●

●

1 2 3 4 5

n=25 n=25 n=25 n=25 n=25

5.3.2 Error bars on barplots

How about on barplots? Let’s just use the plotCI to add an error bar (see left panel of
Figure 5.7), by using the add=T argument:

1 barplot(means$x,col="navy")
plotCI (1: nrow(means),meansx,sesx,add=T)

101

Chapter 5 Applied Statistics in R

That doesn’t quite look right. First off, the error bars are misaligned. Also, they put the
actual points in, which we’d like to remove. The misalignment comes because the barplot
function creates its bars with a horizontal axis that is offset a bit from the actual numbers
you’d expect. But barplot returns a vector of those numbers, which you can then use for
plotting (see second panel of Figure 5.7.)

newx <-barplot(means$x,names=letters [1: nrow(means)],col="navy",ylim=c(0,max(
means$x) + max(ses$x)))

2 print(newx)

[,1]

4 [1,] 0.7

[2,] 1.9

6 [3,] 3.1

[4,] 4.3

8 [5,] 5.5

#I don ’t like this:

10 plotrix :: plotCI(newx ,meansx,sesx,add=T,lwd =2)

Now, let’s clean it up a bit (third panel of Figure 5.7. Here, we change the gap to 0, now
that the symbol has been removed (with type=”n”). Here, I will overplot a white errorbar
and a black error bar, to give the error bar a little contrast from the dark blue barplot. This
is shown in the right panel of Figure 5.7

##try #3. Add two versions of the error bars with a white outline

2 newx <-barplot(means$x,names=letters [1: nrow(means)],col="navy",ylim=c(0,max(
means$x) + max(ses$x)))

4 gplots :: plotCI(newx ,meansx,sesx,add=T,lwd=2.5, type="n",gap=0,col="white")
gplots :: plotCI(newx ,meansx,sesx,add=T,lwd=1.5, type="n",gap=0,col="black")

Figure 5.7: Three examples using plotCI to add error bars to a boxplot.

0
2

4
6

8
10

12
14

●

●

●

●

●

a b c d e

0
5

10
15

●

●

●

●

●

a b c d e

0
5

10
15

102

Chapter 5 Applied Statistics in R

Exercise 5.3.2

Write a function that takes a dependent measure as one argument, and a categorical
set of levels as the second argument (the IV). You can assume that these are of the
same length–no need to do any checking, and that there are at least three observations
in each . Within the function:

• Use aggregate to compute the mean value of the dependent measure associated
with each level of the independent measure.

• Similarly, compute the standard deviation for each level.

• Compute the number of observations in each level (try using length() as the
function in aggregate)

• Based on these values, compute the standard error (s.e.) as sd/sqrt(n) for each
group.

• Within the function, create a plot of your choice (bar or point plot), and add
error bars of +/- 1 s.e. unit on each side of the mean

• Add optional arguments to the function to control main header, axis labels, and
at least four other graphical arguments

5.4 Advanced Boxplotting

In the previous chapter, we covered boxplots against a single independent variable. You can
also organize them by multiple IVs. In these cases you should use color and text labels for
ease of interpretation. Notice that rather than specifying factors separated by commas, we
use the symbol. This symbol is used in many functions, especially models, to specify you
want to look at the thing on the left as a function of the things on the right.

The following code plots tooth grown by the supplement type, and dosage (see top panel
of Figure 5.8).

1 boxplot(len ~ supp , data=ToothGrowth , notch=F,

col=(c("gold","grey20")),

3 main="Tooth Growth", xlab="Supplement")

#plot by dosage

5 boxplot(len~dose , data=ToothGrowth , notch=F,

col=(c("gold","grey20","hotpink")),

7 main="Tooth Growth", xlab="Dose")

We can also plot length by both simultaneously:

1 #plot by both factors

boxplot(len~ supp+dose , data=ToothGrowth , notch=F,

3 col=(c("gold","grey20")),

main="Tooth Growth", xlab="Supplement and Dose")

103

Chapter 5 Applied Statistics in R

Figure 5.8: Four example box plots on the same data. The lower left panel has a display
problem, with colors not mapping onto any reasonable property of the data (see exercise)

.

OJ VC

5
10

15
20

25
30

35

Tooth Growth

Supplement

0.5 1 2
5

10
15

20
25

30
35

Tooth Growth

Dose

●

OJ.0.5 VC.0.5 OJ.1 VC.1 OJ.2 VC.2

5
10

15
20

25
30

35

Tooth Growth

Supplement and Dose

●

0.5.OJ 1.OJ 2.OJ 0.5.VC 1.VC 2.VC

5
10

15
20

25
30

35

Tooth Growth

Supplement and Dose

5

##Change the order

7 boxplot(len ~ dose+supp , data=ToothGrowth ,

col= c("gold","grey20"),

9 main="Tooth Growth", xlab="Supplement and Dose")

Exercise 5.4

The color scheme is wrong in the last example (lower right panel). Fix it in some
coherent way.

5.4.1 Sideways boxplots

Boxplots work sideways too, using the horizontal keyword. See the left panel of Figure ??.

1 boxplot(len~dose*supp , data=ToothGrowth , horizontal=T,

col=(rep(c("gold","grey20"),each =3)),

3 main="Tooth Growth", xlab="Suppliment and Dose")

104

Chapter 5 Applied Statistics in R

Figure 5.9: Several additional boxplots.

.

●

0.
5.

O
J

1.
O

J
2.

O
J

0.
5.

V
C

1.
V

C
2.

V
C

5 10 15 20 25 30 35

Tooth Growth

Suppliment and Dose

●

●

OJ.0.5.1 VC.1.1 OJ.0.5.2 VC.1.2

5
10

15
20

25
30

35
40

Tooth Growth

Supplement and Dose

●

0
10

20
30

40

Tooth Growth

Supplement and Dose

Dose:
 0.5

Dose:
 1.0

Dose:
 2.0

OJ
VC

5.4.2 Boxplots with three independent variables

What if we have more than two IVs? Let’s try this by just doubling the data set here (see
center panel of Figure 5.9). Notice

1 tooth2 <- rbind(ToothGrowth ,ToothGrowth)

tooth2$rep <- rep(1:2, each=nrow(ToothGrowth))

3

boxplot(len~supp*dose*rep , data=tooth2 , notch=F,

5 col=(c("gold","grey20")),

main="Tooth Growth", xlab="Supplement and Dose")

7 abline(v=6.5)

5.4.3 Adding your own headers and legend to a boxplot

The group headers are difficult to understand

1 x<-boxplot(len~supp*dose , data=ToothGrowth ,

col=(c("gold","grey20")),

3 main="Tooth Growth", xlab="Supplement and Dose",

xaxt="n",ylim=c(0,43))

5 text(c(1,3,5)+.5,c(40 ,40 ,40),paste("Dose:\n",c("0.5","1.0","2.0")))

legend (5,15, c("OJ","VC"), pch=15,col=c("gold","grey20"),bty="n",lty =1:2)

105

Chapter 5 Applied Statistics in R

5.5 Adding images to a plot

Sometimes, it can be handy to add bitmap images (jpegs, etc.) to a graph to help graph
comprehension. For example, if you are doing an eyetracking study, you can put a screenshot
of the actual test in the background and plot eye movements on top of this. We need a few
more libraries to handle this:

library(jpeg)

2 library(pixmap)

In this case, let’s use an image as the plotting symbol–look at overall interest in the
Brady Bunch. We’ll sntart by reading in image files (named after the different members)
using the read.jpeg function, then convert it to a format we can use:

bradys <- c("marsha","carol","greg","jan","alice",

2 "peter","brady","cindy","mike","bobby")

4 images <- c()

for(i in bradys)

6 {

##This comes from the jpeg library

8 img <- readJPEG(paste("images/",i,".jpg",sep=""))

##Convert to a pixmap using from the pixmap library:

10 img2 <-pixmapRGB(img)

images <- c(images ,img2)

12 }

Now, let’s plot them in random locations on the graph. We use the addlogo function to
plot an image onto a particular region of the figure.

1 ##randomize the order

ord <- order(runif(length(bradys)))

3

plot(0,type="n",xlim=c(0 ,800),ylim=c(0 ,600),xaxt="n",yaxt="n",

5 xlab="",ylab="",bty="n")

rect (0,0,800,600,col="black")

7 x <- 0

for(i in images[ord])

9 {

y <- round(runif (1)*500)

11 addlogo(i,c(x,x+100),c(y,y+60),asp=1) ##addlogo is in pixmaps library

x <- x + 70

13 }

Notice that the original is just a normal plot() figure. Addlogo puts a pixmap at a specific
location.

106

Chapter 5 Applied Statistics in R

Figure 5.10: Example of adding images to a graph.

107

Chapter 5 Applied Statistics in R

5.6 Violin plots

An useful alternative to the boxplot is the violin plot. Instead of showing quantiles, it
attempts to show the entire distribution, sometimes with a boxplot inside it. To show the
distribution, violin plots will generally use some approach to smoothing to show a smooth
outline–one that often looks like the shape of a violin. consequently, the smoothing algorithm
used can have a large impact and should be understood.

There are several libraries in R for creating violin plots. These include vioplot, violinmplot,
along with a plot option within ggplot2.

We can look at the OrchardSprays data set using both methods. Like many third-party
libraries in R, the arguments for each function differ, and each has some plotting quirks.

5.6.1 The vioplot library

The vioplot function in Daniel Adler’s vioplot library takes each distribution as a separate
argument. To create these distributions for each treatment, I used tapply and so each
distribution becomes a row or column of that table. This function also seems to have
trouble setting headers and axis labels, so I used the base title() function to put these on
afterward. Also, I overlayed the actual points on each violin plot using matplot with the
add=T argument.

1 v1 <- tapply(OrchardSprays$decrease ,
list(row=OrchardSprays$rowpos ,

3 treatment=OrchardSprays$treatment), mean)

install.packages("vioplot")

5 library(vioplot)

7 vioplot(v1[,1],v1[,2],v1[,3],v1[,4],v1[,5],v1[,6],v1[,7],v1[,8],col="gold",

names=LETTERS [1:8], ylim=c(0 ,200))

9 title(main="OrchardSprays violin plot with point overlay: vioplot",

ylab="Decrease in bees",xlab="Treatment")

11 matplot(t(v1),add=T,pch=1,col="grey30",cex =1)

13 # Here is another plot that uses a smaller h value.

vioplot(v1[,1],v1[,2],v1[,3],v1[,4],v1[,5],v1[,6],v1[,7],v1[,8],col="gold",

15 names=LETTERS [1:8],h=2,ylim=c(0 ,200))

title(main="OrchardSprays violin plot: vioplot\nsmoothing kernel h=2",

17 ylab="Decrease in bees",xlab="Treatment")

5.6.2 The violinmplot library

The violinmplot is an alternative that is built to work with the lattice library, which
allows making panels of graphs on one sheet. Because of this, it seems to ignore multi-plot
arguments.

1 install.packages("violinmplot")

library(violinmplot)

108

Chapter 5 Applied Statistics in R

Figure 5.11: Violin plot example using vioplot library. Top panel shows results from vioplot,
with points overlayed. Bottom panel shows example using violinmplot library.

0
50

10
0

15
0

20
0

A B C D E F G H

● ●
●

●

●

● ●
●

OrchardSprays violin plot with point overlay: vioplot

Treatment

D
ec

re
as

e
in

 b
ee

s

● ●

●

●

●

●
●

●

● ●

● ●

●

●

● ●

● ● ●

●

●

●

●

●

●
● ●

● ●

●

●
●

● ●

● ●

●

●

●
●

● ●
●

●

●

●

●

●

●
● ● ●

●

● ●
●

● ●

●

●
●

● ● ●

Violin plot of OrchardSprays treatments using violinmplot

de
cr

ea
se

50

100

150

A B C D E F G H

3

par(mfrow=c(1,1))

5 violinmplot(decrease~treatment ,data=OrchardSprays ,horizontal=F,violin.col="

gold",

ylim=c(0 ,200),

7 main="Violin plot of OrchardSprays treatments using violinmplot")

The results of each library are shown in Figure 5.11. Notice that along with adornments
and colors that differ, the shape of the plot differs, because of differing methods for doing
the smoothing. Part of the smoothing involves specifying the size of a kernel by which to do
the smoothing. The vioplot library lets you specify this with the h argument, and there is an
example figure (not plotted) that illustrates this. By default, violinmplot plots horizontally,
but you can override this. In contrast, the violinmplot function does not let you change
the smoothing size.

109

Chapter 5 Applied Statistics in R

Exercise 5.6.2

The following creates intermingled distributions whose mean and variability are cor-
related. Thta is, as the mean increases, the standard deviation does as well.

1 conds <- sample (1:4 ,1000 , replace=T)

data <- (rnorm (1000, mean=conds*5,sd=conds +1))

Create a violin plot showing the distribution of the four conditions

5.6.3 Adapting a custom violin plot function

Because of the smoothing, neither plot works well when you have data from a small number of
integer or ordinal values—perhaps the most frequent type of data collected by psychologists,
in the form of Likert-scale responses to questions. The vioplot function cannot turn off
smoothing, and if you make it too small, you see bumps at the location of the data, as
shown in Figure 5.12. Setting the smoothing argument to be large enough simply washes
out any meaningful difference is the distributions. In the following code, I create an example
likert-scale data set that also has a non-response category, associated with the factor level 0.

set.seed (1000)

2 levs <-c("Don ’t Know","Strongly Disagree", "Disagree","Neutral",

"Agree",

4 "Strongly Agree")

gender=as.factor(sample(c("Men","Women") ,1000, replace=T))

6 vals1 <- pmax(0,floor(rnorm (1000 , mean =2.5,sd=.8) - as.numeric(gender)*.5))+1

vals1[sample (1000 ,20)]<- 0 ##ad some don ’t know responses

8

resps <- factor(levs[vals1+1], levels=levs)

10

data <- data.frame(gender=gender ,

12 value=vals1 ,

resps)

14 head(data)

16 par(mfrow=c(1,3))

vioplot(data$value[data$gender =="Men"],
18 data$value[data$gender =="Women"],col="gold")

20 vioplot(data$value[data$gender =="Men"],
data$value[data$gender =="Women"],h=1.2,col="gold")

22

vioplot(data$value[data$gender =="Men"],
24 data$value[data$gender =="Women"],h=.2,col="gold")

Neither the default not two custom values of h are satisfying, as shown in Figure 5.12
The nice thing about R is that the code for creating the graphics is available. You can see

it if you just type the name of the function into R. I once was responsible for presenting results
from a university-wide survey in which all the responses were likert-scale. The vioplot was
ugly, but I wanted a nice visual depiction of the responses. So I copied out the code listing
for vioplot, saved it into a file, and gave the resulting function a new name (vplot2). Then,
by iteratively changing things, I was able to customize it to create a violin plot suitable for a
wide audience. The beginning of the code is shown here, the complete function is available in

110

Chapter 5 Applied Statistics in R

Figure 5.12: Vioplot has trouble representing Likert-scale responses. Here, either the smooth-
ing is too large, or it creates bumps around the integer-responses. Top panel shows examples
using vioplot. Bottom panel shows results from custom function adapted from vioplot.

0
1

2
3

4
5

1 2

●

●

0
1

2
3

4
5

1 2

●

●

0
1

2
3

4
5

1 2

●

●

Support for Issue among Constituency

Don't Know

Strongly Disagree

Disagree

Neutral

Agree

Strongly Agree

Overall Men Women

mu=2.27

N=1000

7%>3
mu=2.51

N=488

10%>3
mu=2.03

N=512

4%>3

111

Chapter 5 Applied Statistics in R

the supplemental materials. The changes were initiall fairly minor–removing the code that
did the smoothing and using the non-smoothed value. I also added additional plotting to
provide more details.

1

vplot2 <- function (x, ..., range = 1.5, h = NULL , ylim = NULL ,ylabs=NULL ,

3 names = NULL ,

title="",

5 horizontal = FALSE , col = "gold", border = "black", lty =

1,

lwd = 1, rectCol = "black", colMed = "white", pchMed =

19,

7 at, add = FALSE , wex = 1, drawRect = TRUE ,adjust=0,

crit=3,

9 ignore=c(0)

)

11 {

datas <- list(x, ...)

13

n <- length(datas)

15 if (missing(at))

at <- 1:n

17 upper <- vector(mode = "numeric", length = n)

lower <- vector(mode = "numeric", length = n)

19 q1 <- vector(mode = "numeric", length = n)

q3 <- vector(mode = "numeric", length = n)

21

}

23

par(mar=c(2,8,3,1),mfrow=c(1,1))

25 vplot2(data$value ,
data$value[data$gender =="Men"],

27 data$value[data$gender =="Women"],
at=c(1,3,4),

29 names=c("Overall","Men","Women"),

drawRect = T,

31 ylim=c(-1,7),

ylabs=levs ,

33 ignore=c(0),

title="Support for Issue among Constituency"

35)

112

Chapter 5 Applied Statistics in R

5.7 Solutions to exercises

Solution to Exercise 5.3.2

Write a function that takes a dependent measure as one argument, and a categorical
set of levels as the second argument (the IV). You can assume that these are of the
same length–no need to do any checking, and that there are at least three observations
in each . Within the function:

• Use aggregate to compute the mean value of the dependent measure associated
with each level of the independent measure.

• Similarly, compute the standard deviation for each level.

• Compute the number of observations in each level (try using length() as the
function in aggregate)

• Based on these values, compute the standard error (s.e.) as sd/sqrt(n) for each
group.

• Within the function, create a plot of your choice (bar or point plot), and add
error bars of +/- 1 s.e. unit on each side of the mean

• Add optional arguments to the function to control main header, axis labels, and
at least four other graphical arguments

1

Exercises:

3 plotMeansandSE <- function(x,conds ,main="",xlab="",ylab="",

col="grey20",cex=2)

5 {

require(gplots)

7 conds <- factor(conds)

agg <- aggregate(x,list(conds),mean)

9 agg$sd <- aggregate(x,list(conds),sd)$x
agg$n <- aggregate(x,list(conds), length)$x

11 agg$se <- agg$sd/sqrt(agg$n)
xvals <- as.numeric(agg$Group .1)

13 xs <- barplot(agg$x,names=agg$Group.1,
ylim=c(0,max(agg$x+agg$se*2)), col=col ,

15 main=main ,xlab=xlab ,ylab=ylab)

17 gplots :: plotCI(xs ,aggx,aggse,add=T,lwd=.5,type="n",gap=0,col="black"
)

}

19

set.seed (100)

21 conds <- sample (1:4,100 , replace=T)

data <- (rnorm (100, mean =1+ conds*5,sd=conds +1))

23

plotMeansandSE(data ,conds ,main="Stinky",col="darkgreen",

25 xlab="Condition",ylab="Observed ability")

113

Chapter 5 Applied Statistics in R

Solution to Exercise 5.4

The colors in a boxplot are recycled in order, so we need to create a vector of 6 colors,
three gold and three grey:

boxplot(len~dose*supp , data=ToothGrowth ,

2 col=(rep(c("gold","grey20"),each =3)),

main="Tooth Growth", xlab="Supplement and Dose")

Or you could color each sub-element of the series a different color:

1 boxplot(len~dose*supp , data=ToothGrowth ,

col=(rep(c("gold","grey20","hotpink") ,2)),

3 main="Tooth Growth", xlab="Supplement and Dose")

Solution to Exercise 5.6.2

The following creates intermingled distributions whose mean and variability are cor-
related. Thta is, as the mean increases, the standard deviation does as well.

1 conds <- sample (1:4 ,1000 , replace=T)

data <- (rnorm (1000, mean=conds*5,sd=conds +1))

Create a violin plot showing the distribution of the four conditions

vioplot(data[conds ==1], data[conds ==2], data[conds ==3],

2 data[conds ==4], main="Distribution of four conditions")

5.8 Additional Resources

• http://addictedtor.free.fr/graphiques/thumbs.php

114

http://addictedtor.free.fr/graphiques/thumbs.php

Chapter 6

Colors and Special-purpose
graphics packages

This chapter covers two major themes: colors and special-purpose graphics.
The default color schemes for R are ugly and difficult to get right. Luckily, there are

a number of packages that have been developed to allow you to use nice color schemes,
color gradients, and color themes. Using a consistent and unique color theme across a set
of figures gives a level of professionalism and consistency to your graphics, and can make a
great impression.

There are many packages that implement special-purpose useful graphics. This chapter
covers a few such packages. There are many more, but a little practice learning to use these
packages can be helpful in learning about R and typical uses of R libraries.1

6.1 Colors, Color palettes, and Color gradients

One of the best things you can do to improve the look and feel of your images is to use
color. Whenever possible, color should be used to map redundantly onto some other visual
indicator of a value, because you cannot rely on the final reader to be seeing your graphic in
color, or having full color vision. A publication may convert graphics to greyscale, a reader
may make a black-and-white photocopy or scan of your document, their display monitor
may show colors differently from yours, or they may be colorblind and unable to distinguish
some color pairs. So, use it carefully to improve the look, but you should typically not rely
on color on its own to be the only indicator of a factor level or other independent variable.

6.1.1 How R handles color

By default R handles color through a number of complementary systems. Most color ar-
guments will be able to interpret color names, integers representing a palette index, or rgb
values. There are more than 650 named colors, which you can see if you use the command
colors(). Giving a function a named color is an easy way to use color hues. Also, you can
use the results of a call to a function rgb(), which takes values representing red, green, and
blue, and creates a hexidecimal color code that is used in many applications:

1The examples provided in this chapter were adapted from examples originally developed by students
in the 2012 MTU Graduate Statistics Program: Natasha Hagadone, Saima Ghazal, Krissy Guzak, Alison
Regal, Kejkaew Thanasuan, and Wei Zhang.

115

Chapter 6 Applied Statistics in R

Figure 6.1: Illustration of the eight standard colors in the palette, and how plot functions
recycle the colors.

Colors 1:10

0
2

4
6

8
10

12

Colors 2:11

0
2

4
6

8
10

12

rgb (.1 ,.1 ,.9)

2 [1] "#1 A1AE6"

You could also specify this hexcode directly, and there are many websites that let you
pick colors out that will display the corresponding hex code.

Finally, the numbers 1 through 8 are interpreted as indices of a color palette which itself
can be customized. So, you can give a plot command numbers, and these get interpreted as
colors.

6.1.2 Color Palettes

Most plotting functions in R have a col argument to specify the color. By default, they will
take a number specifying which color in the current palette to use. The default palette has
eight colors. You can simply specify number of the palette index to set colors, and if you use
a number higher than the number of colors in the palette, it will recycle earlier numbers.

dat <- c(10,3,5,9,12,6,8,3,5,9)

2 barplot(dat ,col=1:10 , main="Colors 1:10")

barplot(dat ,col =1:10+1 , main="Colors 2:11")

You can hand-pick your own color scheme, and either use it directly by passing it to the
col argument, or you can set the default palette to that set of colors. For example, maybe
I want a sea-related palette. All of the colors whose names R understands are accessible via
the colors() function. The following will pick out any that start with “sea”.

1 seacolors <- colors ()[substr(colors () ,1,3)=="sea"]

> seacolors

3 [1] "seagreen" "seagreen1" "seagreen2" "seagreen3"

[5] "seagreen4" "seashell" "seashell1" "seashell2"

5 [9] "seashell3" "seashell4"

par(mfrow=c(1,3))

116

Chapter 6 Applied Statistics in R

Figure 6.2: Three example plots using the our sea colors pallette. The first plot was given
the list of colors as an argument. The second and third plot used those colors automatically
after the palette was set.

0
5

10
15

20

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

m
at

rix
(r

un
if(

20
0)

, 4
0,

 5
)

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0
5

10
15

20

7 barplot (11:20 , col=seacolors)

palette(seacolors[order(runif (10))])

9 matplot(matrix(runif (200) ,40,5),type="b",lwd=2,pch =16)

barplot (11:20 , col =1:10)

Exercise 6.1.2

Create three series of 5 numbers (i.e., a matrix with 3 columns and 5 rows). Create
a side-by-side matplot and a stacked barplot with those values, and default color
settings. Then, Pick a set of at least five named colors. Set the palette to these
colors, and remake the same plots, so that they use these colors.

6.1.3 Built-in color scheme generators

There are a number of functions, either built into R or available as add-on libraries, thta
allow you to create sets of colors that are good for showing gradations or showing categorical
differences. Four built-in functions are shown below.

dat <- c(10,3,5,9,12,6,8,3,5,9)

2 par(mfrow=c(2,2))

barplot(dat ,col=heat.colors (10),main="Heat colors")

4 barplot(dat ,col=terrain.colors (10),main="Terrain colors")

barplot(dat ,col=topo.colors (10), main ="Topo colors")

6 barplot(dat ,col=cm.colors (10), main = "Cyan to magenta")

These functions are nice because they will give you a color gradient with as many steps as
you need, interpolating distinct colors at all the steps in between. Now, these color schemes
are not what you typically want for barplots, but they can be useful in other contexts.
For example, you can use a color gradient to indicate which element of a sequence you are

117

Chapter 6 Applied Statistics in R

Figure 6.3: Examples of four different color gradients

Heat colors

0
2

4
6

8
10

12

Terrain colors

0
2

4
6

8
10

12

Topo colors

0
2

4
6

8
10

12

Cyan to magenta

0
2

4
6

8
10

12

118

Chapter 6 Applied Statistics in R

Figure 6.4: Examples of using a color gradient to indicate sequence position.

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

0 5 10 15 20 25 30

2
4

6
8

10
12

14

x

y

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

0 5 10 15 20 25 30

2
4

6
8

10
12

14

x

y

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

0 5 10 15 20 25 30

2
4

6
8

10
12

14

x

y

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

plotting. Here is a set of 2-D points, which could represent a sequence of eye movements.
The last one uses a greyscale color set, which is created a little differently from the other
color gradients.

x <- c(3,2.5,0,12,15, 18, 22,33,26,23,18,17,8,9,5,11)

2 y <- c(14, 8,2,15, 3, 1, 6, 9, 12,11,12,7,8,6,1,5)

##there is a start and an end --let ’s adjust the color:

4 plot(x,y,type="b",pch=16, col = cm.colors (16),cex=3)

text(x,y,1:16, cex=.8,col="black")

6

plot(x,y,type="b",pch=16, col = terrain.colors (16),cex=3)

8 text(x,y,1:16, cex=.8,col="white")

10 ##Greyscale

plot(x,y,type="l",cex=2)

12 points(x,y,type="p",cex=3, col = grey (1:16/16),pch =16)

points(x,y,type="p",cex=3,col="black")

14 text(x,y,1:16, cex=.8,col= rep(c("white","black"),each =8)) ##notice reverse

colors

The gplots library has some built in color gradients that are nicer. These include
redgreen, greenred, bluered, redblue and colorpanel, which does arbitrary gradients of
two or three colors. There are a number of ’named’ palettes in gplots as well, accessible via
the rich.colors function. Some examples or shown in Figure 6.5.

library(gplots)

2 plot (1:50 ,rep (10 ,50),pch=15,cex=2,xlim=c(-20,50),ylim=c(0,12),

col=redgreen (50), xaxt="n",yaxt="n",xlab="",ylab="",bty="n")

4 text(-12,10,"redgreen:")

points (1:50,rep(9,50),pch=15,cex=2,col=greenred (50))

6 text(-12,9,"greenred:")

points (1:50,rep(8,50),pch=15,cex=2,col=bluered (50))

8 text(-12,8,"bluered:")

points (1:50,rep(7,50),pch=15,cex=2,col=redblue (50))

10 text(-12,7,"redblue:")

points (1:50,rep(6,50),pch=15,cex=2,

12 col=colorpanel (50,"orange","red"))

text(-12,6,"colorpanel: orange red")

119

Chapter 6 Applied Statistics in R

Figure 6.5: Example using a color gradients in the gplots library.

redgreen:
greenred:
bluered:
redblue:

colorpanel: orange red
colorpanel: black green
colorpanel: blue green

colorpanel: pink red
colorpanel: yel−or−brn

richcolors:
richcolors: blues

14 points (1:50,rep(5,50),pch=15,cex=2,

col=colorpanel (50,"black","green"))

16 text(-12,5,"colorpanel: black green")

points (1:50,rep(4,50),pch=15,cex=2,

18 col=colorpanel (50,"blue","green"))

text(-12,4,"colorpanel: blue green")

20 points (1:50,rep(3,50),pch=15,cex=2,

col=colorpanel (50,"pink","red"))

22 text(-12,3,"colorpanel: pink red")

points (1:50,rep(2,50),pch=15,cex=2,

24 col=colorpanel (50,"yellow","orange","brown"))

text(-12,2,"colorpanel: yel -or-brn")

26 points (1:50,rep(1,50),pch=15,cex=2,

col=rich.colors (50))

28 text(-12,1,"richcolors:")

points (1:50,rep(0,50),pch=15,cex=2,

30 col=rich.colors (50, palette="blues"))

text(-12,0,"richcolors: blues")

We can also use a gradient such as this to map onto another value, such as distance from
a particular point. In the example in Figure 6.6, distance from the point (5,3) is mapped
onto a color gradient. In this example, color is given an alpha value of .5, to make it slightly
transparent.

1 #### Color in 2x2 plot based on distance from a location.

n <- 1000

3 x <-rnorm(n)*10 + 15

y <- rnorm(n)*10+ 15

5 ##Color by distance from (3,2); use alpha channels so

##we can see overlap

7 dist <- sqrt((x-5) ^2+(y-3)^2)

plot(x,y,col=rev(rich.colors (50,alpha =.5))[1+ floor(dist)],

9 pch=18,cex=3)

120

Chapter 6 Applied Statistics in R

Figure 6.6: Using color to represent distance from a point.

−10 0 10 20 30 40

−
10

0
10

20
30

40

x

y

Exercise 6.1.3

Plot a matrix of values using image, with several different gplots color gradients.

6.1.4 Colorbrewer palettes

The colorbrewer project was designed to create color schemes for maps and other graphical
displays. You can visit the website at http://colorbrewer2.org to browse and select color
schemes. The RColorBrewer package implements these color palettes, and contains three
types of color palettes: sequential, providing a color gradient; qualitative, giving a set of
colors that are distinct to map onto different categories, and divisive, scaling between two
colors.

Example code to see the different palettes is here.

1 install.packages("RColorBrewer")

library(RColorBrewer)

3

##Check out a few palettes available:

5 display.brewer.all()

display.brewer.all(type="seq")

7 display.brewer.all(type="qual")

display.brewer.all(type="div")

9

display.brewer.pal(10,"Blues")

121

http://colorbrewer2.org

Chapter 6 Applied Statistics in R

Figure 6.7: Using color to represent distance from a point.
0.

0
0.

1
0.

2
0.

3
0.

4
0.

5
0.

6

0.
0

0.
2

0.
4

0.
6

0.
8

0.
0

0.
2

0.
4

0.
6

0.
8

11 display.brewer.pal(6,"Greens")

display.brewer.pal(12,"BrBG")

13 display.brewer.pal(7,"Accent")

Here are a few examples of using color brewer palettes on a barplot. Here, I can either
set the palette to some scheme, or feed it into the plot function in the col argument. The
last example shows how to make the color depend on the height of the bar.

1 ##set your palette like this:

par(mfrow=c(1,3))

3 palette <- brewer.pal(11,"Spectral")

palette(palette)

5 barplot(runif (10),col=1:10, main="Spectral colors")

7 barplot(runif (22),col=brewer.pal(11,"BrBG"),main="Brown -Green palette")

9 ##or, something more meaningful

dat <- runif (25)

11 pal <- rev(brewer.pal(10,"YlOrRd"))

col <- floor(dat*10)+1

13 barplot(dat ,col=pal[col],main="Color depends on value")

Here, we create a matrix showing different counts, and we want to use an image plot to
show the count in each cell. We can use a number of palettes to help do this:

1 x <- rnorm (2500)*3

y <- x + sqrt(rnorm (2500) ^2) *8

3 tab <- table(round(x),round(y))

image(tab)

5 image(tab ,col=brewer.pal(11,"Oranges"))

image(tab ,col=brewer.pal(11,"Blues"),legend=T)

7

Use some built -in color schemes:

9 ##

image(tab ,col=topo.colors (50))

11 image(tab ,col=heat.colors (50))

image(tab ,col=terrain.colors (50))

122

Chapter 6 Applied Statistics in R

Figure 6.8: Using color to represent distance from a point.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 0.2 0.4 0.6 0.8 1.0
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0
0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 0.2 0.4 0.6 0.8 1.0
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Exercise 6.1.4

Use a ‘divisive’ color palette from RColorBrewer. Use it to make a non-stacked
barplot from a data table having two columns and five rows, so that the plot has two
groupings of bars, and each set of bars has the same color scheme.

6.1.5 ColorRamps

ColorRamps is another package that builds color palettes. It has a handful of specific gradi-
ents, including:

• blue2green

• blue2green2red

• blue2red

• blue2yellow

• cyan2yellow

• green2red

• magenta2green

• matlab.like

• matlab.like2

• primary.colors

• ygobb

Each of these create a color scheme, with N gradations along the color gradient. rgb.tables
and table.ramp let you create a custom one. Several examples are shown in Figure 6.9.

123

Chapter 6 Applied Statistics in R

Figure 6.9: Using ColorRamps as a color gradient.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

install.packages("colorRamps")

2 library("colorRamps")

image(tab ,col=blue2green (50))

4 image(tab ,col=blue2yellow (50))

barplot(runif (20),col=primary.colors (20))

6.1.6 Building colorblind-visible from RGB space

A significant minority of people (mostly men) have colorblindness, with these mostly being an
inability to distinguish red and green. This should be considered when making graphics. The
following palette has been suggested to be discriminable by red-green colorblind individuals.
We can also add lines of different angles to help distinguish colored bars from one another.

1 colorblind <- c(rgb(0,0,0, maxColorValue =255),

rgb(230,159,0, maxColorValue =255),

3 rgb (86,180 ,233 , maxColorValue =255),

rgb(0,158,115, maxColorValue =255),

5 rgb (240,228,66 , maxColorValue =255),

rgb(0,114,178, maxColorValue =255),

7 rgb(213,94,0, maxColorValue =255) ,

rgb (204 ,121 ,167 , maxColorValue =255))

9 palette(colorblind)

barplot (1:10,col =1:10)

11

13 ##use density and angle to overlay a stipple pattern

barplot (1:10,col =1:10)

15 barplot (1:10, density =10, angle=runif (10)*180,add=T)

barplot (1:10, density =10, angle=runif (10)*180,add=T)

17

barplot(matrix(runif (20) ,4,5))

124

Chapter 6 Applied Statistics in R

Figure 6.10: Using a custom rgb colors to make a colorblind-visible color scheme.
0

2
4

6
8

10

0
2

4
6

8
10

0
2

4
6

8
10

0
2

4
6

8
10

6.1.7 Some thoughts on color schemes

Using a consistent color scheme across plots in a publication adds unity and coherence,
especially when consistently mapped onto the same groups/IVs. The advantage of setting
the palette is that you can change the entire plotting scheme with one line:

dat <- t(matrix(runif (20) ,5,4) * (1:5) ^2)

2 cats =c("Fr","So","Ju","Sr","Gr")

4 par(mfrow=c(2,2))

palette(c("midnightblue","gold","darkgreen","maroon","dodgerblue"))

6 matplot(dat ,type="l",lwd=3,lty=1,xaxt="n",ylim=c(1,25))

legend (2,25,rev(cats),lty=1,lwd=3,col =5:1)

8 pie(c(1,13,5,2,1),labels=c("Fr","So","Ju","Sr","Gr"),col =1:5)

dotchart(c(1,13,5,2,1),labels=c("Fr","So","Ju","Sr","Gr"),col=1:5,pch =16)

10 barplot(c(10,5,8,4,6),names=cats ,col =1:5)

12

##Whoops , somebody didn ’t like the color scheme.

14 par(mfrow=c(2,2))

palette(brewer.pal(9,"Set1"))

16 matplot(dat ,type="l",lwd=3,lty=1,xaxt="n",ylim=c(1,25))

legend (2,25,rev(cats),lty=1,lwd=3,col =5:1)

18 pie(c(1,13,5,2,1),labels=c("Fr","So","Ju","Sr","Gr"),col =1:5)

dotchart(c(1,13,5,2,1),labels=c("Fr","So","Ju","Sr","Gr"),col=1:5,pch =16)

20 barplot(c(10,5,8,4,6),names=cats ,col =1:5)

You can also use related colors to plot data versus summary stats or related sub-levels
of a factor. On the left panel of Figure 6.12, we have plotted the raw data in light green,

125

Chapter 6 Applied Statistics in R

Figure 6.11: If we make a set of related graphs, a single palette command can recolor all of
them.

5
10

15
20

25

da
t

Gr
Sr
Ju
So
Fr

Fr

So

Ju

Sr

Gr

Fr

So

Ju

Sr

Gr

●

●

●

●

●

2 4 6 8 10 12 Fr So Ju Sr Gr

0
2

4
6

8
10

5
10

15
20

25

da
t

Gr
Sr
Ju
So
Fr

Fr

So

Ju

Sr

Gr

Fr

So

Ju

Sr

Gr

●

●

●

●

●

2 4 6 8 10 12 Fr So Ju Sr Gr

0
2

4
6

8
10

126

Chapter 6 Applied Statistics in R

Figure 6.12: Using color themes to represent related aspects of the data can be useful for
grouping.

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

● ●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

● ●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

0 10 20 30 40 50

−
60

0
−

40
0

−
20

0
0

20
0

x

y

●
●●

●●
●
●
●

●●
●●

●●

●

●

●●

●

●
●●

●
●
●
●
●●

●
●
●
●
●
●●

●
●
●●

●

●

●●
●
●●●●●●

●

●

OJ.0.5 OJ.1 OJ.2
5

10
15

20
25

30
35

Paired Plot colors

and the means in darker green. On the right, we have arranged sub-levels of a condition in
a boxplot so that related sub-levels have a similar color scheme.

x <- runif (1000)*50

2 xbin <- round(x)

y <- x*(x/5-22)+runif (1000)*300

4 y.agg <- aggregate(y,list(xbin),mean)

6 par(mfrow=c(1,2))

plot(x,y,col="seagreen3")

8 points(y.agg$Group.1,y.agg$x,col="darkgreen",pch =16)

10

boxplot(len~supp*dose ,data=ToothGrowth ,

12 col=brewer.pal(6,"Paired"),main="Paired Plot colors")

6.1.8 Using Transparency

Using a classic problem in decision heuristics, we can use boxes to visualize relative sizes
of groups in a population. In a random sample, of women, we might have 40 self-identified
feminists, and 10 employed in the financial industry. The results are shown in Figure 6.13.

cols <- c(rgb(240,0,5, maxColorValue =255, alpha =120),

2 rgb(230,225,5, maxColorValue =255, alpha =255),

rgb (12,100 ,250, maxColorValue =255, alpha =120))

4

plot(0,type="n",xlim=c(0,10),ylim=c(0,10),bty="n",

6 xaxt="n",yaxt="n",xlab="",ylab="")

segments (0:10 ,0 ,0:10 ,10 , lty=3)

8 segments (0 ,0:10 ,10 ,0:10 , lty=3)

127

Chapter 6 Applied Statistics in R

Figure 6.13: Example using rectangles and transparancy to draw spatial graph.

Feminists (40)

Lindas (5) Bank
workers (10)

Women (100)

10 rect(0,0,10,10,col=cols [3])

rect(0,6,10,7,col=cols [2])

12 rect(1,1,6,9,col=cols [1])

text(3.5,5,"Feminists (40)")

14 text (3.5,6.5,"Lindas (5)")

text(7,6.5,"Bank workers (10)")

16 text(8,3,"Women (100)")

Exercise 6.1.8

When you have a scatterplot of integers points, you tend to get points plotting on
top of one another, which hides the number of observations. You can get a better
notion of this sometimes if you use large points with transparency. Those locations
with more points will show up darker. Use a large point size and

x <- sample (1:10 ,100 , replace=T)

2 y <- round(x + rnorm (100)*2)

128

Chapter 6 Applied Statistics in R

6.2 Balloon Plots

A balloon plot is a nice way to represent cross-tabulated data. The balloonplot function
is in the gplots library, which you may need to download separately. You run balloonplot
with three main arguments–the category for the x and y margins (rows and columns), and
the count associated with each. You could create these from a larger data set using the
aggregate command.

balloonplot(x,y,z)

In this example, suppose we have identified five cat names and five colors, and want to look
at whether cats names depend on their colors. The data here are faked, but we could possible
collect such data via surveys of cat owners. To start with, the following code will create a
data frame with these values.

1 library(gplots)

catnames <- c("izzy", "dilly", "spooky", "bernard", "jack")

3 catcolors <- c("black", "orange", "gray", "brown")

datavals <- round(exp(runif (20)*5))

5 data <- data.frame(Cat=rep(catnames ,4),

Color=rep(catcolors , each =5),

7 Count=datavals)

The balloonplot takes the independent variables or factors as its first two arguments,
and the dependent variable as its third argument. We can make a simple plot with default
arguments, providing a few labels to make it plot nicer. The result is shown in Figure 6.14

1 balloonplot(data$Cat , data$Color , data$Count ,
colmar=2,ylab="Color",xlab="Cat name")

Notice in Figure 6.14 that each cell has a circle whose size is related to the number of cats
of that category, but also the marginal proportions are depicted with their relative size on
the column and row headers. Finally, the cell values and row/column sums are also shown.

We can change some additional arguments. The colmar changes the size of the margins
label=F will turn off the number counts, dotcol will set the color of the dots, which we
might want to set to be similar to the cat color; dotsize controls the maximum size of the
dot in each cell; scale.range controls how dot size is mapped onto the numbers. If you
have an absolute zero value, as we do, it is best to stick with the default “absolute”, but this
can be changed to “relative”.

balloonplot(data$Cat , data$Color , data$Count , colmar=3,

2 label=F,ylab="Color",xlab="Cat name",

dotcol=rep(catcolors ,each =5),dotsize =12,

4 scale.range="absolute")

Finally, we can use parameters to unfill the circles (setting dotchar to 1; the dot character
can be any character value you typically give to pch in a regular plot), and adding the labels
back in a neutral color.

129

Chapter 6 Applied Statistics in R

Figure 6.14: Example balloon plot with default parameters.

● ● ● ● ●

● ● ● ● ●

● ● ● ●

● ● ● ●

 66 34 113 281 213

199

 82

180

246

707

izzy dilly spookybernard jack

black

brown

gray

orange

Color

Cat name

 34 5 6 76 78

 2 4 4 68 4

 23 14 42 93 8

 7 11 61 44 123

Balloon Plot for data, Cat by data, Color.

Area is proportional to data$Count.

balloonplot(data$Cat , data$Color , data$Weight , colmar=3,

2 dotchar=1,label.color="blue",

ylab="",xlab="",main="",

4 dotsize =15, colsrt =90,scale.range="relative",

dotcol=rep(catcolors ,each =5))

Additional examples can be found at: http://addictedtor.free.fr/graphiques/graphcode.
php?graph=60

130

http://addictedtor.free.fr/graphiques/graphcode.php?graph=60
http://addictedtor.free.fr/graphiques/graphcode.php?graph=60

Chapter 6 Applied Statistics in R

Figure 6.15: Example balloon plots with additional parameters.

● ●

● ● ● ●

● ●

● ●
 66 34 113 281 213

199

 82

180

246

707

izzy dilly spookybernard jack

black

brown

gray

orange

Color

Cat name

Balloon Plot for data, Cat by data, Color.

Area is proportional to data$Count.

● ●

● ● ●

● ●

● ●

 66 34 113 281 213

199

 82

180

246

707

iz
z
y

d
ill

y

s
p

o
o

k
y

b
e

rn
a

rd

ja
c
k

black

brown

gray

orange

 34 5 6 76 78

 2 4 4 68 4

 23 14 42 93 8

 7 11 61 44 123

Counts of Cat Color by Cat Name

131

Chapter 6 Applied Statistics in R

6.3 Gap Plot

A gap plot will displays a plot with one or two missing ranges on one or both axes. The
gap.plot function is part of the plotrix library, which you may have to download and
install on your own computer. This can be helpful for plotting several related data series
where one has very different values.

The default gap.plot arguments are:

gap.plot(x,y,gap ,gap.axis="y",bgcol="white",breakcol="black",

2 brw =0.02 ,xlim ,ylim ,xticlab ,xtics=NA,yticlab ,ytics=NA ,

lty=rep(1,length(x)),col=rep(par("col"),length(x)),

4 pch=rep(1,length(x)),add=FALSE ,...)

In this example, we will create a series of numbers that have values with means that are
around 5 and around 200, and try to plot them with the normal plot functions.

#create 40 random numbers

2 twogrp <-c(rnorm (10)+5,rnorm (10) +200, rnorm (10)*2+5,rnorm (10) +205)

4 #create color for each group

gpcol <-rep(c(2,3,4,5),each =10)

6 xvals <- rep(c(1,2,3,4),each =10)

8 #this is the graph when using "plot" command

plot(xvals ,twogrp ,col=gpcol ,xlab="Index",ylab="Group values",

10 main="No Gap on Y axis")

Notice the graph that is produced in Figure 6.16 compresses the range within each group,
making it hard to tell if there are differences in means or variances.

The gap.plot function will allow us to cut out the middle sections. The result is shown
in Figure 6.17.

library(plotrix)

2 gap.plot(xvals ,twogrp ,gap=c(10 ,190),xlab="Index",ylab="Group values",

main="Gap on Y axis",col=gpcol)

The main problem with this graph is we now cannot tell the scale, because the tickmarks
get cut off too. This can be fixed with the ytics argument. The result is seen on the right
panel of Figure 6.17. Also, by adjusting the gap a little so it is just inside the tickmarks, the
display is improved.

1 library(plotrix)

par(mfrow=c(1,2))

3 gap.plot(xvals ,twogrp ,gap=c(10 ,190),xlab="Index",ylab="Group values",

main="Gap on Y axis",col=gpcol ,ytics =0:220)

5 gap.plot(xvals ,twogrp ,gap=c(11 ,194),xlab="Index",ylab="Group values",

main="Gap on Y axis",col=gpcol ,ytics=seq(-5,220,5))

132

Chapter 6 Applied Statistics in R

Figure 6.16: Example plot with data that are separated, making within-group variations
difficult to see.

●●●●●●●●
●●

●●●●●●
●●●●

●
●●●●
●
●●
●

●

●●●●●
●●●●●

1.0 1.5 2.0 2.5 3.0 3.5 4.0

0
5

0
1

0
0

1
5

0
2

0
0

No Gap on Y axis

Index

G
ro

u
p

 v
a

lu
e

s

The gap plot will also allow you to add gaps along the horizontal axis, or both simulta-
neously. Also, you can overlay layers using the add=T argument. The code below shows a
horizontal gap with a red line overlaid:

dat <-rnorm (40)

2 plot(twogrp ,dat ,xlab="X values",

xtics=c(4,7,17,20),ylab="Y values",

4 main="Gap on X axis with added lines")

6 gap.plot(twogrp ,dat ,gap=c(11 ,194),gap.axis="x",xlab="X values",

xtics=c(-2,8,2,seq (190 ,220 ,5)),

8 ylab="Y values",main="Gap on X axis with added lines")

gap.plot(c(seq(0,7.5,by =0.5),seq (16.5 ,22.5 ,by=0.5)),

10 rnorm (22),gap=c(11 ,194),gap.axis="x",type="l",add=TRUE ,col=2,)

The following shows how you can add two gaps, and how to add overlay lines using
gap.plot. Note that you must use the same gaps on the overlay function, or it will not plot
correctly.

dat <-rnorm (40)

2 gap.plot(twogrp ,dat ,gap=c(11 ,194),gap.axis="x",xlab="X values",

xtics=c(-2,8,2,seq (190 ,220 ,5)),

4 ylab="Y values",

main="Gap on X axis with added lines")

6

133

Chapter 6 Applied Statistics in R

Figure 6.17: Example plot with the middle cut out, allowing us to see finer differences in the
means and variances of the different groups of data.

●
●

●

●●

●

●

●

●

●

●

●●
●
●

●

●

●

●

Gap on Y axis

Index

G
ro

u
p

 v
a

lu
e

s

1 1.5 2 2.5 3 3.5 4

2
0

0 ●

●

●

●
●

●●
●

●
●

●●

●

●

●

●
●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●●
●
●

●

●

●

●

●

Gap on Y axis

Index

G
ro

u
p

 v
a

lu
e

s

1 1.5 2 2.5 3 3.5 4

5
1

0
2

0
0

2
0

5

●

●

●

●
●

●●
●

●

●

●
●

●

●

●

●
●

●
●

●

gap.plot(c(seq(0,7.5,by =0.5),seq (16.5 ,22.5 ,by=0.5)),

8 rnorm (22),gap=c(11 ,194),gap.axis="x",type="l",add=TRUE ,col=2,)

Now let’s alter the data a bit so we can make a two-gap plot. Here, make a copy.

twogrp2 <- twogrp +1

2 twogrp2 [31:40] <- twogrp2 [31:40]+50

4 gap.plot(twogrp2 ,gap=c(11 ,190 ,220 ,240),

xlab="X values",ylab="Y values",

6 main="Test of gap.plot with two gaps",xtics=seq(0,40,by=5),

ytics=c(seq (0 ,300 ,5)),

8 lty=c(rep(1,10),rep(2,10)),

pch=c(rep(2,10),rep(3,10)),

10 col=c(rep(2,10),rep(3,10)),

type="b")

134

Chapter 6 Applied Statistics in R

Figure 6.18: Example plot with the middle cut out, allowing us to see finer differences in the
means and variances of the different groups of data.

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

Gap on X axis with added lines

X values

Y
 v

a
lu

e
s

−
2

−
1

0
1

2

2 8 195 200 205

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Test of gap.plot with two gaps

X values

Y
 v

a
lu

e
s

0 5 10 15 20 25 30 35 40

5
1
9
5

2
0
5

2
1
5

2
4
5

2
5
5

6.4 The barplot2 function

One common complaint of R is that it does not make error bars on your plots. The barplot2
function, which is found in the gplots library, is designed to put error bars on your barplots.

In this example, we will use the VADeaths data set, which record deaths per 1000 people
for different age ranges, and is built into R. It does not actually contain confidence regions or
measures of variability, but we can estimate those from the data because they are essentially
probabilities.

1 > VADeaths

Rural Male Rural Female Urban Male Urban Female

3 50-54 11.7 8.7 15.4 8.4

55-59 18.1 11.7 24.3 13.6

5 60-64 26.9 20.3 37.0 19.3

65-69 41.0 30.9 54.6 35.1

7 70-74 66.0 54.3 71.1 50.0

The first thing we will do, after loading the gplots library, is invert and transpose the
order of the table, so it will plot properly:

1 library(gplots)

hh <- t(VADeaths[5:1,])

3 > hh

70-74 65-69 60-64 55-59 50-54

5 Rural Male 66.0 41.0 26.9 18.1 11.7

Rural Female 54.3 30.9 20.3 11.7 8.7

135

Chapter 6 Applied Statistics in R

7 Urban Male 71.1 54.6 37.0 24.3 15.4

Urban Female 50.0 35.1 19.3 13.6 8.4

Now, let’s set up some variables and precompute some things so that it will be easier to
control the plot. First, let’s creates confidence interval for the lower side.

One handy thing to know is that the standard deviation of the sampled mean of a binomial
distribution is

√
p× (1− p)/n. That is, if you have a coin that has a probability of coming

up heads of p, an experiment with n trials will come up heads with a distribution around
p having a standard deviation of

√
p× (1− p)/n. We can use this in the VADeaths case

because these are mortality rates, out of 1000 individuals. So let’s compute error bars as ±1
standard deviation, assuming we are sampling 1000 individuals in each group.

ci <- sqrt(hh/1000 * (1- hh/1000) / 1000)*1000

2

##creates 95% confidence interval for the upper side

4 ci.l <- hh -ci*1.96

ci.u <- hh +ci*1.96

Now, let’s make the barplot. Be sure the hh, ci.u, and ci.l variables are loaded.
Explanations for each argument are shown as comments.

1 mp <- barplot2(hh ,

beside = TRUE , ##TRUE plots them different series beside each other

3

##assigns color to the bar graph (can change colors and orders)

5 col = c("lightblue", "mistyrose",

"lightcyan", "lavender"),

7 ##Creates legend using the column names as

##the lengend entries and gives min and max for y-axis

9 legend = colnames(VADeaths),

ylim = c(0, 100),

11 main = "Death Rates in Virginia per 1000",

font.main = 4, #Font size of main title

13 col.main="darkgreen", #color of main title

15 ##Change the border color of the bars:

border=c(1:4) ,

17 ##Creates sub title on x-axis , gives color to subtitle

using mybarcol command ,

19 sub = "99 percent error bars", col.sub = "lightblue",

cex.names = 1.5,

21 ##Plot the confidence intervals:

plot.ci = TRUE ,

23 ci.l = ci.l,

ci.u = ci.u,

25 ##Plot gridlines

plot.grid = TRUE)

27

29

##Add margin text to provide summary mean values:

31 mtext(side = 1, at = colMeans(mp), line = 2,

text = paste("Mean", formatC(colMeans(hh))), col = "red")

33 ## Also , add a box around the whole graphic

box(col="purple",lwd=4)

136

Chapter 6 Applied Statistics in R

The resulting plot is found in in Figure 6.19. Think carefully about what the confidence
intervals here mean–they may not mean what you think they do. It really is an attempt
to indicate where the true mean for each group should lie, assuming we sampled 1000 from
each group. But these data may not be a sample from Virginia–they may be the complete
population data, and so we may think about the confidence region as if we were using it to
estimate the rate in another state, assuming the rates were the same.

Figure 6.19: Example barplot2 with built-in legend and confidence regions.

70−74 65−69 60−64 55−59 50−54

Rural Male

Rural Female

Urban Male

Urban Female

Death Rates in Virginia (per 1000)

99 percent error bars

0
2
0

4
0

6
0

8
0

1
0
0

Mean 60.35 Mean 40.4 Mean 25.88 Mean 16.93 Mean 11.05

6.5 The bandplot function

The bandplot function, found in the gplots library, will plot a scatterplot, and the draw
locally smoothed mean and standard deviation lines over the data. The default arguments
are:

bandplot(x, y, ..., add = FALSE , sd = c(-2:2),

2 sd.col=c("magenta", "blue", "red", "blue", "magenta"),

sd.lwd=c(2, 2, 3, 2, 2), sd.lty=c(2, 1, 1, 1, 2),

4 method = "frac", width = 1/5, n=50)

A bandplot can be useful to show confidence bounds on data when one value is correlated
with another one independent or dependent variable. One example use might be to show
norms on some test across an age range, so that one can determine a performance criterion
adjusted for age. Note that the current version of gplots (2.10.1), the different smoothing

137

Chapter 6 Applied Statistics in R

parameters seem to not operate as expected, but in the future these parameters (method,
width, and n) should allow better control over how smooth the estimates are.

For a few simple example, let’s create a sets of X and Y values in which the value and/or
variance of Y are dependent on X:

Example 1: Variance Scales with square of x Upper left panel of Figure 6.20

x<-1:1000

2 y<-x + .003*x^2 + rnorm (1000 , mean=0,sd=1+x^2/1000)

bandplot(x,y,main=paste("Example bandplot\n",

4 "Variance proportional to square of value"))

Example 2: y and x have a curvilinear relationship. As seen in the upper right panel
of Figure 6.20, the bands plotted are robust to the form of the functional relationship, and
do not depend on assumptions about polynomials. This figure shows some examples of how
to alter the visual appearance.

2 n<-1000

x <- round(runif(n, 0,100))

4 y <- x - (x-25)*(x-50)+ rnorm(n)*600

0 stands for mean

6 bandplot(x,y,sd=c(-1,0,1),col="grey",sd.col=c(1,4,1),

sd.lty=c(3,1,3),sd.lwd=c(2,4,2),

8 main = "Band plot with only +/- 1 s.d.")

Example 3: y correlated with x with relatively few observations As shown in the
lower left panel of Figure 6.20, the bands can be quite rough when you have relatively few
observations.

n <- 150

2 x <- runif(n)*50

y <- rnorm(n, mean=x/10, sd=1)

4 bandplot(x,y,main="Example bandplot\nMean related to x value")

Example 4: Custom graphing settings Lower right panel of Figure 6.20

n<-10000

2 x <- round(runif(n, 0,100))

y <- (x-25)*(x-50)+ rnorm(n)*600

4 bandplot(x,y,main="Example bandplot\nCustom graphing parameters",

col="green3",sd.col=rep("darkgreen" ,5),sd.lwd=c(1,3,8,3,1))

138

Chapter 6 Applied Statistics in R

Figure 6.20: Example bandplot with built-in confidence regions.

●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●
●●●●
●●
●

●●
●●●●●●●●●●●
●●●●●
●●
●●●
●
●●
●●●
●
●●
●
●●
●●●
●
●
●●
●●●
●
●
●●●●
●●●●●●
●
●
●
●
●●●●
●●●
●

●

●●●●●
●●●●
●●
●●●
●
●●●
●
●
●
●●●●●●●●●
●●●
●
●
●

●●●
●
●
●

●●●
●
●
●

●

●
●●●●●●

●

●●●●
●
●

●●
●●

●

●

●

●
●

●

●
●
●

●●●
●
●

●

●●
●

●

●●●●
●

●●

●
●
●

●
●

●
●
●
●
●

●

●●

●

●
●●●●●
●
●
●●●

●
●

●●

●
●

●

●

●
●
●
●

●
●●
●

●

●
●

●
●

●
●●●●●
●
●
●
●
●●
●

●
●
●●

●
●

●

●

●
●●
●

●
●●
●
●

●

●

●
●●
●
●●

●
●

●

●

●●●
●

●
●
●●

●

●

●

●●

●

●●
●
●

●
●
●

●●
●●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●
●●
●

●

●
●

●●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●●●

●●●

●

●
●●

●

●●
●●●

●●●●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●
●

●●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●●
●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●
●

●

●

●

●

●●

●

●●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

0 200 400 600 800 1000

0
1
0
0
0

2
0
0
0

3
0
0
0

4
0
0
0

5
0

0
0

Example bandplot

Variance proportional to square of value

x

y

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

● ●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●●
●

●

●

●
●●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●
●

●●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

0 20 40 60 80 100

−
4
0
0
0

−
2
0
0
0

0
2
0
0
0

Band plot with only +/− 1 s.d.

x

y

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

● ●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

0 10 20 30 40 50

0
2

4
6

Example bandplot

Mean related to x value

x

y

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

● ●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●
●

●
● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●●●

●
●

●●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●
●

●

●

●
●

●

●

● ●

●

●

●

●

●●

●

●

●

●●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●
● ●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●
●

●

●

●●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●
●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●
●

●

●

●

●

● ●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

● ● ●

●

●

●

●

●

●

●

●

● ●

●

●
●

●●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
● ●

●
●

●

●

●

●

●●

●●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
● ●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

● ●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●
●

● ●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
● ●●

● ●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●● ●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

● ●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

● ●

●

●
●

● ●

●
●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●
●

● ●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●
● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

● ●

●

●

●

●

●

●

●
●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●●

●
●

●

●●

●

●
● ●●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

● ●

●
●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

● ●

●

●●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

● ●●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●
●

●

●●

●

●

●

●

●

●● ●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●●

●

●●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●
●

●

●

●

● ●

●

●
●

●

●

●

●

●
●

●

●
●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●●

●
●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●●

●
● ●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●●

●

●

● ●

●

●
● ●

●
● ●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

● ●

●

●
●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
● ●

●

●

●

●

●

●

●
●

●

●

● ●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●
●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

● ●

● ●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
● ●

●

●

●

● ●

●
●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●
●

●

●

●
●
●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

● ●●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●
●

● ●

●

●

●

●

●

●
●

●
● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

0 20 40 60 80 100

−
2
0
0
0

0
2
0
0
0

4
0
0
0

Example bandplot

Custom graphing parameters

x

y

6.6 The pyramid.plot function

The pyramid plot is designed to show distributions of men and women across age ranges.
However, it can be adapted for many situations where you want to compare histograms of
two groups side-by-side. It is in the plotrix library, and its default arguments are:

1 pyramid.plot(lx,rx,labels=NA,top.labels=c("Male","Age","Female"),

main="",laxlab=NULL ,raxlab=NULL ,unit="%",lxcol ,rxcol ,gap=1,

3 ppmar=c(4,2,4,2),labelcex=1,add=FALSE ,xlim ,show.values=FALSE ,ndig =1)

139

Chapter 6 Applied Statistics in R

To test this out, we can use the VADeaths data set that was used in the bandplot2

example. Since there are two groups (urban and rural), we’ll make two plots next to one
another:

1 par(mfrow=c(1,2))

pyramid.plot(VADeaths [,1], VADeaths [,2])

3 pyramid.plot(VADeaths [,3], VADeaths [,4])

As seen in Figure 6.21, the default settings are not very good for this data set.

Figure 6.21: Two examples of pyramid.plot with default settings.

65 45 25 8 0 17 37 57

1

2

3

4

5

Male Age Female

% %

71 49 27 8 0 19 41 63

1

2

3

4

5

Male Age Female

% %

Let’s see how we can fix it. To start, we can add labels on the top and increase the
gap between the plots to allow us to see the category labels. Although the original stack
labels were correct (male versus female), we will put in our column headers, which also tell
us urban/rural:

1 pyramid.plot(VADeaths [,1], VADeaths [,2],

top.labels=c(colnames(VADeaths)[1],

3 "",

colnames(VADeaths)[2]),

5 gap =3)

The result is shown in the left panel of Figure 6.22. Next, we will add a main title, add
the age labels using the labels command, and increase the gap between the two even more
to accomodate. The result is found on the right panel of Figure 6.22.

1 pyramid.plot(VADeaths [,1], VADeaths [,2],

top.labels=c(colnames(VADeaths)[1],

3 "Age",

colnames(VADeaths)[2]),

5 gap=15, main="Death rate (per 1000) by age",

labels=rownames(VADeaths))

140

Chapter 6 Applied Statistics in R

Figure 6.22: Two examples of improvements to the pyramid.plot.

63 49 35 21 9 0 12 26 40 54

1

2

3

4

5

Rural Male Rural Female

% %

Death rate (per 1000) by age

51 34 17 2 0 15 32 49

50−54

55−59

60−64

65−69

70−74

Rural Male AgeRural Female

% %

These plots are getting to look respectable. I made a number of other tweaks to captions
and x ranges/labels, to show the final plot in Figure 6.23.

par(mfrow=c(1,2))

2 pyramid.plot(VADeaths [,1], VADeaths [,2],xlim=c(80 ,80),gap=18,

top.labels=c("Male","Age","Female"),

4 main="Death rate by age in Rural VA",

lxcol="darkgreen",rxcol="navy",

6 laxlab=c(0:3*25),raxlab=c(0:3*25),

labels=rownames(VADeaths),unit="Deaths/1000")

8

pyramid.plot(VADeaths [,3], VADeaths [,4],xlim=c(80 ,80),gap=18,

10 top.labels=c("Male","Age","Female"),

main="Death rate by age in Urban VA",

12 lxcol="darkgreen",rxcol="navy",

laxlab=c(0:3*25),raxlab=c(0:3*25),

14 labels=rownames(VADeaths),unit="Deaths/1000")

Figure 6.23: Final improved pyramid.plot with both urban and rural data.

Death rate by age in Rural VA

75 50 25 0 0 25 50 75

50−54

55−59

60−64

65−69

70−74

Male Age Female

Deaths/1000 Deaths/1000

Death rate by age in Urban VA

75 50 25 0 0 25 50 75

50−54

55−59

60−64

65−69

70−74

Male Age Female

Deaths/1000 Deaths/1000

141

Chapter 6 Applied Statistics in R

6.7 Other Graphics Packages of Note

There are many special-purpose and general-purpose graphics packages available in R.

• ggplot The most popular are ones re-
lated to ggplot2, which provides a com-
pletely reworked graphics system for R.
It provides flexibility and makes attrac-
tive graphics easy, at the cost of a more
complex syntax and more difficulty in
customization.

• plot.ly. The plot.ly library is not tied
directly to R, but can be accessed via a
number of systems. It creates nice in-
teractive and dynamic graphs suitable
for on-line use. They are generally in-
teractive, zoomable, and allow users to
explore data.

• maps. This package provides ways to
plot geographical data.

• leaflet. This provides another means for
mapping geographical data, with inter-
active web-based maps.

• imager. Provides hooks to fast image-
processing routines.

• gplots. A Library containing many
special-purpose graphics utilities.
Along with several functions we have
looked at already, it includes:

– venn Make a venn diagram

– angleAxis Plot axis labels at an
angle.

– heatmap2 A heatmap with a den-
drogram.

• plotrix. A library containing dozens of
specialty graphics and graphical func-
tions. Some of my favorites include:

– battleship.plot Like a bubble plot,
but with squares

– bumpchart Track change of a num-
ber of values across two time peri-
ods

– centipede.plot Ordered dot-chart
with confidence regions

– clock24.plot Plot time information
in a radial plot; see also radial.plot

– draw.circle,draw.arc, draw.ellipse
Graphical elements

– gantt.chart Create timelines for
resources

– diamond.plot Create radial axes
for multiple series

– radial.plot Radial plot with radi-
ans as axis

– polar.plot Radial plot with degrees
as axis

– histStack Create a stacked his-
togram displaying multiple distri-
butions

– thigmophobe.labels Creates labels
that don’t overlap the points.

142

Chapter 6 Applied Statistics in R

6.8 Solutions to Exercises

Exercise Solution 6.1.2

Create three series of 5 numbers (i.e., a matrix with 3 columns and 5 rows). Create
a side-by-side matplot and a stacked barplot with those values, and default color
settings. Then, Pick a set of at least five named colors. Set the palette to these
colors, and remake the same plots, so that they use these colors.

data <- matrix ((1:15)[order(runif (15))] ,ncol =3)

2 par(mfrow=c(2,2))

palette("default")

4 matplot(data ,type="b")

barplot(data)

6 palette(c("seagreen","orange","gold","navy","red4"))

matplot(data ,type="b")

8 barplot(data ,col=palette ())

Exercise Solution 6.1.3

Plot a matrix of values using image, with several different gplots color gradients.

library(gplots)

2 vals <- matrix(runif (100) ,10,10)

image(vals ,col=colorpanel (50,"black","green"))

4 image(vals ,col=redblue (50))

Exercise Solution 6.1.4

Use a ’divisive’ color palette from color brewer. Use it to make a non-stacked barplot
from a data table having two columns and five rows, so that the plot has two groupings
of bars, and each set of bars has the same color scheme.

pal <- brewer.pal(5,"RdYlBu")

2 data <- cbind(c(5,2,3,2,1),c(9,1,3,4,1))

barplot(data ,beside=T,col=pal)

143

Chapter 6 Applied Statistics in R

Exercise Solution 6.1.8

When you have a scatterplot of integers points, you tend to get points plotting on
top of one another, which hides the number of observations. You can get a better
notion of this sometimes if you use large points with transparency. Those locations
with more points will show up darker. Use a large point size and

1 x <- sample (1:10 ,100 , replace=T)

y <- round(x + rnorm (100)*2)

3 mycol <- rgb (.8 ,.2 ,.3 ,.5)

par(mfrow=c(1,2))

5 plot(x,y)

plot(x,y,col=mycol ,cex=2,pch =16)

144

Chapter 7

Random Variables, Probability,
and Parameter Estimation

We buy knowledge with the
assumptions we make; all
knowledge is paid for; if the
assumptions are correct, we have
a bargain.

Clyde Coombs, A Theory of Data

7.1 Randomness, the unknown, and models of reality

The field of statistics is about trying to draw inferences about things that happen in the
world that are unknown. This is the essential quality of randomness–the causes and results
are not known with certainty. In the physical world, we believe that you could predict the
future exactly if you were able to account for all of the factors and causal relationships–all
the particles in the universe and the forces that describe their interactions. There are debates
within quantum physics whether this is really true, but for large-scale phenomena, what is
true is that the factors that produce all but the simplest phenomena are too complex–and
thus unknowable–to make definitive predictions. In a sense, randomness is not a property
of the universe–it is a property of our understanding of the universe, and a consequence of
information we do not know.

When trying to understand something that is happening in the world, we build a sta-
tistical model that approximates as closely as is reasonable what is happening in the world.
Since the events in the world we care about have randomness, the model has to represent
that uncertainty or unknown aspects. In probability and statistics, these models are gen-
erally based on concepts called random variables. We tend to pick random variables that
are well understood and that are justified models of the phenomenon. Then, we can use
mathematical inference based on calculus, probability theory, simulation, or other methods
to make predictions about how the events in the world should behave if the model is correct.
The model is rarely 100% correct. Even for something like flipping a coin, in reality there
is a small chance that during flip, the coin will land on its edge. If we feel that the chances
of this are small or the consequences of this outcome are negligible, we might be happy to
consider modeling a coin flip as a two-outcome process.

145

Chapter 7 Applied Statistics in R

7.2 Random variables and sample spaces

A random variable is a mathematical concept we use to model the outcome of real processes
that have uncertainty. We can refer to these outcomes as events. Random variables are
defined, in part, by their sample space–a set of possible outcomes of the event. For the coin
flip, our model of the world would have two states–heads and tails. The sample space of
rolling a die is the values 1 through 6; the sample space of the age of a person chosen at
random from the population will be a value greater than 0 and less than the oldest person
in the population. The sample space itself does not tell you how likely different outcomes
are–just what values they may take on.

Because the sample space refers to the random variable, which is a model of the process,
we are usually content with there being some mismatches between the random variable’s
sample space and reality. In reality, there are other things that could happen besides a coin
landing heads or tails (it could roll down a drain and never been found). Similarly, if we
measure down to the second, researchers think there are about four babies born every second
on earth. So the sample space for ages of people, even if measured down only to the second,
is not a continuous variable but really a countably but large set of values. But we are usually
content to model the sample space as a continuous variable.

So, a random variable describes a variable that can take on different possible values,
and the relative chances of each of the possible values. In order to make further progress,
mathematicians have made a set of assumptions (called axioms) about how to assign a
value called probability to the sample space. Probability theory is based on these axioms.
Curiously, these are assumptions–not proven facts. We have simple made these assumptions,
and work within the consequences. In fact, several mathematicians have explored alternative
axiom sets, which are at odds with the common assumptions of probability theory.

The axioms of probability theory describe how we assign a number portions of the sample
space of an event. These portions are referred to as subspaces, and simply mean any possible
set of outcomes. The subsets are much like the possible bets one can place at a roulette wheel.
In roulette, you can place bets on red, black, any particular outcome, sets of four outcomes,
etc. You can place money on every single outcome so that you are sure to win, or no outcomes
so that you are sure to not win. The possible subspaces of the sample space are all possible
bets you might make, even though the simplest bet is a single number. We can carve up
any sample space into subsets. In the case of the flip of a coin, the subsets include just four
possibilities: the null set ,heads, tails, or heads or tails. For the roll of a die, the sample
space is the values 1 through 6, and any combination of values (e.g., even, odd, 1, 2, 6, the
entire set, or the null set which is empty. For continuous variables, subsets could be any
range of values (e.g., 10 years old, a teenager, between the ages of 3 and 26). For continuous
variables, a single value (exactly 10 years old to the second) is an empty set, but ranges of
values have probability.

The axioms of probability theory tell us how probability may be assigned to any possible
subset of the sample space. To assign probability measures to subsets of the sample space,
we use these assumptions:

• The probability of an empty subset is 0.

• The probability of the entire set is 1.

• The probability of the union of several mutually-exclusive subsets is the sum of the
probabilities of the subsets.

These three assumptions are the basis for all of probability theory. The third axiom gives
us the rule to combine probabilities. It says, for example, if the probability of a die coming

146

Chapter 7 Applied Statistics in R

Figure 7.1: Density for a fair coin, a fair die, and a normal distribution; cumulative for the
normal distribution.

heads tails

Coin toss
Probability Density

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 2 3 4 5 6

Die Roll
Probability Density

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

Normal Random Variable
Probability density

Sampled value

D
en

si
ty

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Normal Random Variable
Cumulative distribution

Sampled value

C
um

ul
at

iv
e

di
st

n.

up 1 is 1/6, and the probability of the die coming up 2 is 1/6, then the probability of the
die coming up either 1 or 2 is 1/6 + 1/6 = 1/3.

If we are able to assign probabilities to all possible subsets of the sample space via some
mathematical formula or table, this is called the probability distribution. According to the
first axiom, any impossible event has probability 0, and according to the second axiom the
probabilities of all possible events together must sum to 1.0. For example, the chance of a
coin landing heads plus the chance of a coin landing tails adds to 1.0, even if the coin is not
fair. In other cases, where the sample space is continuous, it only makes sense to ask about
the probability of ranges of values. For discrete sample spaces (like the flip of a coin), this
is often called the probability mass function (pmf), whereas for a continuous distribution it
is called the probability density function (pdf).

For continuous distributions, like when modeling the chance of a dart hitting the wall,
the probability of landing at any specific spot is 0, even though some locations (near the
bullseye) are more likely than others. The use of a probability density function allows us
to measure the total probability within any specific space on the wall. For discrete random
variables, the equivalent is called the probability mass function, because discrete events do
take on probability. In many cases, we would like to define or examine the cumulative density
or mass function of a distribution (sometimes just called the “cumulative”). The cumulative
is a function whose domain is the sample space, and whose range is [0, 1], that describes the
probability of a sample occurring that is less than or equal to particular value–the integral
from the minimum to a particular value. In contrast, the density and mass functions itself is
the first derivative of the cumulative distribution, and also provides a measure of the relative
likelihood of each possible value.

So, to summarize, the random variable is a model of an random process in the world,
that lets us capture this randomness. It maps values called probability to the subsets of the

147

Chapter 7 Applied Statistics in R

sample space (possible outcomes) of the event. The way this mapping is done is referred
to as the distribution, and distributions can either be discrete (with a countable number of
possible outcomes) or continuous (with an uncountable number of outcomes).

Figure 7.1 shows the probability mass/density and cumulative distribution functions for
several distributions.

Some Examples:

• Discrete uniform random variable: takes on a fixed number of values with equal prob-
ability. (can be simulated with sample)

• Uniform random variable: takes on a continuous value between two endpoints (often
0 and 1; can use runif())

• Binomial random variable: number of times a trial succeeds out of N, when a given
probability of success exists.

• Normal random variable: takes on a bell-shaped curve with a mean and spread.

A random variable is conceptually like a function in that it may take parameters that
control its overall shape, such as its center, its shape, etc. The important thing a random
variable provides us is a model of a stochastic process–one in which the outcome is not
always the same. Typically, in order to model a particular real-world process, we will make an
assumption about what type of random variable it is, and then try to estimate the parameters
using data, so that we can make inferences about the population we have sampled from.

For example:

• For a discrete uniform random variable, there might be no real parameters we estimate.
If we assume a die is fair, our distribution is just given.

• for a more general discrete random variable, there might be a parameter associated
with n-1 of the options (with the last fixed or determined by the rest)

• For a uniform random variable: a parameter might determine the minimum and max-
imum values of the range.

• For a binomial random variable: a parameter might be the probability p of giving
response ‘1’, and the number of trials.

• For a Normal random variable: parameters might be the mean and variance of the
distribution. The Normal RV has a density function defined by f(x | µ, σ2) =

1√
2πσ2

e−
(x−µ)2

2σ2 , but there is no formula for its cumulative distribution function, which

means we can only estimate it with simulation or numerical estimates.

We can typically generate random data from a distribution associated with any these
random variables. If we understand the distribution, we can draw inferences about the
likelihood of certain observations. A simple example would be trying to make an inference
about whether a coin is biased. We assume that the number of times a coin lands as heads
in a set of coin flips (an experiment) is a binomial random variable. A fair coin (with 50%
chance of landing heads) will produce a roughly even number of heads and tails, but how can
we tell if the coin is biased? We sample observations of the coin, use those observations to
estimate the distribution (model), and then use the mathematics to determine the likelihood
that the observed data could have been generated from a fair vs unfair coin. Even if we can’t
figure out the mathematical formula to help us understand whether a particular outcome is
unlikely, we can often simulate it:

148

Chapter 7 Applied Statistics in R

heads <- function(prob=.5,flips=1, repetitions =1)

2 {

base <- matrix(runif(flips*repetitions)<prob ,

4 ncol=flips ,nrow=repetitions)

return(rowSums(base))

6 }

set.seed (100)

8 fair .10 <- table(heads (.5 ,10 ,100000))

biased .10 <-table(heads (.55 ,10 ,100000))

10

fair .500 <- table(heads (.5 ,500 ,100000))

12 biased .500 <-table(heads (.55 ,500 ,100000))

Here, suppose you wanted to know if a coin was doctored so that it was slightly more
likely to land heads than tails. Even a slight bias would help a gambler come out on top. So,
suppose you flipped the coin 10 times. The left panel of Figure 7.2 shows the distribution of
a fair and a slightly biased (.55) coin. For a single experiment of ten flips, even if it landed
heads 9 or 10 times out of 10, this would not be overly strong evidence that the coin was
unfair. You could never detect a slight bias just by flipping a few times. On the other hand,
if you took a few hours and flipped the coin 500 times, the case is slightly better. The fair
and biased distributions are shown on the right side of Figure 7.2. Now, there is a difference
in the distribution, but even so the difference is not large enough to be highly confident in
many cases. Suppose you got exactly 250 heads in this experiment. In only about 1.4% of
the biased coin experiments did we see a value this small or smaller, and you might be fairly
confident that the coin is not biased. But what if you saw around 264 heads? about 2000
cases in each experiment had 264 heads, and so it was about equally likely to have happened
from either coin. But, as the number of heads increase to 270 or 280, the chance that a fair
coin could have produced this is very unlikely, and you would be justified in calling the coin
biased.

149

Chapter 7 Applied Statistics in R

Figure 7.2: Simulation of 100,000 experiments where we flip a fair and a slightly biased coin
either 10 or 500 times. For experiment size of 10, it would be difficult to catch a biased coin
on a single experiment. For an experiment of size 500, you can be reasonably confident the
coin is biased as the number of flips exceeds 280.

●

●

●

●

●

●

●

●

●

●

●

0 2 4 6 8 10

Fair (.5) vs Biased (.55) coin
100,000 experiments

Number of heads (out of 10)

F
re

qu
en

cy
 o

f e
ac

h
ou

tc
om

e

●
●

●

●

●

●

●

●

●

●

●0
50

00
10

00
0

20
00

0

● ●● ● ●●●●●●●●●●●
●●●●

●
●
●●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●●●●●●●●●●●●●●●●● ● ●

200 220 240 260 280 300 320

Fair (.5) vs Biased (.55) coin
100,000 experiments

Number of heads (out of 500)

F
re

qu
en

cy
 o

f e
ac

h
ou

tc
om

e

●●●●●●●●●●●●●●●
●●

●
●
●
●
●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●

●●
●
●●●●●●●●●●●●●● ● ●●0

50
0

15
00

25
00

35
00

Some common random variables that can be sampled from are described below:

7.2.1 Discrete uniform:

A discrete uniform random variable has an equal chance of sampling each of a number
of categories, such as heads vs tails, sides of a die, or lottery/bingo balls. The following
will generate 1000 samples from a 10-category discrete uniform distribution, as shown in
Figure 7.3.

set.seed (100)

2 data <- sample(LETTERS [1:10] , 1000, replace=T)

barplot(table(data),col="gold",ylab="Number of occurrences",

4 xlab="Option",

main="Samples from a discrete uniform random variable")

150

Chapter 7 Applied Statistics in R

Figure 7.3: Simulation of 1000 draws from a discrete uniform (left) and non-uniform (right)
distribution.

A B C D E F G H I J

Samples from a uniform discrete random variable

Option

N
um

be
r

of
 o

cc
ur

re
nc

es

0
20

40
60

80
10

0
12

0

A B C D E F G H I J

Samples from a non−uniform discrete random variable

Option

N
um

be
r

of
 o

cc
ur

re
nc

es

0
50

10
0

15
0

7.2.2 Discrete non-uniform:

A related distribution would assume the different categories are not uniform. Using sample
with the prob argument will sample from a specific non-uniform distribution, also shown in
Figure 7.3. This sort of distribution is normally referred to as simply a categorical distribu-
tion.

1 set.seed (101)

data <- sample(LETTERS [1:10] ,

3 prob =10:1 ,1000 , replace=T)

barplot(table(data),col="gold",ylab="Number of occurrences",

5 xlab="Option",

main="Samples from a non -uniform discrete random variable")

7.2.3 Continuous Uniform Distribution

The continuous uniform distribution has an equal chance of any number between a minimum
and maximum. For example, a uniform distribution with minimum 10 and maximum of 20
could be generated with the following:

data <- 10 +runif (1000)*10

2 par(mfrow=c(1,2))

hist(data ,breaks =20,main="Histogram of random data from uniform (10 ,20)",col="

gold")

4 plot(data ,ylim=c(0,30),pch=16,col="gold",cex=1.5, main="Individual sampled

points")

grid()

6 points(data ,cex =1.5)

7.2.4 Binomial distribution

Single coin flip is modeled as a bernoulli distribution; it has one of two states (represented
as 0 or 1), and it achieves state 1 with a probability p, and state 0 with probability 1 −
p. If we repeat this N times and count the number of outcomes that are 1, this is a
binomial distribution. Thus, a binomial distribution has two parameters, the probability
and the number of samples. Generally, the number of samples is fixed by the context of
the experiment, and you might try to estimate p from data. Sample repeatedly from a

151

Chapter 7 Applied Statistics in R

Figure 7.4: Simulation of 1000 draws from a uniform distribution with min 10 and max 20.

Histogram of random data from uniform(10,20)

data

F
re

qu
en

cy

10 12 14 16 18 20

0
10

20
30

40
50

60

●
●
●

●
●

●

●

●

●

●

●
●

●
●
●

●
●

●
●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●
●●
●
●●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●●
●●
●●

●●

●
●

●
●●

●
●

●

●
●

●

●●
●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●
●●

●

●
●
●

●
●
●
●

●
●
●

●

●

●
●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●
●
●●●
●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●●
●
●

●
●

●●

●

●
●●

●●●●●

●

●

●

●

●

●●●

●
●

●

●
●

●

●

●●
●

●
●

●

●●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●●
●

●

●

●
●
●

●

●●

●

●

●

●

●

●

●

●●
●

●●

●

●

●
●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●●

●●

●

●●
●

●●
●●●
●

●

●

●

●

●
●
●

●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●
●

●

●

●●

●
●●

●
●

●

●
●

●
●●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●
●●

●
●●

●

●

●●

●

●

●
●

●

●

●

●
●

●
●
●
●●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●
●

●

●
●
●

●

●

●

●

●

●
●

●

●

●●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●●
●

●
●●●
●
●●

●

●

●
●

●
●

●

●

●

●●

●
●

●

●●
●●

●●●

●

●
●

●

●

●
●
●●
●●

●

●

●

●

●

●●
●

●

●●
●●

●

●

●

●

●

●

●●
●

●

●
●
●

●●

●

●

●●
●
●

●
●

●

●

●

●

●

●

●

●

●●

●●
●

●●

●●
●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●
●

●

●

●
●
●●

●

●

●
●●●

●●

●

●
●

●
●●
●●●
●

●
●●

●

●

●
●
●

●

●

●
●

●

●
●

●
●●●
●

●

●

●●
●

●

●
●
●
●●

●●
●
●●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●●
●●

●

●

●

●
●

●
●

●
●

●
●●

●
●

●

●
●
●

●

●

●

●

●

●

●●●
●●
●
●

●

●

●

●
●

●

●
●

●

●●

●
●●
●

●

●
●●●
●

●
●●●

●

●●
●
●
●●
●
●●

●

●

●

●

●
●

●●

●

●

●

●●

●

●
●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●●
●●

●
●

●

●

●
●●

●

●●●●

●●
●

●●●

●●
●
●

●

●

●

●

●

●

●●

●

●●

●

●
●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

●●●
●

●

●
●

●●

●

●

●

●
●
●

●

●●

●

●

●●

●●

●
●
●

●

●

●

●

●●
●

●●

●

●
●
●●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●●●

●

●●

●

●●

●

●

●

●●

●

●
●

●

●

●
●

●●

●

●
●

●
●

●

●●

●

●

●●

●

●

●

●
●

●

●

●

●
●
●

●

●●●

●

0 200 400 600 800 1000

0
5

10
15

20
25

30

Individual sampled points

Index

da
ta

●
●
●

●
●

●

●

●

●

●

●
●

●
●
●

●
●

●
●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●
●●
●
●●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●●
●●
●●

●●

●
●

●
●●

●
●

●

●
●

●

●●
●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●
●●

●

●
●
●

●
●
●
●

●
●
●

●

●

●
●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●
●
●●●
●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●●
●
●

●
●

●●

●

●
●●

●●●●●

●

●

●

●

●

●●●

●
●

●

●
●

●

●

●●
●

●
●

●

●●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●●
●

●

●

●
●
●

●

●●

●

●

●

●

●

●

●

●●
●

●●

●

●

●
●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●●

●●

●

●●
●

●●
●●●
●

●

●

●

●

●
●
●

●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●
●

●

●

●●

●
●●

●
●

●

●
●

●
●●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●
●●

●
●●

●

●

●●

●

●

●
●

●

●

●

●
●

●
●
●
●●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●
●

●

●
●
●

●

●

●

●

●

●
●

●

●

●●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●●
●

●
●●●
●
●●

●

●

●
●

●
●

●

●

●

●●

●
●

●

●●
●●

●●●

●

●
●

●

●

●
●
●●
●●

●

●

●

●

●

●●
●

●

●●
●●

●

●

●

●

●

●

●●
●

●

●
●
●

●●

●

●

●●
●
●

●
●

●

●

●

●

●

●

●

●

●●

●●
●

●●

●●
●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●
●

●

●

●
●
●●

●

●

●
●●●

●●

●

●
●

●
●●
●●●
●

●
●●

●

●

●
●
●

●

●

●
●

●

●
●

●
●●●
●

●

●

●●
●

●

●
●
●
●●

●●
●
●●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●●
●●

●

●

●

●
●

●
●

●
●

●
●●

●
●

●

●
●
●

●

●

●

●

●

●

●●●
●●
●
●

●

●

●

●
●

●

●
●

●

●●

●
●●
●

●

●
●●●
●

●
●●●

●

●●
●
●
●●
●
●●

●

●

●

●

●
●

●●

●

●

●

●●

●

●
●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●●
●●

●
●

●

●

●
●●

●

●●●●

●●
●

●●●

●●
●
●

●

●

●

●

●

●

●●

●

●●

●

●
●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

●●●
●

●

●
●

●●

●

●

●

●
●
●

●

●●

●

●

●●

●●

●
●
●

●

●

●

●

●●
●

●●

●

●
●
●●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●●●

●

●●

●

●●

●

●

●

●●

●

●
●

●

●

●
●

●●

●

●
●

●
●

●

●●

●

●

●●

●

●

●

●
●

●

●

●

●
●
●

●

●●●

●

binomial distribution with a function such as seen in the listing below. Here, we compare
the distributions with two different p arguments, either p = .4 or p = .8, and a common
N = 15 (see Figure 7.5).

##Binomial distribution

2

makebinomial <- function(n=100,p=.5)

4 {

sum(runif(n) < p)

6 }

8 data1 <- sapply (1:1000 , function(x){makebinomial(n=15,p=.8)})

data2 <- sapply (1:1000 , function(x){makebinomial(n=15,p=.4)})

10

tab <- rbind(sapply (0:15, function(x){sum(x==data1)}),

12 sapply (0:15, function(x){sum(x==data2)}))

14

barplot(tab ,main="Histogram of random samples from binomial",

16 beside=T,col=c("gold","black"),names =0:15)

legend (1,200,c("binom (.4 ,15)","binom (.8 ,15)"),cex=.8,bty="n",

18 pch=15,col=c("black","gold"))

152

Chapter 7 Applied Statistics in R

Figure 7.5: Simulation of 1000 draws from two binomial distributions, with different p pa-
rameters.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Histogram of random samples from binomial

0
50

10
0

15
0

20
0

25
0

binom(.4,15)
binom(.8,15)

7.2.5 The Normal distribution

The normal, or gaussian, distribution is a special distribution, used frequently in statistics.
It is a continuous distribution that has a mean value, is symmetric around the mean, and has
the greatest chance of values being close to that mean, and is defined over the entire range of
values from negative to positive infinity–its sample space is the entire line of real numbers.
There are other distributions with very similar shapes, but the normal distribution can be
mathematically proven to arise naturally out of many processes that involve composites of
almost any other random variable. Thus, it is usually a good guess to model any natural
process. As discussed earlier, we know the mathematical form of the density function, which
is the shape of the well-known bell curve. But the distribution function is usually more
important, because it allows us to measure the probability of a subspace of the sample
space. For example, we often want to know the area to the left of a particular value we
estimate, which we use to compute the ‘p-value’ of a statistical test. Also, the cumulative
distribution would let us sample from the distribution to help do inference or simulation.
But unfortunately, there is no closed-form solution to the distribution function, so we need
to estimate it with approximations.

To generate samples from a normal distribution with mean -1000 and s.d. 10, whose
histogram is shown in Figure 7.6. Notice that the shap is actually quite similar to the
binomial distribution examined earlier.

data <- rnorm (1000)*10 -1000

2 hist(data ,breaks =50)

R has a number of related functions for a handful of distributions. For the normal
distribution, these include:

153

Chapter 7 Applied Statistics in R

Figure 7.6: Simulation of 1000 draws from a normal distribution.

Histogram of data

data

F
re

qu
en

cy

−1030 −1020 −1010 −1000 −990 −980 −970

0
10

20
30

40
50

1. dnorm(x, mean = 0, sd = 1, log = FALSE) computes the density (or likelihood) of
the normal distribution.

2. pnorm(q, mean = 0, sd = 1, lower.tail = TRUE, log.p = FALSE) computes the
cumulative probability

3. qnorm(p, mean = 0, sd = 1, lower.tail = TRUE, log.p = FALSE) computes quan-
tiles of probabilities.

4. rnorm(n, mean = 0, sd = 1) generates random values from the specified normal dis-
tribution

Examples:

> round(dnorm (-4:4) ,3)

2 [1] 0.000 0.004 0.054 0.242 0.399 0.242 0.054 0.004 0.000

4 > round(pnorm (-4:4) ,3)

[1] 0.000 0.001 0.023 0.159 0.500 0.841 0.977 0.999 1.000

6

> round(qnorm (1:9/10) ,3)

8 [1] -1.282 -0.842 -0.524 -0.253 0.000 0.253 0.524 0.842 1.282

Here, dnorm and pnorm are the density and cumulative density function; qnorm is the
inverse–it give the sample value associated with a particular point on the cumulative density
function.

154

Chapter 7 Applied Statistics in R

Exercise 4.1.2

Generate and view 1000 or more samples from:

(a) A normal distribution having mean 100 and s.d. .1

(b) A normal distribution having mean 100 and s.d. 20

(c) A uniform distribution 100 and 101.

(d) A discrete distribution among 20 elements, where element n has a probability
proportional to 1/n.

(e) A process where you roll a 10-sided die, and based on the result, you sample a
random normal distribution with both mean equal to 25 times the result, and
standard deviation equal to the result of the die-roll.

7.3 Comparing data to a theoretical distribution

Often, our statistical tests will make assumptions (both strong and weak) about the type
of distribution we have. The purpose of using a random variable to model a process in the
world is that we can draw conclusions about the random variable by examining it, and thus
make inferences about what is likely to have been true about the world.

If our assumptions are violated, our conclusions may not follow. In fact, our assumptions
are almost always violated in one way or another, and so it can depend on how badly the
violation is. For example, some properties of the normal distribution include:

1. It is continuous–any rational number could be observed (usually this is violated by
the precision of our instruments, whether it is a 7-point scale, or a 1-ms timer on the
computer)

2. Its range is infinite–there is no minimum or maximum possible value. This is often
violated practically on data that are scales (which have to be truncated at the bottom
and top), and also on things like accuracy and response time (which can’t go below 0)

3. It is symmetric. This is frequently violated on many kinds of data, such as ratings
scales, response times, etc.

4. It has a gaussian shape. There are many similarly-shaped distributions (the logistic is
one), whose shape differs slightly from the normal distribution. Practically, it would
can be impossible to tell which was the more appropriate model without collecting
thousands or tens of thousands of observations.

5. The data arose from an unchanging (stationary) process. This is almost always vio-
lated, because there are usually sequential tendencies, mixtures of multiple processes
(such as a ‘paying attention’ and ‘not paying attention’ process that can lead to indi-
vidual outliers, non-stationarity, dependency, etc.)

155

Chapter 7 Applied Statistics in R

If we have data, we can use histograms, boxplots, violin plots, and other graphical tools
to help us determine how badly our assumptions are violated. We will look at this more
seriously later in the book when we discuss testing assumptions of statistical tests. But one
of the most useful (and least-used) ways of examining the distribution is what is known
as a q-q plot. A q-q plot compares the quantiles of observed data to the corresponding
theoretical quantiles of the distribution you believe it comes from. If these are similar, they
form a straight line, and indicate the shape of the distribution conforms to the assumptions.
For example, if you had 100 data points, you would compare these values in rank order to
the 0:99th quantile of the hypothesized distribution. The nice thing about a q-q plot is that
it is scale-invariant, so it doesn’t matter what the mean or variance of your data is.

Here, we can compare numbers generated from a normal and a uniform distribution to
both the normal and uniform.

1 data <- rnorm (100)*5+3

data2 <- runif (100)

3 par(mfrow=c(2,2))

plot(sort(data),qnorm (0:99/100),type="l",

5 main="Q-Q plot of \nsampled normal vs. normal",

xlab="Quantiles of data",ylab="Quantiles of distribution")

7 plot(sort(data),qunif (0:99/100),type="l",

main="Q-Q plot of \nsampled normal vs. uniform",

9 xlab="Quantiles of data",ylab="Quantiles of distribution")

11 plot(sort(data2),qnorm (0:99/100),type="l",

main="Q-Q plot of\nsampled uniform vs. normal",

13 xlab="Quantiles of data",ylab="Quantiles of distribution")

15 plot(sort(data2),qunif (0:99/100),type="l",

main="Q-Q plot of\nsampled uniform vs. uniform",

17 xlab="Quantiles of data",ylab="Quantiles of distribution")

156

Chapter 7 Applied Statistics in R

Figure 7.7: QQ-plots of 100 sampled data points from to different distributions, compared
to theoretical normal and uniform. The appropriate distribution shows a straight line.

−5 0 5 10

−
2

−
1

0
1

2

Q−Q plot of
sampled normal vs. normal

Quantiles of data

Q
ua

nt
ile

s
of

 d
is

tr
ib

ut
io

n

−5 0 5 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Q−Q plot of
sampled normal vs. uniform

Quantiles of data

Q
ua

nt
ile

s
of

 d
is

tr
ib

ut
io

n

0.0 0.2 0.4 0.6 0.8 1.0

−
2

−
1

0
1

2

Q−Q plot of
sampled uniform vs. normal

Quantiles of data

Q
ua

nt
ile

s
of

 d
is

tr
ib

ut
io

n

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Q−Q plot of
sampled uniform vs. uniform

Quantiles of data

Q
ua

nt
ile

s
of

 d
is

tr
ib

ut
io

n

157

Chapter 7 Applied Statistics in R

Notice that when random values sampled from a normal distribution are compared to
a normal, the q-q plot is a straight line; similarly when uniform values are compared to
the uniform density, it is also straight. This is a sign that you have chosen the correct
distribution.

Because the q-q plot is so useful, you can use the built-in qqplot and qqnorm functions
to automatically form q-q plots against arbitrary distributions or against the normal.

Exercise 7.3

Using the data set c7rts.csv, form a histogram and normal q-q plot for the response
time (rt) data. Is it well described by the normal distribution? Then, transform the
data with a logarithm and plot the histogram and qq-plot. How about now? In what
ways might the original and transformed data mismatch the normal distribution.
Why?

7.4 Inferential Statistics

We typically make assumptions about what random variable is used to model a specific
process. We often don’t even test those assumptions, and many times cannot test them well–
although they sometimes can be. In fact, we typically assume a single random variable–the
normal distribution. We use this assumption to help us answer a specific inferential question:
based on what we have observed, what is the ‘true’ situation among the population we
sampled from? More specifically, we might want to know if one of two advertising campaigns
is better than another, or if a memory training intervention actually improves measures of
memory in comparison to before the training.

The definition of a “statistic” is a function computed on data. For example, mean, min,
median, (sqrt(max)-3*min + mean) are all statistics of data. Usually, when someone says
they are “doing statistics” on their data, they are doing inferential statistics–trying to infer
something about the true state of the world based on a sample. In many applications of
human factors, psychology, and data science, the true state of the world is something that is
true of a given population (of people, or cognitive states, or neurons, etc.), and your sample
is the set of observations (people, trials, etc.) drawn to represent that population. Ideally,
you don’t have to observe the whole population to understand what is the truth–you can
observe a relatively small sample and infer what the true state of the population is.

The process of ‘doing statistics’ is really the process of:

1. Sampling data from a population of data

2. Identifying a random variable as the model of the sample space and probability distri-
bution.

3. Estimating the parameters of the distribution based on a sample of observations.

4. Trying to make an inference about the generating population based on these assump-
tions.

7.5 Parameter Estimation

In the previous section, we discussed that you must estimate parameters of your distribution
in order to make inferences. In psychology, many mathematical theories create distributions

158

Chapter 7 Applied Statistics in R

Figure 7.8: The histogram and qq-plot of a mystery distribution

Histogram of tries

tries

F
re

qu
en

cy

10 12 14 16

0
50

10
0

15
0

●
●

●

●

●●

●

●
●

●

●

●

●●

●

●

●

●●

●
●●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●
●

●
●●

●

●

●

●

●

●

●●

●

●●

●●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●●

●

●●●

●

●

●●

●
●

●

●

●

●

●●

●●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●
●●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●●

●
●

●●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●●●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●●
●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●
●

●

●

●

●
●●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●●

●●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●●

●●

●

●●

●

●●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●●
●●

●

●

●

●●

●●

●

−3 −2 −1 0 1 2 3

10
12

14
16

Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

of simulated data, and we’d like to get a best guess at some of those parameters to determine
whether they differ across groups whose data we are modeling. For example, parameters of
a multi-layer neural network are all of the connection weights between all the nodes, as well
as some other tuning and learning parameters. In general, how might we estimate these
parameters?

There are a number of ways to estimate parameters, and a lot of the recent work in
statistical computing has involved ways to estimate parameters from more and more complex
models that presumably better describe the world. A crude, but sometimes effective, way to
estimate parameters is an ‘eyeball’ method. For example, consider the following data, whose
histogram is shown in Figure 7.8.

x <- runif (100)*10

2 x2 <- (x-5) ^2+ x*5 + 15 + rnorm (100)*30

par(mfrow=c(1,2))

4 hist(x2 ,breaks =20)

qqnorm(x2)

If we wanted to model this with a normal distribution, we need to estimate two parameters–
the mean and variance of the distribution. We might guess it comes from a normal distri-
bution whose mean is about 50, but we may really have no idea about its variance/spread.
We can always create a function that simulates data from a given distribution, and visually
compare the two:

1 plotmean <- function(data ,main="",middle ,spread=0, samples =1000)

{

3 samplex <- rnorm(samples ,mean=middle ,sd=spread)

5 range <- range(c(samplex ,data))

plot(data , pch=16,col="gold",ylim=range ,main=main)

7 abline(middle ,0)

9 points(samplex ,col="grey20",pch=1)

}

11

plotmean(x2 ,50,main="Mean=50, StdDev =0")

13 plotmean(x2 ,40,main="Mean=40, StdDev =0")

plotmean(x2 ,40,10, main="Mean=40, StdDev =10")

15 plotmean(x2 ,40,20, main="Mean=40, StdDev =20")

plotmean(x2 ,40,40,main = "Mean=40, StdDev =40")

159

Chapter 7 Applied Statistics in R

Figure 7.9: Searching through the mean parameter space, this time guided by the mean
square error. Even though the spread parameter is incorrect, we can get a better idea for
the correct mean value.

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●
●

●
●

0 20 40 60 80 100

−
50

0
50

10
0

Mean=50, StdDev=0

Index

da
ta ●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●
●

●
●

0 20 40 60 80 100

−
50

0
50

10
0

Mean=40, StdDev=0

Index

da
ta

●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●
●

●
●

0 20 40 60 80 100

−
50

0
50

10
0

Mean=40, StdDev=10

Index

da
ta

●●

●
●●
●

●
●●●

●

●●
●
●
●

●

●
●●●●

●
●
●

●
●
●

●
●

●
●

●

●

●

●

●

●
●●

●

●

●●

●

●
●

●
●

●●

●

●

●●
●●
●
●●●

●
●
●

●

●
●
●

●

●

●

●
●
●

●
●●
●

●
●
●●
●
●

●●

●●

●

●

●

●●

●
●●●

●

●

●

●

●

●
●

●
●
●

●●

●

●●

●

●●

●

●

●

●

●

●

●
●

●●

●
●●

●

●
●

●

●
●

●●

●

●

●

●

●●

●

●

●

●

●

●
●●
●●
●

●
●
●

●

●
●

●

●

●
●●

●
●
●
●●●●●●●●

●

●
●
●

●
●

●●●
●●●●

●

●

●●●

●

●●

●●●●
●

●
●
●

●

●●●

●

●
●
●
●

●

●

●●●

●

●

●

●
●
●

●

●

●
●

●●●●
●

●

●

●

●

●

●
●

●
●
●

●

●
●●

●
●
●

●

●●●

●●

●
●●●

●

●

●
●
●
●●

●

●
●
●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●
●

●
●

0 20 40 60 80 100

−
50

0
50

10
0

Mean=40, StdDev=20

Index

da
ta ●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●●

●
●●
●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●
●
●
●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●●

●
●

●

●

●

●
●

●

●

●●

●
●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●
●
●

●

●

●
●●
●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●
●

●
●

●

●

●

●
●●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●●

●

●

●●

●
●

●

●

●●

●

●

●

●

●
●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●●●

●
●

0 20 40 60 80 100

−
50

0
50

10
0

15
0

20
0

Mean=40, StdDev=40

Index

da
ta

●

●

●

●

●

●●
●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●
●

●

●

●
●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●●

●
●

●

●

●

●
●

●
●

●

●

●
●
●●
●

●

●

●

●

●

●

●

●

●

●
●
●

●

●●●●
●

●

●
●●
●
●

●●
●
●

●

●

●●
●

●
●

●

●●
●●

●

●●

●

●

●

●

●
●

●
●

●

●

●
●●
●
●

●

●●
●

●
●
●
●

●

●

●

●

●

●●

●

●
●

●●●

●●

0 20 40 60 80 100

−
20

0
0

10
0

20
0

30
0

Mean=40, StdDev=40

Index

da
ta

●

●

●

●

●

●

●

●
●

●
●●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●
●

●

●●

●●

●
●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

17 plotmean(x2 ,40,80,main = "Mean=40, StdDev =40")

In its simplest form, when we give it our x values and parameters of the normal distribution–
starting with one that has a given mean and no variability. But we think 50 is too high,
so we can try plotmean(x2,40), which we guess is more reasonable. Then, we can start
adjusting the variability, from 0 to 10 to 40 to 80. 80 seems to high, but around 40 seems
acceptable.

Exercise 7.5

Through trial-and-error, identify your best estimates for the two parameters that
seem to best describe the data:

1 test1 <- 12 + runif (500)/3 + runif (500) + runif (500) + runif (500)*3

test2 <- rnorm (100) - 1/(1+ runif (100))

3 test3 <- 5 + abs(rnorm)*3

160

Chapter 7 Applied Statistics in R

Of course, this can and should be automated, provided we can clearly define what we
mean by “looking reasonable”. This is hard to establish. For example, it might be reasonable
to try to equalize either the number or amount of error below and above the line. It might
be useful to ’punish’ large mistakes more than small mistakes, maybe even so that two small
mistakes are considered better than one larger mistake that is the same size as the sum of the
two small mistakes. It might be useful to identify a set of parameters that are the most likely
based on these data (known as the maximum likelihood estimates). Or it might be useful
to assume the noise comes from a particular distribution, so that looking reasonable means
approximating the shape of the data distribution. There are different strategies people use,
but they typically require:

• Establishing a cost function that specifically gives a score to each point, for any given
set of parameters

• Finding a way to minimize that cost by picking a good set of parameters.

Perhaps the most common cost function is called ’squared error loss’. In a situation like
this, it would identify your best estimate for a value ŷ given x and your parameters, and then
compute (y − ŷ)2: the squared difference. In this case, we would ignore the variability and
consider only the deviation from the average. A good fit should minimize the total (sum)
of the squared error across all points. We can compute this in a revised function, which no
longer needs to sample anything; but we will anyway. Note that squared error loss is convex,
meaning that the cost for a single large mistake is always greater than the sum of the cost for
two smaller mistakes that add up to the large mistake. Now, let’s just add this calculation
to the mean plotter, and we can maybe search through the parameters better. We can start
with a small s.d., and just try to hit the best mean accurately, which we think should be
around 40.

1 plotmean2 <- function(data ,middle ,spread=0, samples =1000 , main="")

{

3 samplex <- rnorm(samples ,mean=middle ,sd=spread)

range <- range(c(samplex ,data)) #establish the join range of the data and

simulation

5

plot(data ,pch=16,col="gold",ylim=range ,main="")

7 abline(middle ,0)

9 points(samplex ,col="grey20",pch=1)

##our best -guess model has mean=middle. Compute square error:

11 squarederror <- mean((middle -data)^2)

13 title(paste(main ,"\nmean squared error:\n",round(squarederror ,2)))

return (squarederror)

15 }

17 plotmean2(x2 ,45,2,main="Mean =45")

plotmean2(x2 ,48,2,main="Mean =48")

19 plotmean2(x2 ,49,2,main="Mean =49")

plotmean2(x2 ,50,2,main="Mean =50")

21 plotmean2(x2 ,51,2,main="Mean =51")

plotmean2(x2 ,52,2,main="Mean =52")

161

Chapter 7 Applied Statistics in R

Figure 7.10: Searching through the mean parameter space, this time guided by the mean
square error. Even though the spread parameter is incorrect, we can get a better idea for
the correct mean value.

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●
●

●
●

0 20 40 60 80 100

−
50

0
50

10
0

Index

da
ta ●

●●●●●●●
●
●●●●●●●●

●●●●
●●●●●●

●
●
●●
●
●●●●●●

●●●●●●●●
●●●●●●

●●●
●●●●●●

●
●●●●●●●●●●●

●●●●●●●●
●
●●●

●●●●●●●●●
●●●●●●●●

●
●●●●●●●●

●●●●●●●●●●●●●●
●
●
●
●
●●●●●●

●
●●
●●●●

●●●●●
●●●

●
●●●●●

●●●
●
●●●●●●●●

●●●●
●
●●●●

●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●●
●
●●●●

●●●●●●●●
●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●

●
●●
●●●●

●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●
●●●●●●●●●●

●●●●●
●●
●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●
●●●●●●●●

●●●●●●●●●●●●●●
●
●
●●●●●

●●●●●●
●
●
●●●

●
●
●●
●
●●●●●●●●●●●

Mean=45
mean squared error:

 1299.35

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●
●

●
●

0 20 40 60 80 100

−
50

0
50

10
0

Index

da
ta ●●●

●●●●●●●●●●
●●●●

●●●●●●●
●●
●
●●●●●●●

●●●●●●●●●●●●
●●
●
●●●●●●●●●

●●●●
●●●●●●

●
●●●

●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●
●
●●●

●●●●●●
●●
●●●●

●●
●●
●
●●●●●●●●●●●●●●●

●●●●●●
●●●●●●●

●●●●●●●
●●●●

●
●●●●●●

●●●●
●
●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●
●
●●●

●●●
●●●●●●●●●●

●
●
●●●●

●●●●●●●●●●●
●●●●●●●●●

●●●●
●●●●

●
●●

Mean=48
mean squared error:

 1285.46

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●
●

●
●

0 20 40 60 80 100

−
50

0
50

10
0

Index

da
ta ●

●
●●●●●

●
●●●●

●
●●●●●

●●
●●
●●
●
●●●

●
●●●●

●●●●●●
●
●●●●

●●●●●●●●●●●●●●●●●
●●●●●

●
●●●●●●

●●●●
●●●

●
●●●●

●●●●●●●
●●●●

●
●●●●●

●
●●●●

●●●●●
●
●●●●●●●●

Mean=49
mean squared error:

 1284.83

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●
●

●
●

0 20 40 60 80 100

−
50

0
50

10
0

Index

da
ta ●●●●●

●
●●●

●●●●●●●●●●●
●●●●●●●●●●●●

●●
●
●●●

●
●●●●●

●
●●●●

●●●●●●●●●
●●●●●●●●●●●

●
●●
●●●●●●●●

●●●
●
●●
●
●●●

●●
●
●●●

●●
●●●●●●●●●

●●●
●
●
●●●●●●●●●●

●●●●●●●
●●●

●●●●●
●
●●●●●

●●●●●●●●●●●●●●●●●●
●
●●●

●
●●●●●●

●●
●●●●●●●●

●
●●●●●●

●●●●●●
●●●●

●
●●●●●●●●●●

●
●●●●

●●●●
●
●●●●●

●●
●
●●●●●●●●●●●

●●●●●
●
●●●●●●●

●●●●●●
●●●●●●●●●●●

●●●●●●●●●
●●●●●●●●●●●●

●●●●●
●
●
●
●●●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●
●●●

●
●●●●●●●●●●

●●●●
●●●

●●●●●●●●●●●●●●
●●●●●●●●

●●●●●●●●●
●
●
●●●●●●

●
●
●●●●

●
●●●●●●●

●●●●●
●●●●●●●●●●●

●●●

Mean=50
mean squared error:

 1286.21

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●
●

●
●

0 20 40 60 80 100

−
50

0
50

10
0

Index

da
ta ●●●●●●●●●●●●

●
●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●

●●●●●
●
●
●●●●●●●●●●●●●●●●●●●

●●
●●●●●●●●

●●●●●●●●●
●●●●●

●
●●●

●●●●●●●●●
●
●●●●●●●

●
●●●●●

●
●●
●●●●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●

●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●

●
●●●

●●●●●●
●●●●

●
●●●●●●●●●●●●●

●●●●●●●●●●
●
●●●

●●●●
●
●●●●●

●●●●●●●●●●●●●●●●●
●
●●●

●●
●●
●

Mean=51
mean squared error:

 1289.58

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●
●

●
●

0 20 40 60 80 100

−
50

0
50

10
0

Index

da
ta

●●
●●●●●●

●●●●●
●
●●
●
●●●●●

●●●●●●●●●●
●●●●●●●●●●●

●●
●●
●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●
●
●
●
●
●
●●●●●

●
●●
●●
●●●●

●●●
●

Mean=52
mean squared error:

 1294.95

162

Chapter 7 Applied Statistics in R

Notice by changing the parameter of the function, we reduce mean squared error, meaning
the distribution is becoming a better model of the data. And now, guided by the statistic,
we find that the true mean of 50 really was closer, and that our best estimate of the mean
should be 49.

Exercise 7.5

Using the new plotmean function, find the best mean parameter you can, in terms
of squared error.

test1 <- 12 + runif (500)/3 + runif (500) + runif (500) + runif (500)*3

2 test2 <- rnorm (100) - 1/(1+ runif (100))

test3 <- 5 + abs(rnorm)*3

On their own, the error in this plot is compared to the estimate of the mean, and so the
MSE statistic does not help us estimate the variability directly–we can still only eyeball it.

How could we estimate the variability better? We could look at the overall distribution of
the errors in our model and the data, and compare them. The following function does this,
by comparing cumulative distributions of the two, which you can then eyeball, or we could
arrive at another cost function to help fit this parameter. Notice that in Figure 7.11, the red
estimated distribution function goes from steeper than the data to shallower than the data
around sd=35, which might be a good estimate of our standard deviation parameter.

1

plotmean3 <- function(data ,middle ,spread=0, samples =1000 , main="")

3 {

samplex <- rnorm(samples ,mean=middle ,sd=spread)

5 range <- range(c(samplex ,data)) #establish the join range of the data and

simulation

par(mfrow=c(1,2),mar=c(4,5,3,0))

7 plot(data ,pch=16,col="gold",ylim=range ,main="")

abline(middle ,0)

9

points(samplex ,col="grey",pch =1)

11 ##our best -guess model has mean=middle. Compute mean square error:

error <- (middle -data)

13 title(paste("MSE:",round(mean(error ^2) ,2)))

modelerror <- samplex - mean(samplex)

15 bothbreaks <- hist(c(error ,modelerror),breaks =25,plot=F)$breaks
x1 <- hist(error ,plot=F,breaks=bothbreaks)

17 x2 <- hist(modelerror ,plot=F,breaks=bothbreaks)

plot(x1$mids ,cumsum(x1$density),type="l",main=main ,xlab="Values",ylab="
Cumulative density")

19 points(x2$mids ,cumsum(x2$density),type="l",col="red")

21 return (mean(error ^2))

}

23 plotmean3(x2 ,49,10,main="SD = 10")

plotmean3(x2 ,49,30,main="SD = 30")

25 plotmean3(x2 ,49,35,main="SD = 35")

plotmean3(x2 ,49,40,main="SD = 40")

27 plotmean3(x2 ,49,45,main="SD = 45")

163

Chapter 7 Applied Statistics in R

164

Chapter 7 Applied Statistics in R

Figure 7.11: Searching through the mean parameter space, guided by a depiction of the
cumulative distribution.

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●
●
●

●

●●
●●

●

●

●
●●
●
●

●●
●
●

●

●

●●
●

●

●

●

●●
●●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●●
●
●

●

●●
●

●
●
●
●

●

●

●

●

●

●●

●

●

●

●●●

●●

0 20 40 60 80 100

−
50

50

Index

da
ta ●

●

●●●●
●
●●●●●●●●

●
●

●
●
●
●●
●
●●●●●●●●●

●●
●●
●●

●
●●●

●●
●
●
●
●●
●●●●●●●●

●●●●
●
●●

●
●
●●
●●●

●
●●●●

●
●●

●

●●
●

●
●●●

●●
●
●

●
●
●

●

●
●●●

●●

●

●
●
●●
●●
●

●●
●
●●
●●
●●●

●
●●●

●●●●●●●
●●
●

●●

●●●
●●
●●
●●
●
●●
●●●●

●
●●

●
●●●●●●●

●
●●
●
●●●●●●●

●●
●●
●

●
●●●●●●

●●●
●
●

●

●●
●●●●●

●●●●

●

●●●●
●●●

●

●
●●●●

●
●●
●
●●
●
●●●●●●●●

●●
●

●●
●●
●
●●
●
●
●

●
●
●

MSE: 1284.83

−50 0 50 100

0.
00

0.
06

SD = 10

Values

C
um

ul
at

iv
e

de
ns

ity

●

●●

●
●

●

●

●

●
●

●
●

●

●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●
●
●

●

●●●●
●

●

●
●●
●
●

●●
●
●

●

●

●●
●

●
●

●

●●
●●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●●
●
●

●

●●
●

●
●
●
●

●

●

●

●

●

●●

●

●
●

●●●

●●

0 20 40 60 80 100

−
50

50

Index

da
ta

●

●

●

●

●

●
●●

●

●●●
●

●
●
●●
●
●

●

●

●

●●●
●

●

●
●

●

●

●

●

●

●

●
●
●●●

●●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●
●
●

●

●●

●

●
●

●

●

●

●

●

●
●

●●
●
●●

●

●

●

●

●

●

●●

●●
●
●

●
●
●

●

●

●

●●
●

●
●

●

●

●

●

●

●
●

●

●

●
●
●●●

●

●

●

●

●

●

●

●
●

●
●
●
●

●

●

●

●●
●

●

●

●

●●
●

●
●

●●

●

●●
●

●

●
●
●
●

●
●●
●

●

●

●●
●

●

●

●
●

●●

●
●

●
●

●

●
●

●
●
●
●

●

●

●

●●

●

●●
●

●

●

●

●
●
●
●
●

●

●

●●

●
●

●

●●
●

●

●

●●
●

●

●

●

●

●
●
●
●●

●

●

●

●

●

●
●
●●

●

●
●

●●
●

●

●

●

●
●

●

●●

●

●

MSE: 1284.83

−100 −50 0 50 100

0.
00

0.
06

SD = 30

Values

C
um

ul
at

iv
e

de
ns

ity

●

●●

●
●

●

●

●

●
●

●
●

●

●

●
●
●●
●

●

●

●

●

●

●

●

●

●

●
●
●

●
●●●●

●

●

●●●
●
●

●●
●●

●

●

●●
●

●
●

●

●●
●●

●

●●

●

●

●

●

●
●

●
●

●

●

●
●●
●
●

●

●●
●

●
●
●
●

●

●

●

●

●

●●

●

●
●

●●●

●●

0 20 40 60 80 100

−
50

50
15

0

Index

da
ta ●

●

●

●

●●

●

●

●●

●

●
●●●

●●

●
●●
●

●

●

●

●

●

●●●
●●

●

●

●
●

●

●
●
●

●●

●●

●●
●
●

●

●

●

●●

●
●

●

●

●

●

●

●
●●●

●

●

●●
●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●
●
●

●

●

●

●●

●

●

●

●
●
●

●

●
●●

●

●

●

●●

●

●
●●

●

●
●
●

●

●

●●
●
●
●

●

●
●
●

●

●
●

●

●

●●●
●
●

●

●
●

●

●●

●

●●

●
●
●

●

●

●

●
●

●

●

●

●

●
●●●●

●

●●

●

●

●
●●

●
●
●

●

●

●
●

●
●

●●

●
●

●

●●

●

●
●

●

●
●

●●●

●

●

●
●●●

●●

●

●
●
●

●●●

●
●●

●
●

●

●

●●

●
●●

●
●
●

●

●
●●

●

●

●
●
●
●●

●

●●

●●

●

●

●

●

MSE: 1284.83

−100 −50 0 50 100

0.
00

0.
06

SD = 35

Values

C
um

ul
at

iv
e

de
ns

ity

●

●●
●
●

●

●

●

●
●

●
●

●

●

●
●
●●
●

●

●

●

●

●

●

●

●

●

●
●
●

●
●●●●

●

●

●●●
●
●

●●
●●

●

●

●●
●

●
●

●

●●
●●

●

●●

●

●

●

●

●
●

●
●

●

●

●●
●
●
●

●

●●
●

●
●
●
●

●

●

●

●

●

●●

●

●
●

●●●

●●

0 20 40 60 80 100

−
50

50
15

0

Index

da
ta

●

●

●●●
●

●

●
●
●

●
●

●●

●

●

●
●

●

●
●

●

●

●

●

●
●
●

●

●
●

●

●

●●

●●●●
●●

●

●

●

●
●

●

●
●

●●

●
●

●

●

●
●

●●
●

●

●

●

●

●
●

●

●●
●

●
●

●●

●

●●

●

●

●
●

●

●●
●●
●

●
●
●

●

●
●
●
●●●

●●
●●

●

●
●

●

●

●
●●●

●

●

●●
●

●

●
●●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●
●
●

●

●
●

●

●●

●●

●

●

●
●

●

●

●

●

●●●

●
●

●

●

●●

●

●
●●
●

●●

●●●

●

●

●
●

●
●

●●

●

●

●

●●
●

●

●

●

●●●

●

●

●●●

●●

●

●
●

●
●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●●●
●

MSE: 1284.83

−100 −50 0 50 100

0.
00

0.
06

SD = 40

Values

C
um

ul
at

iv
e

de
ns

ity

●

●●
●
●

●

●

●

●
●

●
●

●

●

●
●
●●
●

●

●

●

●

●

●

●

●

●

●
●
●

●
●●●●

●

●

●●●
●
●

●●
●●

●

●

●●
●

●
●

●

●●
●●

●

●●

●

●

●

●

●
●

●
●

●

●

●●
●
●
●

●

●●
●

●
●
●
●

●

●

●

●
●

●●

●

●
●

●●●

●●

0 20 40 60 80 100

−
10

0
0

10
0

Index

da
ta

●

●

●●

●

●

●

●●

●

●

●

●

●
●●
●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●●

●

●

●●

●

●●

●

●

●

●

●

●

●

●
●
●●

●
●

●
●●

●

●●

●

●●●
●
●●
●

●
●●
●

●

●●
●

●

●

●

●

●

●
●
●
●
●

●

●
●
●
●
●

●

●
●

●●●
●

●

●

●
●

●

●

●

●●
●

●

●
●●
●
●

●●●

●●

●
●
●

●

●

●●

●

●

●

●

●●●

●

●
●
●

●

●
●

●

●

●
●●●

●

●●

●

●

●

●
●

●

●
●

●

●

●●

●

●
●

●

●●

●

●

●
●

●

●

●

●●

●

●

●
●

●
●

●

●
●

●

●

●
●
●

●

●
●

●

●

●

●

●
●●

●●

●

●
●

●●
●●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●
●
●
●
●
●

●

●

●

●

●
●●

MSE: 1284.83

−150 −100 −50 0 50 100

0.
00

0.
06

SD = 45

Values

C
um

ul
at

iv
e

de
ns

ity

165

Chapter 7 Applied Statistics in R

Exercise 7.5

Using the new plotmean3 function, find the best parameters you can, including for
the variability.

1 test1 <- 12 + runif (500)/3 + runif (500) + runif (500) + runif (500)*3

test2 <- rnorm (100) - 1/(1+ runif (100))

3 test3 <- 5 + abs(rnorm)*3

It should be noted that a different kind of cost function is sometimes used to estimate
these parameters: the likelihood, which is then maximized (technically, the negative log-
likelihood is typically minimized). Likelihood is a number obtained by assessing the value of
the density function of the random variable at the point of the data observed. If you have a
cloud of data you wish to model with a two-dimensional normal distribution. Here, the best
likelihood answer (maximum likelihood) is found by placing the center of the distribution at
the center of the cloud, and adjusting the standard deviations so it best matches your data.
If the standard deviation parameter is too small, too many outer points will have too low
of a likelihood. If you set the standard deviation parameter too big, too many inner points
will have a value too small. The maximum-likelihood estimate is sometimes biased, meaning
you are likely to underestimate the variance of the actual process that generated the data,
but it has some useful properties.

7.5.1 Summary of ad hoc parameter estimation

Typically, when performing a statistical analysis, we would not resort to these crude ways
of estimating parameters. Instead, we will often use other ways that can be proven to give
the best answer in one way or another. But at its heart, every test you perform requires
parameter estimation in some fashion, and you should recognize that it is always possible to
‘search’ for the parameters rather than computing them directly, as we will do in the next
section.

7.6 Parameter estimation with statistics

Earlier sections discussed the goal of estimating parameters for the random variables we try
to model the world with, and showed ad hoc methods for searching for these values, which
we sometimes have to resort to. But there are sometimes easier ways. If we are lucky, we
can estimate parameters using the right statistic, rather than search.

7.6.1 Statistics

The word STATISTIC has a very simple definition which is familiar to sports fans, but not
as much to researchers who conduct statistical analysis: a statistic is a function of data.

For example, the function MEAN adds up all the elements and divide by N, and is a
function of the data.

Other statistics include:

• Median–the middle point

• Mode –the most common value observed

166

Chapter 7 Applied Statistics in R

• Geometric Mean (Nth root of the product; the length of the side of the square whose
area is the same as the rectangle formed by the values but in high dimension).

• min–the smallest point

• max –the largest observation

• variance –subtract the mean from each value, square, and compute the average.

Basically, if you think of your data as a vector or a table in R, a statistic is any number
that results from a function that takes those data as an argument.

Not only might we model our data as a random variable, we might also model the results
of a statistic as a random variable. Another way to think about it is that just as our process
is a random variable, a function of that process is also a random variable. Consequently,
just as our data might have a distribution, so will our statistics. But, the distribution of
the statistic will typically be different than the distribution of the data. The importance of
this will be used later, and some special facts about the relationship between a distribution
and the distribution of a statistic are central to our ability to make inferences using a small
number of tests.

Exercise 7.6.1

In the example above, in terms of squared-error cost function, the best estimate for
the middle parameter is the mean of the data, and the best estimate for the spread
is the sample standard deviation of the data. Use plot3 and give it mean and sample
sd (computed as sd(data), where n is the number of observations).

1 test1 <- 12 + runif (500)/3 + runif (500) + runif (500) + runif (500)*3

test2 <- rnorm (100) - 1/(1+ runif (100))

3 test3 <- 5 + abs(rnorm)*3

7.6.2 Using statistics for parameter estimation

As we discussed earlier, we have the problem of wanting to estimate parameters from a
random variable based on data. Instead of ad hoc estimating or tedious search, there are
sometimes functions we could compute on our data (i.e., statistics) that could estimate the
parameters we care about.

This is one of the core aspects of modern statistical testing, and is one that is usually
hidden from users by software packages. In many situations, we can compute statistics on
data we have that will directly estimate the parameters we care about. If we are lucky, we
can identify a function that will estimate the parameters of the distribution we are interested
in modeling. Being “lucky” means several things: our data really were generated from the
distribution we think they were; we have enough data so that our estimates are not incorrect
or biased;, and finally, we have assumed the data came from a distribution whose parameter
we know how to estimate with a statistic. This last part was historically usually fairly easy,
because statisticians have traditionally focused on distributions for which this is true. In

167

Chapter 7 Applied Statistics in R

recent years, however, this tends to not be the case, and we use more complex methods for
estimation.

People often confuse the statistic for the parameter it is estimating, because they can be
closely linked. Statistics for estimating simple distributions are often fairly straightforward
and seem intuitive, but involve non-trivial mathematics to derive and prove their convergence
properties. And usually, we may not even know we are doing it, because the statistical tools
can hide the estimation process from us.

7.6.3 Example: The Binomial distribution.

One of the most common and simple random variables we encounter is the binomial RV,
which can be used to model many yes/no processes, including indirectly whether an act
succeeds (accuracy). Suppose we create a data set from a binomial distribution with two
parameters with the following function:

1 makebinomial <- function(n=100,p=.5)

{

3 sum(runif(n) < p)

}

Look at the series of results:

makebinomial (100,p=.9)

2 makebinomial (1000,p=.5)

4 > makebinomial (100,p=.9)

[1] 87

6 > makebinomial (1000,p=.5)

[1] 499

we could run this many times to visualize the RVs distribution, using this trick, which is
visualized in Figure ??

1 samples <- sapply (1:1000 , function(x){makebinomial(n=25,p=.8)})

hist(samples)

3

slightly more procedural:

5 samples <- rep (0 ,1000)

for(i in 1:1000)

7 {

samples[i] <- makebinomial (25 ,.8)

9 }

hist(samples)

Question: how can we estimate the value p from a set of data? It seems like intuitive
that if we find the number of successes, and divide by the number of samples, the answer
would be a good estimate. Here, since we had 25 trials, we divide by 25. The results are
shown in the right panel of Figure 7.12.

The set of estimates we obtain:

hist(samples/25)

2

mean(samples/25) ##This should be pretty close to 0.8

168

Chapter 7 Applied Statistics in R

Figure 7.12: Searching through the mean parameter space, guided by a depiction of the
cumulative distribution.

Histogram of samples

samples

F
re

qu
en

cy

0 5 10 15 20 25

0
50

10
0

15
0

20
0

Histogram of samples/25

samples/25

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
50

10
0

15
0

20
0

How far off are we likely to be? In my simulation, the mean value was .7952, which seems
pretty close, but we can see that on any individual experiment, our estimates generally ranged
between .7 and .9.

Exercise 7.6.3

• Suppose you were flipping a fair coin 100 times. What is the chance that it
comes up heads fewer than 40 times? Although this can be computed exactly,
estimate this through ’Monte Carlo’ simulation, by simulating the experiment
and running it hundreds or thousands of times.

• Suppose you run a gambling operation, and get suspicious that a coin is biased
if it landed heads or tails more than 55 times out of 100 flips. If the coin is
really biased so that it lands heads on average 60% of the time, what is the
probability that on a given 100-flip sequence, you would think it is fair? Biased
heads? Biased tails? Simulate at least 1000 of these 100-flip experiments to
determine your answer.

Now, suppose we compute sum squared error for any particular estimate. We give it
data and N (the parameter of the binomial), and a particular estimate, and it will give us a
goodness-of-fit statistic.

1 sse <- function(data ,N,estimate)

{

3 sum((data/N-estimate)^2)

}

5 set.seed (100)

dat <- sapply (1:1000 , function(x){makebinomial(n=25,p=.8)})

7 sse(dat ,25 ,.5)

169

Chapter 7 Applied Statistics in R

Figure 7.13: SSE values for parameter estimates around 0.8.

●

●

●

●

●

●

●
●

●
● ● ● ●

●
●

●

●

●

●

●

●

0.70 0.75 0.80 0.85 0.90

6
8

10
12

14
16

Parameter estimate

S
S

E

sse(dat ,25 ,.8)

9

> sse(dat ,25 ,.5)

11 [1] 98.6816

> sse(dat ,25 ,.8)

13 [1] 6.4016

Now, we can again use trial-and-error to find a value that produces the smallest SSE.

1 > estimate

[1] 0.8038

3 > sse(dat ,25, estimate)

[1] 6.38716

5

This estimate has a SSE of 6.38. Note that we can’t get an SSE of 0, because the data
are all 1s and 0s, and so each observed value will differ from the mean by .2 or .8. Now, if
we adjust our estimate a little bit in either direction:

2 > sse(dat ,25, estimate +.01)

[1] 6.48716

4 > sse(dat ,25,estimate -.01)

[1] 6.48716

It might not surprise you that the average of the proportions appears to be the best
estimate. We can see that with this plot:

1 plot (70:90/100, sapply (70:90/100, function(x){sse(dat ,25,x)}),type="o",

ylab="SSE",xlab="Parameter estimate")

170

Chapter 7 Applied Statistics in R

This shows a few things. First, a statistic (and a simple one) might be our best estimate
of a parameter. In this case, the mean of the data (a statistic) is the best estimate of the
parameter of the binomial distribution describing the data. Second, our estimate itself is not
likely to be the same every time–it has its own distribution. This means that if you ran the
same experiment again, you’d expect a different answer. Although we will not go through
the proofs of theorems in this class, we will simulate these properties so that you can have
a more intuitive understanding of how statistical tests work.

What happens when we compute the mean statistic on random variables? We will see in
the next section.

7.7 The Normal Distribution

For many of the statistical tests we perform, we are concerned with the normal distribution.
Why? For two reasons–it turns out that if you have a bunch of processes and mix them
together, they typically begin to approximate the normal distribution. And second, because
the underlying distributions we care about (a random variable representing our estimate of
different parameters) can often be proven to approximate the normal, via something called
the Central Limit Theorem. To see this, suppose simply that the time needed to complete a
task is made up of a bunch of sub-tasks, each of which has a distribution that is not normally
distributed. This could go all the way down to sequences of neural processes.

In this case, suppose each of 50 processes has a uniform distribution with a mean between
0 and 1:

1 means <- runif (50)

we can simulate the time for the whole process with this, 1000 times–it is like we have run
1000 experiments of 50 samples, computing the mean each time:

1 means <- runif (50)

tries <- sapply (1:1000 , function(x){sum(runif (50)*means)})

3 par(mfrow=c(1,2))

hist(tries ,col="gold")

5 qqnorm(tries)

Notice that although the individual random variables were uniform, the composite, which
is the sum of other random variables, approximates a normal distribution. This is called the
Central Limit Theorem, and can be proved mathematically. It is the fundamental theorem
that leads us to use the normal distribution, and to not worry too much if our original data
are generated by a distribution that is non-normal.

7.7.1 More on Comparing Distributions

It can be handy to compare two distributions against one another, or to compare a distri-
bution against a known distribution to determine whether it violates the assumptions. The
quantile-quantile plot has been developed to do this. This simply plots the values of quan-
tiles against one another. As we have used already, qqnorm() will do this against a normal
distribution and qqplot() will compare two distributions. Really, this is the same as plotting
the sorted data against one another, assuming you have the same number of points in each
data set.

171

Chapter 7 Applied Statistics in R

Figure 7.14: The sum of 50 random uniform distributions with different mean values is
indistinguishible from a normal distribution

Histogram of tries

tries

F
re

qu
en

cy

10 12 14 16

0
50

10
0

15
0

●
●

●

●

●●

●

●
●

●

●

●

●●

●

●

●

●●

●
●●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●
●

●
●●

●

●

●

●

●

●

●●

●

●●

●●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●●

●

●●●

●

●

●●

●
●

●

●

●

●

●●

●●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●
●●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●●

●
●

●●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●●●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●●
●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●
●

●

●

●

●
●●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●●

●●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●●

●●

●

●●

●

●●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●●
●●

●

●

●

●●

●●

●

−3 −2 −1 0 1 2 3
10

12
14

16

Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

1 dat1 <- rnorm (1000)

dat2 <- 100 + rnorm (1000)*5

Because these have the same number of observations, we can plot them against one
another simply by sorting each one

plot(sort(dat1),sort(dat2))

but what if we apply a transformation:

1 dat3 <- log(dat2 -min(dat2)+.001)

plot(sort(dat1),sort(dat3),type="o")

3 abline (0,1)

qqplot(dat1 ,dat3)

This is no longer linear, indicating that the distributions don’t match, either by plotting
the sorted values against one another or via the qqplot function. In general, qqplot will
be better because it will work even if the two data sets are of different lengths. We can use
the qqnorm function to see how quickly the sum-of-uniform random variables converges to
a normal, which will be explored in the next exercise.

Run the following code and examine the qq-plots of each distribution. Which are ap-
proximated by normal distributions? Which are not?

tries <- log(dat2 -min(dat2)+.1)

2 qqnorm(tries)

4 ##Here is a normal distribution

means <- runif (50)

6 tries <- sapply (1:1000 , function(x){sum(rnorm (50)*means)})

qqnorm(tries)

8

par(mfrow=c(1,2))

10 ##what about a log -normal distribution. Look at the base distribution:

172

Chapter 7 Applied Statistics in R

tries <- sapply (1:1000 , function(x){sum(exp(rnorm (1)*means))})

12 hist(tries ,breaks =20)

qqnorm(tries)

14 ##It is highly skewed. But what if take the sum of 10?

16 tries <- sapply (1:1000 , function(x){sum(exp(rnorm (10)*means))})

hist(tries)

18 qqnorm(tries)

20 ##sum of 100?

tries2 <- sapply (1:1000 , function(x){sum(exp(rnorm (100)*means))})

22 hist(tries2)

qqnorm(tries2)

24

##sum of 1000?

26 tries3 <- sapply (1:1000 , function(x){sum(exp(rnorm (1000)*means))})

hist(tries3)

28 qqnorm(tries3)

30 par(mfrow=c(1,3))

qqnorm(tries)

32 qqnorm(tries2)

qqnorm(tries3)

The more we add together, the more the result of the function matches the normal
distribution. What this means is that many complex processes that stem from a bunch of
different sub-processes will tend to be generally normal, and more importantly, if we collect
a bunch of observations of the same process, and add them up (possibly dividing by N),
it will also be normal, regardless of its source distribution. But adding up the values and
dividing by N is just the mean statistic. This means that even if the data distribution itself
is not normal, the mean statistic will tend to have a distribution across experiments that IS
normally distributed, even though we cannot see it because we only conduct one experiment
at a time. (Note, this assumption can be violated, but typically statisticans are less worried
about violating the normality assumption as they are about violating other assumptions like
homogeneity of variance. Many processes (time, accuracy, precision, ratings scales, etc.) are
logically not normally distributed, but they still will produce means that are.

Exercise 7.7.1

Write a function that creates a random variable that is a sum of three random pro-
cesses; two uniform RVs and a normal RV (you choose how these are mixed). Run a
simulation where you sample 100 of these and estimate the mean. Use a q-q plot to
examine the distribution of these means, for at least 1000 simulated experiments.

7.8 Biases in Parameter Estimation

The basic question we asked in the previous exercise is at the heart of statistical inference.
We often want to know whether, based on observing some data, the group, process, people,

173

Chapter 7 Applied Statistics in R

or context we happened to sample is likely to differ more broadly from some other group,
process, people, or context. For the coin, we KNOW whether a particular sample is biased
(and it is whenever it differs from 50:50), but we might want to infer whether the coin is
biased (so we can get rid of it, bet on it, or fix it).

Flipping a coin is a lot like any human process that either succeeds or fails. This includes
whether a student succeeds in learning/recalling information, whether the correct response
is chosen, whether a job is completed on time, whether a advertising lead is converted to
a sale, etc. We may have two products, interfaces, students, tools, contractors, etc., and
observe that on some criterion, one succeeds on 90 percent of the questions, whereas another
succeeds on 85%. We KNOW that on a particular sample, one did better than the other, but
want to know whether that is likely to repeat itself. This is the core of inference–inferring a
more broad pattern about the population based on a smaller sample.

Psychology research typically wants to generalize to a broader population. This is why
sampling can be important, because if you sample only from university students, your statis-
tical generalization is to the population of university students, which may be fairly limited.
On the other hand, many types of studies may really want to generalize to a person based
on a sample of their behavior. For example, if you are designing and testing a new interface
for a special-purpose software tool used by a handful of people, you may not be as interested
in sampling a general population and more interested in convincing yourself that the few
people who use it are indeed better. You may not need to test a lot of people, but you should
be confident that the test would be repeatable within a single person.

The problem is that typically, we have just a single observation–the experiment. From
this observation, we make our best guess at the random variable that generated the data, and
ask questions about them. It might seem intuitive that to estimate a parameter associated
with the mean of a distribution, we need to find the mean of the outcome variables. This is
typically true, but it is not always the case that there is such a simple relationship between
the parameter and the statistic used to estimate that parameter. Often, the parameter is
given as a greek symbol, and our estimate is written with a ‘hat’, indicating it is an estimate.
The mean parameter is often written µ, whereas the estimate of the mean is µ̂.

When we are estimating other parameters of a distribution, our intuitive methods of
estimating can be biased. Usually, bias manifests as an under-estimation or over-estimation
for small sample sizes.

Here are 1000 normal random numbers from a distribution with the σ (sigma or variabil-
ity) parameter = 10.

1 y <- rnorm (1000)*10

hist(y)

Suppose we want to estimate the standard deviation parameter of of the original, by
computing the standard deviation statistic. For a distribution function, variance (sd squared)
is a weighted function averaged over all points of the function. This computes the exact
expected density at all points:

x<- -500:500/100

2 y <- dnorm(x)

plot(x,y,type="l",ylab="Density of normal distribution",ylim=c(0,.5))

4 abline(v=0)

arrows (-1,.08,1,.08, angle=90,code=3,length =.05)

174

Chapter 7 Applied Statistics in R

Figure 7.15: Normal density and squared error deviation around mean of distribution.

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

x

D
en

si
ty

 o
f n

or
m

al
 d

is
tr

ib
ut

io
n

−4 −2 0 2 4

0
1

2
3

4
5

x

D
en

si
ty

 o
f n

or
m

al
 d

is
tr

ib
ut

io
n

For this exact distribution, we can compute its standard deviation as the mean of the
squared deviations. The red line indicates how much penalty an error accrues as it deviates
from the mean. So, for this hypothetical distribution, you would penalize each data point
based on the value of the red line. The mean height of the red line over all the data points
is the standard deviation.

1 plot(x,y,type="l",ylab="Density of normal distribution",ylim=c(0,5))

abline(v=0)

3 arrows (-1,.08,1,.08, angle=90,code=3,length =.05)

x<- -500:500/100

5 y <- dnorm(x)

squaredev <- (x-mean (x))^2

7 points(x,squaredev ,type="l",col="red")

We can compute this as a weighted mean using weighted.mean. This is a numerical
estimate, looking at the function every .1 steps on the x axis In the figure, the red value
(squared deviance) is being weighted by the black value (density).

It is essentially asking how big, on average, is the red line, weighed by the values we are
most likely to see.

1 weighted.mean(squaredev ,y)

Notice that it is about 1.0, which is what we’d expect. A weighted mean does basically
what we would do by averaging over observations sampled from that distribution. Those
values that are sampled more often are represented more often in our data, which get averaged
together. So, let’s try to compute the average of the squared deviations, using the ’mse’
function below. MSE computes the variance of the data, so we will need to take the square
root to estimate the standard deviation.

175

Chapter 7 Applied Statistics in R

1 mse <- function(x){mean((x-mean(x))^2)}

x <- rnorm (20); sqrt(mse(x))

This is troubling. the data are generated from a distribution whose standard deviation
is 1.0, but appears to be consistently below 1.0. Let’s check this for a bunch of examples:

1 hist(sapply (1:1000 , function(x){mse(rnorm (20))}),xlab="")

mean(sapply (1:1000 , function(x){mse(rnorm (20))}))

Here, the mean estimate ended up being .959. If we increase N from 20 to 200 , it seems
to get better, to .989. If we increase it to 2000, it is almost exactly correct–.999.

hist(sapply (1:1000 , function(x){mse(rnorm (200))}),xlab="")

2 mean(sapply (1:1000 , function(x){mse(rnorm (200))}))

4 hist(sapply (1:1000 , function(x){mse(rnorm (2000))}),

xlab="",breaks =100)

6 mean(sapply (1:1000 , function(x){mse(rnorm (2000))}))

So, for small experiments, using mse to estimate the standard deviation will be biased,
even though mse is identical to the formula for computing standard deviation from data.
Standard deviation–computed as mse–is a STATISTIC (a function of data), and if we use it
to estimate the corresponding parameter of the distribution (often referred to as the greek
symbol σ) it is systematically biased, and it seems like it is worse for small samples. Let’s
test this more systematically:

samplesizes <- c(2,3,4,5,6,7,8,9,10,20,50,100,200)

2 ests <- c()

reps <- 10000

4

for(samples in samplesizes)

6 {

dat <- matrix(rnorm(samples*reps),reps ,samples)

8

vars <- apply(dat ,1,mse)

10 print(paste(samples ,mean(vars)))

ests <- c(ests ,mean(vars))

12 }

This is not very good until we get to experiments of around 100!!!

plot(samplesizes ,ests ,type="o",main="Underestimation of variance",

2 xlab="Number of observations",ylab="Estimated Variance",

ylim=c(.5 ,1.1))

4 abline(1,0,lwd=3,col="grey")

What is going on here? Applying the same function to the actual distribution and to
data sampled from the distribution produce different numbers, when the sample size is small.
This is because our statistic is a biased estimate of the parameter. Is there an estimate that is
unbiased? By looking at the under-estimations across sample sizes, we can detect a pattern.

176

Chapter 7 Applied Statistics in R

The bias gets smaller as N gets bigger. Through calculus, one can prove that the bias is
n/(n+1) times the true variance, and so if we multiply/adjust the estimate by this factor,
we can produce an unbiased estimate.

1 adj <- samplesizes/(samplesizes -1)

plot(samplesizes ,ests*adj ,main="Adjusted estimates",

3 ylab="Adjusted value n/(n-1)")

5 ##Incorporate this directly into our MSE

mse.sample <- function(x){sum((x-mean(x))^2)/(length(x) -1)}

7

samplesizes <- c(2,3,4,5,6,7,8,9,10,20,50,100,200)

9 ests <- c()

ests2 <- c()

11 reps <- 10000

for(samples in samplesizes)

13 {

dat <- matrix(rnorm(samples*reps),reps ,samples)

15

vars <- apply(dat ,1,mse)

17 vars2 <- apply(dat ,1,mse.sample)

print(paste(samples ,mean(vars),mean(vars2)))

19 ests <- c(ests ,mean(vars))

ests2 <- c(ests2 ,mean(vars2))

21 }

Here is the ’original’ estimate, compared to the unbiased estimate:

plot(samplesizes ,ests ,type="o",

2 main="Underestimation of variance",

xlab="Number of observations",

4 ylab="Estimated Variance",

ylim=c(.5 ,1.1))

6 abline(1,0,lwd=3,col="grey")

##The ’adjusted ’ estimate:

8 points(samplesizes ,ests2 ,type="o",col="gold",pch=16,lwd=2)

points(samplesizes ,ests2 ,type="p",col="black",pch=1)

This bias is why we sometimes use what is called the ’sample variance’ versus ’population
variance’ to estimate standard deviation. If you are trying to estimate a parameter of
a population, you should always use the sample variance formula, because it will be, on
average, an unbiased estimate. As your number of samples get larger, the bias gets smaller
and so the difference between the two formulas goes away, but you should still use the sample
variance estimates.

Outcome:
To estimate a parameter of a distribution, we need to compute a statistic on the data.

But we cannot expect the parameter to be unbiased. This is especially true for variance
estimates, which is why we use the ’sample’ variance and sample standard deviation

7.9 Summary

In this chapter, you learned about random variables and their parameters. We looked at
the challenge of estimating those parameters, and learned that some parameters can be
estimated using statistics of data. However, those estimates can sometimes be biased.

177

Chapter 7 Applied Statistics in R

Figure 7.16: The estimate of standard deviation is biased (black line) and depends on the
number of observations. We can use a debiased sample standard deviation formala (gold
line) instead to account for this biasing.

●

●

●

●

●
●
●
●●

●

● ● ●

0 50 100 150 200

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

1.
1

Underestimation of variance

Number of observations

E
st

im
at

ed
 V

ar
ia

nc
e

●
●
●●

●●●●● ● ● ● ●
●
●
●●

●●●●● ● ● ● ●

178

Chapter 7 Applied Statistics in R

7.10 Solutions to Exercises

Exercise 7.2.5 Solution

Generate and view 1000 samples from:

(a) A normal distribution having mean 100 and s.d. .1

(b) A normal distribution having mean 100 and s.d. 20

(c) A uniform distribution 100 and 101.

(d) A discrete distribution among 20 elements, where element n has a probability
proportional to 1/n.

(e) A process where you roll a 10-sided die, and based on the result, you sample a
random normal distribution with both mean equal to 25 times the result, and
standard deviation equal to the result of the die-roll.

1 hist(rnorm (1000 , mean =100,sd=.1))

hist(rnorm (1000 , mean =100,sd=20))

3 hist(runif (1000 ,min=100,max =101))

barplot(table(sample (1:20 ,1000 , replace=T,prob=1/1:20)))

5

vals <- (sapply(ceiling(runif (10000)*10),function(x){rnorm(1,x*25,x)}))

7 hist(vals ,breaks =100)

Exercise 7.3 Solution

Using the data set c7rts.csv, form a histogram and normal q-q plot for the response
time (rt) data. Is it well described by the normal distribution? Then, transform the
data with a logarithm and plot the histogram and qq-plot. How about now? In what
ways might the original and transformed data mismatch the normal distribution.
Why? The following code will examine these qqplots:

1 data <- read.csv("c7rts.csv")

par(mfrow=c(1,2))

3 hist(data$rt,breaks =50)
qqnorm(data$rt)

5 hist(log(data$rt))
qqnorm(log(data$rt))

7

data2 <- data$rt[data$rt <5000]
9 hist(data2)

hist(log(data2))

11 qqnorm(log(data2))

Looking at the results, it is highly skewed, and not well-approximated by a normal
distribution. Transforming with a log transform is a small improvement, but still not
perfect.

179

Chapter 7 Applied Statistics in R

Exercise 7.5 Solution

Through trial-and-error, identify your best estimates for the two parameters that
seem to best describe the data:

1 test1 <- 12 + runif (500)/3 + runif (500) + runif (500) + runif (500)*3

test2 <- rnorm (100) - 1/(1+ runif (100))

3 test3 <- 5 + abs(rnorm)*3

Exercise 7.5a Solution

Using the new plotmean function, find the best mean parameter you can, in terms
of squared error.

1 test1 <- 12 + runif (500)/3 + runif (500) + runif (500) + runif (500)*3

test2 <- rnorm (100) - 1/(1+ runif (100))

3 test3 <- 5 + abs(rnorm)*3

Exercise 7.5b Solution

Using the new plotmean3 function, find the best parameters you can, including for
the variability.

1 test1 <- 12 + runif (500)/3 + runif (500) + runif (500) + runif (500)*3

test2 <- rnorm (100) - 1/(1+ runif (100))

3 test3 <- 5 + abs(rnorm)*3

The following seem reasonable:

1 plotmean(test1 ,"Test1" ,14.5,1)

plotmean(test2 ,"Test2" ,-1,1.1)

3 plotmean(test3 ,"Test3" ,8,1.7)

180

Chapter 7 Applied Statistics in R

Exercise 7.6.1 Solution

In the example above, in terms of squared-error cost function, the best estimate for
the middle parameter is the mean of the data, and the best estimate for the spread
is the sample standard deviation of the data. Use plotmean3 and give it mean and
sample sd (computed as sd(data), where n is the number of observations).

1 test1 <- 12 + runif (500)/3 + runif (500) + runif (500) + runif (500)*3

test2 <- rnorm (100) - 1/(1+ runif (100))

3 test3 <- 5 + abs(rnorm)*3

Let’s see what the same values look for plot3

1 plotmean3(test1 ,"Test1" ,14.5,1)

plotmean3(test2 ,"Test2" ,-1,1.1)

3 plotmean3(test3 ,"Test3" ,8,1.7)

5 plotmean3(test1 ,"Test1",mean(test1), sd(test1))

plotmean3(test2 ,"Test2",mean(test2), sd(test2))

7 plotmean3(test3 ,"Test3",mean(test3), sd(test3))

Exercise 7.6.3 Solution

• Suppose you were flipping a fair coin 100 times. What is the chance that it
comes up heads fewer than 40 times? Although this can be computed exactly,
estimate this through ’Monte Carlo’ simulation, by simulating the experiment
and running it hundreds or thousands of times.

• Suppose you run a gambling operation, and get suspicious that a coin is biased
if it landed heads or tails more than 55 times out of 100 flips. If the coin is
really biased so that it lands heads on average 60% of the time, what is the
probability that on a given 100-flip sequence, you would think it is fair? Biased
heads? Biased tails? Simulate at least 1000 of these 100-flip experiments to
determine your answer.

1 samples <- sapply (1:1000 , function(x){makebinomial(n=100,p=.6)})

mean(samples <45)

3 mean(samples <=55)

181

Chapter 7 Applied Statistics in R

Exercise 7.7.1 Solution

Write a function that creates a random variable that is a sum of three random pro-
cesses; two uniform RVs and a normal RV (you choose how these are mixed). Run a
simulation where you sample 100 of these and estimate the mean. Use a q-q plot to
examine the distribution of these means, for at least 1000 simulated experiments.

1 myrandom <- function(x){runif (1) + runif (1)*3 + rnorm (1)}

3 means <- rep (0 ,1000)

for(i in 1:1000)

5 means[i] <- mean(sapply (1:100 , myrandom))

7 data <- matrix(sapply (1:100000 , myrandom) ,1000 ,100)

qqnorm(rowMeans(data))

9

hist(means)

11 qqnorm(means)

Exercise 7.7.1 Solution

Write a function that creates a random variable that is a sum of three random pro-
cesses; two uniform RVs and a normal RV (you choose how these are mixed). Run a
simulation where you sample 100 of these and estimate the mean. Use a q-q plot to
examine the distribution of these means, for at least 1000 simulated experiments.

1 myrandom <- function(x){runif (1) + runif (1)*3 + rnorm (1)}

3 means <- rep (0 ,1000)

for(i in 1:1000)

5 means[i] <- mean(sapply (1:100 , myrandom))

7 data <- matrix(sapply (1:100000 , myrandom) ,1000 ,100)

qqnorm(rowMeans(data))

9

hist(means)

11 qqnorm(means)

182

Chapter 8

Inferential Statistical Tests

Libraries used in this chapter: BayesFactor, vioplot, effectsize, BSDA, ggplot, GGally

In the previous chapter, we discussed how we model the world with random variables,
and estimate aspects of those models based on parameter search and estimating statistics. If
we have a model of the process, with parameters estimated with samples from the process,
we can then begin asking questions about whether what we observe would have been likely
to have happened just by chance during our sampling.

The basic conceptual model of statistical inference is illustrated in Figure 8.1. Here, we
hypothesize that there is a set of all possible events, outcomes, people, or processes that
we measure. We’d like to know something about that population, or maybe subgroups of
the population. For example, maybe we want to know, in the population of all users of
Facebook, whether they are likely to respond to an advertising campaign and visit a website
or make a purchase (sometimes called “converting”). Or, in the population of all rides in a
self-driving car, whether the rate of fatal accidents is more than 1 per 100,000 miles driven.
Or, in the population of likely voters, whether they support a republican or a democrat. In
each of these cases, it is too costly, logistically difficult, or impossible to measure every case.
So, we make a representative sample of the cases, people, or situations we are interested in
and see what the sample looks like.

In the figure, the balls represent all the cases we care about–maybe the entire population
of a city who will vote in an election. If we want to find out how the election is likely to
turn out, we sample from this population. Maybe backers of a tax bill know they need 60%
support for the bill to pass, and want to know how many people support this (the yellow
circles) in the voters (all of the circles). Because they cannot hold a complete election prior
to the election, and even if they went door-to-door and asked each person they would not
be able to get answers from everyone, they must sample from the population and see what
the result is. So, in the population, about 3/4 of the population supports the bill, but in the
sample, 1/2 support it. This can happen just by chance–even if sampling is done correctly
and in an unbiased manner. So, if you were a supporter of the bill, would you conclude that
you have lost? If you were an opponent, would you conclude that the bill will lose and you
do not need to invest more time or money in campaigning? This is the question of statistical
inference, and is the basis for all statistical hypothesis testing.

It is easy to forget that your statistical test is always about generalizing to a population–it
is not about whether there is a difference in the data you observed, but rather about whether
the difference you observed is likely to have been true of the population you sampled from,
rather than coming just from chance.

Scientists will often forget this in an experiment, and think that the statistical test

183

Chapter 8 Applied Statistics in R

Figure 8.1: Depiction of a sampling process. All statistical tests assume we have a population
we are drawing from and a sample we are observing, and try to draw conclusion about the
population based on the sample

The Population

The sample

is about whether the results of a particular study are valid, or “statistically significant”.
This is not really correct–it is always about generalizing to a population. In more applied
settings, analysts may actually be looking at the entire population they care about, and so
an inferential statistical test does not make sense there either. For example, if you have a
customer database of 1,000,000 records, and want to know whether customers over 40 made
more purchases per month that customers under 40, you are almost guaranteed to find a
difference in the mean purchase amount. In this case, one might ask, “but is the difference
statistically significant”, but this is a mis-understanding of how statistics work–because the
population you are trying to generalize to is the entire sample. Thus, you are not really
asking an inferential question, and inferential statistics will not help directly. You may want
to know whether the pattern you saw will be true in the future, but again this is not usually
the same question that inferential tests will be able to answer. In all cases, when attempting
to do an inferential test, you must first ask, “what is the population I’m sampling from?”,
because that is the only thing the test is designed to tell us.

8.1 Hypothesis Testing with Statistical Tests

Statistical tests typically work by making assumptions about the random variables that
model the processes, attempting to test whether the assumed model is appropriate, estimat-
ing parameters of those random variables based on a sampling process, and trying to make
inferences about the population that is being sampled from based on the mathematics of the
distribution. We reason about the distribution’s properties, and try to understand whether
the data we see come from different populations of people or processes. In this chapter,
we will describe three approaches to doing this inference. The first is the traditional ap-
proach referred to as the Null-Hypothesis statistical test (NHST), which is well-understood
but increasingly the target of criticism. The second is the non-parametric approach, where

184

Chapter 8 Applied Statistics in R

we attempt to do the tests in a way that does not depend on the form of the random vari-
able that has generated the data. Non-parametric statistics relax the need to make strong
assumptions about the distribution, but still generally involve a NHST approach. Finally,
a method that is increasingly used in research is a Bayesian hypothesis testing approach.
There are several versions of the Bayesian approach to modeling data, but we will focus on
the simplest version of this, which is Bayes Factor hypothesis testing.

8.1.1 Classic Null-hypothesis statistical tests

Most traditional methods involve parameter estimation about an assumed distribution., and
using null-hypothesis statistical test (NHST) scheme to determine whether a sampled differ-
ence is likely to have arisen from a true population difference, rather than just by chance if
no difference existed in the population. This is sometimes called “parametric” testing, and
the well-known t test is the prime example. Here, we typically make assumptions about the
population distribution (such as that it is normal), identify a default assumption about this
distribution (the Null hypothesis), and then develop a statistic (e.g., t) which has a resulting
distribution if the null hypothesis were true (a t distribution). When then compute that
statistic for the data we collected, and the statistical test is the process of looking at the
hypothetical distribution, and determining how likely the value we observed would be if the
null hypothesis were true.

Two aspects of NHST pervade thinking about scientific research: the null hypothesis,
and the p-value. The null hypothesis is the stance that the default assumption is that no
difference exists between groups, and that we should seek to find evidence that allow us
to reject this hypothesis. When we conduct a statistical test, the value of the statistic is
examined and we assign a probability associated with the chance that the value observed
could have come from the null hypothesis. If this is unlikely (less than 1 in 20), the test is
usually deemed “statistically significant”. But neither of these are necessary, and we will see
when discussing Bayes factor tests.

8.1.2 Non-parametric tests of group differences

A traditional test like the t test assumes the data follow a specific distribution, and a test
statistic is computed that determines the likelihood that the observed data arose under the
null hypothesis. But what if the assumptions about the distribution do not hold? Because
of the central limit theorem, this is sometimes not too big of a challenge, but we still may
wonder whether these conclusions still hold. What if the data are skewed, like times and
money spent are? What if the data are bounded between 0 and 1 (like accuracy or conversion
rate), or between 0 and some large number (like response time), or among a small set of
categories (like a likert scale). When you think about it, almost nothing studied directly in
psychology and human factors is truly normally distributed. More critically, you often cannot
tell whether the violations really exist, and so it is hard to know the impact of violations
when you do not have a lot of data.

In response to these concerns–especially for cases in which we know the data are not
normally distributed, statisticians will take another approach: non-parametric tests. Non-
parametric testing is somewhat of a misnomer, but the general approach is to find a way
of looking at the data and create a NHST that do not rely on making strong assumptions
about the distribution of the random variable. Non-parametric tests often make use of rank
or order to draw conclusions. For example, if you want to know whether the mean of one
group of data is greater than the mean of a second, a non-parametric statistic may involve

185

Chapter 8 Applied Statistics in R

mixing both sets of data and rank-ordering them. If substantially more than half of one
group is in the top half of the data, this might be evidence to reject the null hypothesis.

Non-parametric tests are typically used for data which we know violate assumptions
of normality. For example, they can be useful for data I you have ordinal responses, or
are highly skewed and so have long tails that will influence the outcomes. That is, some
observations will be substantially larger or smaller than the median, making your estimates
of variance very large, and your estimates of mean unrepresentative of the central tendency.
Most non-parametric tests work by transforming the data into ranks and running parametric
comparisons on those ranks. The most common non-parametric tests corresponding to the
t-test are the ‘Wilcox’ and ‘Mann-Whitney U’ tests.

8.1.3 Bayes Factor Tests

Another alternative to the classic NHST framework is the Bayesian framework. Bayesian
tests apply a normative rule for combining evidence–Bayes Rule–to draw inferences about
hypotheses and distribution parameters given the data.

Bayes rule is an optimal way of combining evidence with your current strength of hypoth-
esis to determine the balance of evidence in favor or against hypotheses. A simple formula
for Bayes rule is written:

P (A | B) =
P (B | A)P (A)

P (B)
(8.1)

What this says is that if we want to know the probability of A (an outcome or hypotheses)
in the light of evidence or data B, we need to know two things: the probability of the evidence
given the hypothesis (P (B | A), called the likelihood), and the outright probability of the
the outcome or hypothesis (P (B), called the prior). The likelihood is just the height of the
density function at the observed data point, and the prior is usually arranged so that it
does not bias you in favor or against one of the hypotheses. For some Bayesian inference
approaches, we do not estimate single parameter values (in the sense of finding the most
likely parameter), but rather estimate a distribution of likely parameter values that may
have produced the result. This is called the posterior distribution. We will look at how
we can use these for estimating variability, but the Bayes Factor approach generally hides
this all from us by combining the total likelihood of each hypothesis into a number called
the Bayes Factor. This includes the possibility of evidence in favor of the null hypothesis.
Thus, unlike the NHST, you can determine whether the data provide a good case for the null
hypothesis. There are quite advanced hierarchical Bayes approaches that involve estimation
via Monte Carlo simulation, and allow complex hierarchical relationships to be modeled. In
this course, we will focus on a simpler approach that is almost a drop-in replacement for a
NHST: a Bayes Factor test. For each classic and non-parametric test we will examine, we
will also look at the Bayesian version of the test, which produces as an outcome a Bayes
Factor–a relative likelihood of hypotheses–rather than a p-value.

8.1.4 Other Bayesian tests

There are a number of other Bayesian libraries used for Bayesian data analysis. For complex
models, researchers build complex networks that might have millions of parameters and use
monte carlo methods to do inference and sampling, using BUGS, JAGS, STAN, and other
frameworks. These are generally . The BayesFactor library uses fairly simple schemes with
the goal of producing a Bayes Factor. The bain library extends Bayes Factor analysis for a
wider range of hypothesis models and constraints. Kruschke’s BEST approach is a mix of
these two, and provides t-tests with a Bayesian underpinning that produce more traditional

186

Chapter 8 Applied Statistics in R

output. These are available in BayesianFirstAid library, and the BEST library. There
is an rBesT library which also does Bayesian tests but may be unrelated to BEST. The
Bolstad library has Bayesian analysis functions that are a companion to Bolstad’s 2007
book Introduction to Bayesian Statistics, John Wiley & Son, and the BaM library provides
functions used in Bayesian Methods: A social and behavioral sciences approach. There are
packages for many specific analysis, including walker for Bayesian GLMs, Bayesian meta-
analysis (e.g., metabup), bsts library extends this to time series analysis, and many others.
These mostly don’t work together, but may be handy in particular cases, and you should
recognize that the Bayes Factor is only the start of Bayesian analysis.

8.2 Example: Simulating the NULL hypothesis

To start thinking about testing the difference between groups, let’s consider the null hypothesis–
that there is no difference in the means of two groups of observations. For example, you
might want to know whether a drug is effective at producing weight loss. In this case, the
null hypothesis would generally be that the drug has no effect on weight loss, with the al-
ternative being either that it has some effect (i.e., the means of two groups are NOT the
same), or that the treatment improves weight loss (i.e., the mean of the drug group is lower
than the untreated group).

As we have seen before, even if the null hypothesis were true, our observed mean will
almost never be exactly 0. And in fact it will have a distribution whose size depends on
both the distribution of the original data and the number of samples used to compute the
mean. Thus, even if the null were true and you ran the study many times, you would get
a distribution of results—a random variable. In general, we cannot know this distribution
without conducting thousands of experiments. To start, let’s assume the original data are
normally distributed with a mean of 0 and standard deviation of 1.0, and we want to see the
distribution, supposing we sampled 15 observations.

1 numexps <- 10000

means <- rep(0,numexps)

3 sds <- rep(0,numexps)

expsize <- 15

5 for(i in 1: numexps)

{

7 #Generate one experiment:

data <- rnorm(expsize ,mean=0,sd=1)

9 #estimate its mean

means[i] <- mean(data)

11 sds[i] <- sd(data)

}

13 hist(means)

mean(means)

15 sd(means)

[1] 0.257

8.3 The t-test approach

Here, for an experiment of size 15, the standard deviation of the means is .257, and the
mean of the means is close to 0. Suppose we wanted to come up with some ad hoc cut-off
criterion to help us decide whether we could reject the null hypothesis (i.e., no difference),

187

Chapter 8 Applied Statistics in R

Figure 8.2: Histogram of 10000 experiments with 15 observations of the null hypothesis of
N(0,1). Here, a criterion of +.5 would only accept the null hypothesis incorrectly about 2.5%
of the time.

Histogram of means

means

F
re

qu
en

cy

−2 −1 0 1 2

0
50

00
10

00
0

15
00

0

● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

●

●

●

●

●

●

●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

−2 −1 0 1 2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Bin midpoint

C
um

ul
at

iv
e

de
ns

ity

but without knowing the whole distribution–after all, we only know one sample from the
distribution. To do so, we would might decide that if we have a mean of 0.5, that is enough
different from 0 that we consider it unlikely to have happened just by chance. In this case,
if the null hypothesis were true, it turns out that 97.3% of those experiments would produce
values less than 0.5, so this seems reasonable, and pretty cautious. About 5% of the time
would be reject the null hypothesis accidentally, and maybe this is acceptable to us.

But what would happen if it did have a true difference? Suppose the true mean were
+.5, and the variance of the distribution was the same. In this case, our observed means
would straddle 0.5 instead of 0, and half of the time we’d fail to reject the null hypothesis
even if it was true. Thus, although we make only 5% false alarms, we fail to detect a true
effect 50% of the time. This is known as the power of the test, and this test has limited
power, mostly because the sample size is very small. The smaller the sample size, the larger
a difference that is required if we want to limit the probability of false alarms, and so the
smaller the power of the test becomes.

So, under the NHST, we must identify a criterion on the null distribution that we can
only know if we collect thousands of experiments. We’d like to avoid conducting thousands of
experiments, because that is the point of doing an inferential test. So, we make this estimate
based on the one experiment we did do, in which we calculated the mean and standard
deviation statistics. It makes intuitive sense that our test shoulddepend on three things:
the observed difference between means (in this case 0.5 − 0 = 0.5), the variability of the
distribution (in this case, standard deviation = 1.0), and the number of observations (in this
case, 10). That is, if we want to be confident about very small differences in mean relative
to the standard deviation, we should be prepared to collect a lot of data. We showed above
that what matters is the distribution of the mean, which was about .315 whon N = 10 and
stdev = 1.0. What happens to this relationship when we increase N?. Does it go down? in
what fashion–linearly, or with some other relationship?

188

Chapter 8 Applied Statistics in R

Exercise 8.3

What is the sd of the means for sampling 10, 20, 30, 50, and 100 per experiment?

As you can see from the exercise, the standard deviation of the mean does not decrease
linearly, but the extent to which it decreases diminishes as N increases. In fact, it can be
proven that the standard deviation of the mean descreases with the square root of N . So, for
examples, 1/

√
15 = .258, roughly the same standard deviation we observed in the simulation.

We’d predict that for 100 trials, the standard deviation of the means should be 0.1.

8.3.1 Estimating the variability of the mean

The previous simulation shows what should be intuitive—that the standard deviation of the
random variable describing our estimate of the mean is related to how many trials were
in the experiment. In fact, this variability has a name: the ’standard error’, and it has a
well-known relationship with the standard deviation of a single experiment. In a standard
NHST, if we want to estimate the variability of the null hypothesis distribution, we use the
standard error:

se = sd/
√
N (8.2)

Not coincidentally, when plotting error bars, it is typical to plot standard error as the
error bars. These error bars give a confidence interval in your mean, as opposed to the
standard deviation, which gives a confidence interval of your data.

Exercise 8.3.1

Compute the expected standard error for experiments of size 10, 20,30, 50, and 100
that have an observed standard deviation of 1.0, and compare this to the results of
the previous exercise.

Now that we know how to estimate the standard deviation of our estimate of the mean,
we can use this fact to do a simple test. We do this via a simple statistic: t = mean/se. If
the mean were 0 and the observed standard deviation was the same as what we observed, the
expected distribution (under the null hypothesis of no difference) is called a t distribution,
and this distribution has a well-understood density and distribution function. In R, this
distribution is available via several functions, including dt for the density and pt for the
cumulative probability less than a particular value. Now, instead of an ad hoc criterion like
+0.5, we can choose a criterion specifically to depend on the number of false alarm errors
we want, and compute the power we would need to detect the difference.

So, to do an inferential t test about the mean difference, we go through the following
steps:

• Step 0: Convince ourselves that the assumptions of the test are not violated

• Step 1: Compute the estimate of the mean

• Step 2: Estimate the variability of your estimate (standard error)

• Step 3: compute the t statistic for the sample.

• Step 4: look up the probability of getting your value, if there were really no difference
(Null hypothesis).

189

Chapter 8 Applied Statistics in R

Figure 8.3: The shape of the t distribution, as the number of observations increases from 2
to 50

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

vals

dn
or

m
(v

al
s)

Our simulation earlier was essentially a simulation of the t distribution. Instead of sim-
ulating it, we can look it up with R directly. The t distribution requires that we specify
its degrees of freedom (df), which is N − 1 where N is the number of observations. As N
increases, the distribution get sharper, and approximates the normal distribution more and
more closely.

par(mfrow=c(1,1))

2 vals <- -500:500/100

plot(vals ,dnorm(vals),type="l",lty=1,lwd=4,col="gold")

4

points(vals ,dt(vals ,2),type="l",main="t distribution",

6 ylim=c(0,.5),xlab="Mean")

points(vals ,dt(vals ,5),type="l")

8 points(vals ,dt(vals ,15),type="l")

points(vals ,dt(vals ,50),type="l")

10 abline(v=2)

Notice that the shape only changes a little bit, and has its biggest effect in the tail.
Although the shape changes a little bit as N increases, what changes a lot is the t statistic.
For a fixed distribution and mean, the resulting t value will increase with the reciprocal of
the square root of N . Suppose you observed a value of 2, for different experiments with
different sample sizes. For a small experiment, it would be fairly likely to get a value of 2 or
larger by chance if the null hypothesis were true. This chance can be computed with the pt
function, which computes the area to the left of a value. We need to subtract from 1.0 to
get the chance of a value as large as the observation.

1- pt(2.0 ,2) ## 2 df/3 observations

2 1- pt(2.0 ,5) ## 5 df/ 6 observations

1- pt(2.0 ,15) ## 15 df/ 16 observations

4 1- pt(2.0 ,49) ## 49 df/ 50 observations

> 1- pt(2.0 ,2) ## 2 df/3 observations

6 [1] 0.09175171

190

Chapter 8 Applied Statistics in R

> 1- pt(2.0 ,5) ## 5 df/ 6 observations

8 [1] 0.05096974

> 1- pt(2.0 ,15) ## 15 df/ 16 observations

10 [1] 0.0319725

> 1- pt(2.0 ,49) ## 49 df/ 50 observations

12 [1] 0.02552957

Here, with just 3 observations, we have a 10% chance of seeing a value more extreme
that 2.0 by chance. With just 6 observations, this dips to about 5%–meaning we have a
relatively low false alarm rate. However, we’d probably suspect that the power of such a
test is very low. Note that I subtracted from 1 to give us the probability to the right of a
criterion. We could also have used use pt(t,df,lower.tail=F), which directly gives the
probability to the right of the value. If we are doing a 2-tailed test, we can compute the
value as (1-pt(t,df))/2.

8.3.2 One-sample t

The simplest t-test is one where we just compare the difference of the mean of a sample to
0. This is called a one-sample t-test.

We will first do this by hand. Let’s try this for 20 normal deviates whose mean differs
slightly from 0.

set.seed (1000)

2 x0 <- rnorm (30,0)

x1 <- rnorm (20 ,.2)

4 x1a <- rnorm (200 ,.2)

x2 <- rnorm (20 ,.5)

6 x3 <- rnorm(20,mean=.2,sd=.2)

x4 <- exp(rnorm (100)) -1

8

vioplot(x0,x1,x1a ,x2,x3,x4 ,col="gold",

10 names=c("x0","x1","x1a","x2","x3","x4"))

abline (0,0)

These are the steps to compute a t-test by hand.

Step 0

. All but x4 look reasonably normal, if we trust the vioplot visualization. It might be
reasonable to make normal Q-Q plots as well.

Step 1

. Next, compute the mean of the distribution

1 mu <- mean(x1)

191

Chapter 8 Applied Statistics in R

Figure 8.4: Example distributions, all but x0 were generated with a mean gerater than 0

−
2

0
2

4
6

x0 x1 x1a x2 x3 x4

● ●

●

●

●
●

Step 2:

. Now, compute the standard error and the resulting t-value

1 sd <- sd(x1)

se <- sd/sqrt(length(x1))

3 t <- mu/se

t

The t value is just .15, which is very likely to have happened just by chance. Let’s figure
out what that value is:

Step 3:

Finally compute the area of the appropriate t distribution more extreme than the sampled
value:

pt(t,19,lower.tail=F)

2 [1] 0.4388957

If this is ’two-tailed’, we just multiply by 2

pt(t,19,lower.tail=F)*2

2 [1] 0.8777914

This is all a bit tedious and error-prone. The t.test() function automates all of this, and
provides additional information.

192

Chapter 8 Applied Statistics in R

t.test(x1,alternative="greater")

2

One Sample t-test

4

data: x1

6 t = 0.15585 , df = 19, p-value = 0.4389

alternative hypothesis: true mean is greater than 0

8 95 percent confidence interval:

-0.3109046 Inf

10 sample estimates:

mean of x

12 0.0307994

14 > t.test(x1,alternative="two.sided")

16 One Sample t-test

18 data: x1

t = 0.15585 , df = 19, p-value = 0.8778

20 alternative hypothesis: true mean is not equal to 0

95 percent confidence interval:

22 -0.3828153 0.4444141

sample estimates:

24 mean of x

0.0307994

Note that the p-values and t-values are the same as we calculated before.

Exercise 8.3.2

Compute a one-sample t-test for x0, x11 x1a, x2, and x3. For each one, determine
the probability you would have seen the value if the null hypothesis were true.

8.3.3 One-sample non-parametric equivalent to the t test

There are many problems with this basic approach, which are sometimes looked at as features
or benefits rather than limitations. These include:

• Reliance on knowing the form of the underlying distribution; typically that it is nor-
mally distributed

• Assuming the variability in the process is the variability we observed (in reality it is
not likely to be true)

• Only trying to determine whether the null hypothesis is wrong. There are often situa-
tions where we’d like to also know whether it is right, or at least whether the balance
of evidence favors one over another (or is ambivalent.).

The first concern is sometimes addressed using a non-parametric test. In non-parametric
tests, we generally try to do the test based on order statistics, rather than the specific values.
For example, if you want to know whether one condition of a test has a higher value than
another, you can look at how many participants scored higher on it, and do a NHST using
a test that no longer needs to make an assumption about normal distribution. However,
the rest are still problematic, and many of them are dealt with using a Bayesian testing
approach.

193

Chapter 8 Applied Statistics in R

The non-parametric version of of a one-sample test is known as a sign test, because we’d
expect about half of the samples to be above 0 and half below 0. The null distribution is just
a binomial distribution, and a test is available with binom.test. This test just takes two
values–the number greater than 0 and the total number being tested. The psych package
has an alternative test called SIGN.test that allows you to use the entire data set.

1 > binom.test(sum(x0 >0),length(x0),p=.5)

3 Exact binomial test

5 data: sum(x0 > 0) and length(x0)

number of successes = 15, number of trials = 30, p-value = 1

7 alternative hypothesis: true probability of success is not equal to 0.5

95 percent confidence interval:

9 0.3129703 0.6870297

sample estimates:

11 probability of success

0.5

Here, we can see that because the number of successes is exactly half (15), the p=value is
1.0. We can test this against any particular probability (a fair or unfair), but more than
likely we’d use this to compare to a particular criterion–maybe instead of 0, compare it to
some known criterion to see if there is support that the observed data improved over some
objective.

The easier to use “Sign test” is available within the BSDA library, among other places:

##BSDA library has a simpler to use version:

2 library(BSDA)

SIGN.test(x0)

4 One -sample Sign -Test

6 data: x0

s = 15, p-value = 1

8 alternative hypothesis: true median is not equal to 0

95 percent confidence interval:

10 -0.5443371 0.2075894

sample estimates:

12 median of x

0.003213122

14

Achieved and Interpolated Confidence Intervals:

16

Conf.Level L.E.pt U.E.pt

18 Lower Achieved CI 0.9013 -0.4759 0.1701

Interpolated CI 0.9500 -0.5443 0.2076

20 Upper Achieved CI 0.9572 -0.5545 0.2132

Exercise 8.3.3

Compute a one-sample non-parametric sign test for x01 x1a, x2, and x3. For each
one, determine the probability you would have seen the value if the null hypothesis
were true.

194

Chapter 8 Applied Statistics in R

Bayes Factor Decimal Evidence
< 1/150 Smaller than .00667 Very strong evidence for Null
1/150 to 1/20 .00667 to .05 Strong evidence for Null
1/20 to 1/3 .05 to .333 Positive support for Null
1/3 to 3 .333 to 3.0 Not worth mentioning; ambivalent
3 to 20 3.0 to 20.0 Positive support for hypothesis
20 to 150 20.0 to 150.0 Strong support for hypothesis
150+ 150.0+ Very strong evidence for hypothesis

8.3.4 Example: One-sample Bayes Factor t test

In the NHST approach, you can either reject the null hypotheses (no difference) or fail to
reject, but you can never really accept the null. The result of our test is usually a p-value,
which is the probability that the null would be incorrectly In contrast, the results of the
Bayesian approach provide a posterior likelihood value of each hypothesis given the data.
So, although strong evidence for the alternative usually produces similar results, a Bayesian
test can differ from the others if there is not evidence. A standard NHST will only tell you
that you failed to reject the null hypothesis; a Bayesian test can tell you whether there is
strong or weak evidence for the Null hypothesis.

Bayesian tests take a number of different forms. We will be looking at Bayesian hypothesis
testing using the Bayes Factor. Bayes Factor is a ratio of likelihood values–essentially weight
of evidence in favor of the hypothesis versus an alternative. Here, instead of just rejecting a
null hypothesis, we look for evidence for the current hypothesis, in contrast to the null. If
they are equally likely, the balance of evidence is equal, with a ratio of 1:1. If the alternate
hypothesis is ten times more likely than the null, the ratio would be 10:1 (or 1:10, depending
on how the hypothesis was framed.). Bayes factors less than ten are considered no real
weight in favor or against. Larger values start providing stronger weight, and values closer
to 0 provide evidence in favor of the null (values smaller than 0.1). Thus, we can do more
than just reject the null hypothesis–we can look at evidence in favor of each hypothesis, and
we can also easily say that our experiment cannot determine whether either is likely to be
true (any bayes factor between about 0.1 and 10).

Some basic guidelines for Bayes factors (cf Jeffreys, 1961, Kass & Raftery)

Many bayesian tests are available within the BayesFactor package in R. The relevant test
is ttestBF, and if you give it a single data set it will return a Bayes factor like in the table
above:

library(BayesFactor)

2 ttestBF(x1)

Bayes factor analysis

4 --------------

[1] Alt., r=0.707 : 1.064856 +/ -0%

6

Against denominator:

8 Null , mu = 0

10 Bayes factor type: BFoneSample , JZS

195

Chapter 8 Applied Statistics in R

Figure 8.5: Posterior estimates of the mean and variance of the distribution of X1.

Posterior distribution of mu

Sampled values

F
re

qu
en

cy

−0.5 0.0 0.5

0
20

0
40

0
60

0
80

0
10

00

Posterior distribution of sigma2

Sampled Values

F
re

qu
en

cy

0.5 1.0 1.5 2.0 2.5 3.0

0
20

0
40

0
60

0
80

0

Note that it does not provide a lot of detail. Importantly, the r = .707 is an assumption
that impacts the prior distribution–the basic assumptions about how likely different alterna-
tive hypotheses are. The result is 1.06, which we can see from the table above is ambivalent
support for the alternative. Interestingly, unlike the two NHST tests, our conclusions differ
here. In those, we merely said that we failed to reject the null hypothesis, which might imply
that the mean is not different from 0. Here, our ambivalent result tells us that we don’t have
enough data to say whether or not the null is likely–and in fact there is a slight bias toward
the alternative hypothesis.

Note that the Bayesian approach does not estimate a single value for the parameters (in
this case, mean µ and variance σ2. We know the true mean was .2 and true variance was
1.0. We can extract the posterior likelihood distribution of parameter estimates by turning
samples to TRUE.

samples <- ttestBF(x1,iterations =10000 , posterior=TRUE)

2 par(mfrow=c(1,2))

hist(samples[,1],breaks =100)

4 hist(samples[,2],breaks =100)

It is fairly common to use these distributions to plot likely values, or as the basis for
error bars on a figure displaying the means. We can see that the likely value of the means
range quite broadly, as do the likely values of the standard deviation. We just do not have
a good idea what the true values might be in this case.

Exercise 8.3.4

Compute a one-sample Bayes factor test for x0, x1a, x2, and x3. For each one,
examine the posterior distribution of the mean.

196

Chapter 8 Applied Statistics in R

8.4 Paired Sample tests

The one-sample tests we just examined are formally identical to paired-sample tests. In a
paired t-test, we have two observations from each person, participant, or observable category.
We want to know whether the one group of observations differs from the other group of
observations, but we want to take advantage of the fact that we measured each case twice.
Thus if there is a wide variability in base level across people, we may be able to nevertheless
detect small changes. For example, suppose you performed a pre-test on the number of
push-ups completed, and then did a 7-day training intervention, and post-test. The training
intervention may only increase average number of push-ups by one or two, but there may
be a huge range (from none to hundreds). But if everyone improved by one or two, we still
have a very consistent improvement. To do a paired test, you can just find the difference
between each observation of the two groups (making sure pre and post are linked by person),
and then compute a one-sample test. Or you can feed the two groups into various functions
specifying you are doing a paired test. For our example, consider x0b:

x0b <- x0 + runif(length(x0),min=-.1,max =.2)

8.4.1 Paired t test

A paired t-test will compare the difference between two groups, by default ignoring or-
der (higher or lower). Note that you have to be more careful if you choose to subtract
the differences and do a one-sample t-test. In each case, we can also do one-sided or
two-alternative tests. If you hypothesize the difference should be in one direction, use
alternative="greater", otherwise use the default ("two-sided").

1 t.test(x0,x0b ,paired=T)

t.test(x0,x0b ,paired=T,alternative="less")

3 t.test(x0-x0b) ##one -sample version

t.test(x0,x0b) ##this is wrong , and not a paired t-test

Here, the two-sided version is default, and we see a p-value close to .01, meaning that it
is unlikely to have occurred if the null hypothesis were true. Doing a one-sample version by
doing a t-test of the differences ends up giving the same results.

> t.test(x0,x0b ,paired=T)

2

Paired t-test

4

data: x0 and x0b

6 t = -2.5012, df = 29, p-value = 0.01828

alternative hypothesis: true difference in means is not equal to 0

8 95 percent confidence interval:

-0.05761446 -0.00577806

10 sample estimates:

mean of the differences

12 -0.03169626

14

> t.test(x0-x0b) ##one -sample version

16

One Sample t-test

18

197

Chapter 8 Applied Statistics in R

data: x0 - x0b

20 t = -2.5012, df = 29, p-value = 0.01828

alternative hypothesis: true mean is not equal to 0

22 95 percent confidence interval:

-0.05761446 -0.00577806

24 sample estimates:

mean of x

26 -0.03169626

We can do a one-sided test, and the p-value gets smaller.

1 > t.test(x0,x0b ,paired=T,alternative="less")

3 Paired t-test

5 data: x0 and x0b

t = -2.5012, df = 29, p-value = 0.009138

7 alternative hypothesis: true difference in means is less than 0

95 percent confidence interval:

9 -Inf -0.01016405

sample estimates:

11 mean of the differences

-0.03169626

If you forget the paired option, it will report a two-sample test, and this is not nearly as
powerful.

2 > t.test(x0,x0b) ##this is wrong , and not a paired t-test

4 Welch Two Sample t-test

6 data: x0 and x0b

t = -0.12368 , df = 57.939 , p-value = 0.902

8 alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

10 -0.5447144 0.4813219

sample estimates:

12 mean of x mean of y

-0.1515832 -0.1198869

8.4.2 Non-parametric Paired Comparisons

Again, you can use a binomial.test on comparisons to determine the difference between two
groups in a non-parametric test. However, the wilcox.test (sometimes called the according
to its corresponding “Wilcoxon” distribution) is a more direct replacement for the t test
based on similar principles. Essentially, it will determine how many of the values are greater
than some value, ignoring the actual values. In this case, the wilcox test seems to be more
powerful, because it not only counts values absolute differences, but will penalize the smaller
differences less than the greater differences.

1 ##non -parametric paired tests:

diff <- x0-x0b

3 binom.test(sum(diff >0),length(diff))

198

Chapter 8 Applied Statistics in R

wilcox.test(diff ,mu=0)

5 wilcox.test(x0b ,x0,paired=T)

Results show that the binomial version is not sensitive to the difference at p < .05. The
one-sample wilcox test and the paired wilcox test are identical.

1 binom.test(sum(diff >0),length(diff))

3 Exact binomial test

5 data: sum(diff > 0) and length(diff)

number of successes = 11, number of trials = 30, p-value = 0.2005

7 alternative hypothesis: true probability of success is not equal to 0.5

95 percent confidence interval:

9 0.1992986 0.5614402

sample estimates:

11 probability of success

0.3666667

13

> wilcox.test(diff ,mu=0)

15

Wilcoxon signed rank test

17

data: diff

19 V = 133, p-value = 0.04049

alternative hypothesis: true location is not equal to 0

21

> wilcox.test(x0b ,x0,paired=T)

23

Wilcoxon signed rank test

25

data: x0b and x0

27 V = 332, p-value = 0.04049

alternative hypothesis: true location shift is not equal to 0

8.4.3 Bayes Factor Paired Comparisons

The ttestBF permits testing paired samples as well.

ttestBF(x0,x0b ,paired=T)

2 ttestBF(x0-x0b)

> ttestBF(x0,x0b ,paired=T)

4 Bayes factor analysis

6 [1] Alt., r=0.707 : 2.715257 +/ -0%

8 Against denominator:

Null , mu = 0

10 ---

Bayes factor type: BFoneSample , JZS

12

> ttestBF(x0-x0b)

14 Bayes factor analysis

16 [1] Alt., r=0.707 : 2.715257 ?0%

18 Against denominator:

199

Chapter 8 Applied Statistics in R

Null , mu = 0

20 ---

Bayes factor type: BFoneSample , JZS

Note that the results for the paired and the one-sample equivalent are again identical:
2.7. This is below the 3.0 criterion for positive support, and is identified as not worth
mentioning. However, this is essentially a two-sided test. We can restrict the null hypothesis
to just positive differences using the nullInterval–treating it as any values between 0 and 100
for example:

ttestBF(x0-x0b ,nullInterval=c(0 ,100))

2 > ttestBF(x0-x0b ,nullInterval=c(0 ,100))

Bayes factor analysis

4 --------------

[1] Alt., r=0.707 0<d<100 : 0.0624813 ?0%

6 [2] Alt., r=0.707 !(0<d <100) : 5.344257 ?NaN%

8 Against denominator:

Null , mu = 0

10 ---

Bayes factor type: BFoneSample , JZS One -sample Sign -Test

12

data: x0

14 s = 15, p-value = 1

alternative hypothesis: true median is not equal to 0

16 95 percent confidence interval:

-0.5443371 0.2075894

18 sample estimates:

median of x

20 0.003213122

22 Achieved and Interpolated Confidence Intervals:

24 Conf.Level L.E.pt U.E.pt

Lower Achieved CI 0.9013 -0.4759 0.1701

26 Interpolated CI 0.9500 -0.5443 0.2076

Upper Achieved CI 0.9572 -0.5545 0.2132

Here, we have two Bayes factors. The evidence for the null hypothesis is very strong against,
whereas the evidence for the alternative is very strong in favor of.

We can use nullInterval to specify other ranges we want to consider as the null. For
example, maybe for x1, we want to know whether there is evidence of cheating, and we think
a reasonable guessing strategy would net you between 15% and 25% correct. We can treat
this as the null, and then look for evidence of cheating. If you get less than chance, you
may be copying off the wrong sheet and so could get below chance. Looking at x1 and x1a
the results show reasonably strong support in favor of the null, with weaker support for the
alternative.

1 ttestBF(x1,nullInterval=c(.15 ,.25))

Bayes factor analysis

3 --------------

[1] Alt., r=0.707 0.15<d<0.25 : 3.385209 ?0%

5 [2] Alt., r=0.707 !(0.15<d <0.25) : 0.9640481 ?0%

7 Against denominator:

Null , mu = 0

200

Chapter 8 Applied Statistics in R

9 ---

Bayes factor type: BFoneSample , JZS

11

> ttestBF(x1a ,nullInterval=c(.15 ,.25))

13 Bayes factor analysis

15 [1] Alt., r=0.707 0.15<d<0.25 : 10.83408 ?0%

[2] Alt., r=0.707 !(0.15<d <0.25) : 0.5729178 ?0%

17

Against denominator:

19 Null , mu = 0

21 Bayes factor type: BFoneSample , JZS

Exercise 8.4.3

Compute each paired-samples test (t-test, wilcox, and Bayes factor) for the following
data, in comparison to the original values (e.g., compare x1.2 versus x1):

1 y1 <- x1 + rnorm (20,mean =.04)

y1a <- x1a + rnorm (200, mean =.04)

3 y2 <- x2 + rnorm (20,mean=0,sd=5)

y3 <- x3 + rnorm (20,mean=.2,sd=3)

5 y4 <- x4 + exp(rnorm (100))/10-1

8.5 Comparing two independent samples.

When we don’t have paired comparisons or a single group and want to compare two inde-
pendent groups, it becomes a bit trickier. We need to come up with an estimate of the
standard deviation in order to estimate the standard error and t-value, but there are now
two standard deviations.

8.5.1 Independent samples t-test

1 muX <- mean(x1)

muY <- mean(x1a)

3

sdX <- sd(x1)

5 sdY <- sd(x1a)

When we have two groups, we’d still like to be able to use the t-test logic. In this case,
we have a difference in means, and we have an estimate of the variance of the differences.
But since the variances are likely to be different, and might come from two different group
sizes, we have to do sort of a weighted mean.

We will typically use Welch’s formula for pooling variance across groups:

1 se.pooled <- function(x,y)

{

3 varx <- var(x)

201

Chapter 8 Applied Statistics in R

vary <- var(y)

5 nx <- length(x)

ny <- length(y)

7 sqrt(varx/nx + vary/ny)

}

Now, we can compute the t value based on this new s.d.

2 t <- (muX -muY)/se.pooled(x1,x1a)

t

4 pt(t,38)

2*(1-pt(t,38))

6

> t

8 [1] -1.060023

10

> pt(t,38,lower.tail=T)

12 [1] 0.1479127

This is what t.test does when given two sets:

1 > t.test(x1,x1a ,alternative="less")

3 Welch Two Sample t-test

5 data: x1 and x1a

t = -1.06, df = 23.719 , p-value = 0.1499

7 alternative hypothesis: true difference in means is less than 0

95 percent confidence interval:

9 -Inf 0.1361698

sample estimates:

11 mean of x mean of y

0.0307994 0.2522959

However, notice that the p-value is slightly different, and the degrees of freedom are also
different. This is because the Welch’s t-test applies a correction to the degrees of freedom
to account for the different variances, and adjusts to 2.3719. We can see that this is exactly
what the pt function produces if we applied the same adjustment:

2 > pt(t,38,lower.tail=T)

[1] 0.1479127

4 pt(t,23.719 , lower.tail=T)

[1] 0.1499048

However, you would need to compute the degree-of-freedom correction yourself, so it is
easiest to ues the t-test.

8.5.2 Independent-samples non-parametric tests

When the Wilcox test is given two independent samples, this is sometimes called a “Mann-
Whitney U” test.

202

Chapter 8 Applied Statistics in R

1 wilcox.test(x1,x1a)

> wilcox.test(x1,x1a)

3

Wilcoxon rank sum test with continuity correction

5

data: x1 and x1a

7 W = 1695, p-value = 0.2619

alternative hypothesis: true location shift is not equal to 0

The Wilcox test computes its test statistic by first looking at each pairing of X and Y,
and then counting for how many of them X is greater or equal to Y. We can do this with
the following code:

set.seed (100)

2 x <- runif (20)

y <- runif (20) +.1

4 pairs <- outer(x,y," <=")

pairs

6 sum(pairs)

[1] 293

We can see that 293 out of 400 pairs satisfied the test of being greater than or equal to.
Just like the t statistic, the Wilcox test computes its own statistic (U), which is often referred
to as the Mann-Whitney U. These U values have a distribution under the null hypothesis
for a given set of data. In R, This null distribution is given by the pwilcox function. Here,
we can plot the density and distribution functions of the null distribution we’d expect from
sampling 20 values.

1 plot(pwilcox (0:400 ,20 ,20))

plot(dwilcox (0:400 ,20 ,20))

We can see that the likelihood of getting 293 or more is very low, and so this is likely to
be highly significant.

We could look up our particular results using pwilcox:

1- pwilcox (293 ,20 ,20)

2 [1] 0.005157019

Thus, this result was very unlikely to happen under the null hypothesis. If we compare this
to the result of the wilcox.test function, we get a slightly different number because wilcox.test
uses a two-sided test. If we set it to the “less” option, we get exactly the same value. Note
that W=107 is the same as W=293, because they add up to 400.

> wilcox.test(y,x)

2

Wilcoxon rank sum test

4

data: y and x

6 W = 293, p-value = 0.01121

alternative hypothesis: true location shift is not equal to 0

8

203

Chapter 8 Applied Statistics in R

Figure 8.6: Cumulative distribution and density of the null distribution comparing sets of
size 20.

0 100 200 300 400

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Wilcox Rank Sum Distribution

U/W statistic

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

0 100 200 300 400
0.

00
0

0.
00

4
0.

00
8

Wilcox Rank Sum Distribution

U/W statistic

D
en

si
ty

10 > wilcox.test(x,y,alternative = "less")

12 Wilcoxon rank sum test

14 data: x and y

W = 107, p-value = 0.005603

16 alternative hypothesis: true location shift is less than 0

If you have a factor defining groups, and the data are stored in long format (on variable
is the independent variable; one is the dependent variable) you can run the test this way
too, and it produces the same results:

groups <- rep(1:2, each=length(x))

2 values <- c(x,y)

w <- wilcox.test(values~groups)

8.5.3 Bayesian independent samples comparisons of group means

Of course, there is a corresponding Bayes Factor test for comparing means of independently
sampled distributions.

1

ttestBF(x1,x1a)

3

> ttestBF(x1,x1a)

5 Bayes factor analysis

7 [1] Alt., r=0.707 : 0.3680828 0.01%

9 Against denominator:

Null , mu1 -mu2 = 0

11 ---

Bayes factor type: BFindepSample , JZS

204

Chapter 8 Applied Statistics in R

Here, the bayes factor is between .333 and 3.0, which is nothing to remark about, but
biased toward the null hypothesis. All three tests seem to agree here.

8.6 Estimating Covariance and Correlation

The previous chapter showed how we estimate the variability of a set of data. Sample
variance can be written like this:

set.seed (100)

2 data <- runif (1000)

var.sample <- function(x){sum((x-mean(x))^2)/(length(x) -1)}

4 > var(data)

[1] 0.08254194

6 > var.sample(data)

[1] 0.08254194

We can easily factor the squared term out into two terms, to calculate the same thing:

1 var.sample2 <- function(x){sum((x-mean(x))*(x-mean(x)))/(length(x) -1)}

> var.sample2(data)

3 [1] 0.08254194

Or we can separate the first and second x values apart like this:

1 var.sample3 <-function(x,y){sum((x-mean(x))*(y-mean(y)))/(length(x) -1)}

> var.sample(data ,data)

3 [1] 0.08254194

What would happen if we give this two different sets of data, where each entry of one set
is related in some way to the corresponding entry in another set. Maybe it was measured on
the same person, or the same trial, or the same day. If these are identical, it is equivalent
to the variance. But when we give it two different data sets, this is called the covariance.
To examine this, we will simulate a y value that depends on an x value as follows (data are
shown in Figure 8.7

1 x<- -500:500/100

y <- rnorm (1001)*7-x

3 plot(x,y)

> var.sample(x,y)

5 [1] -9.327422

7 > var.sample(x,-y)

[1] 9.327422

9 > var.sample(-x,x)

[1] -8.35835

Here, y is related to −x, so the result is negative. The more two sets of data are related,
the larger their covariance, but this also will depend on their overall scale. The R function
cov will compute this directly:

205

Chapter 8 Applied Statistics in R

Figure 8.7: Randomly generated data, where x and y are related via a noisy abstract rela-
tionship. This leads to a negative covariance between the values.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●●

●

●●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●
●●●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−4 −2 0 2 4

−
20

−
10

0
10

20

x

y

Covariance: −9.327

> cov(x,y)

2 [1] -9.327422

Covariance is useful to have, but hard to interpret because it is not scaled by the values:

cov(x,y)

2 [1] -9.327422

cov (10*x,y)

4 [1] -93.27422

Just by multiplying one of these by ten, we multiply the covariance by ten. It would be
nice to just ‘factor out’ the scale when we compute it, so it is at a maximum of 1.0, and
it will not depend on simple things like multiplying one variable by ten. If we think about
the variance, dividing variance by itself would scale to 1.0, and this should be the maximum
scaled covariance–perfect agreement. We generalize this by dividing covariance the standard
deviations of both x and y:

cov.normalized <-function(x,y){

2 cov <- sum((x-mean(x))*(y-mean(y)))/(length(x) -1)

var1 <- sum((x-mean(x))^2)/(length(x) -1)

4 var2 <- sum((y-mean(y))^2)/(length(y) -1)

cov/sqrt(var1)/sqrt(var2)

6 }

You can verify that scaling y by a multiplicative factor has no impact:

206

Chapter 8 Applied Statistics in R

> cov.normalized(x,y)

2 [1] -0.4105705

>

4 > cov.normalized(x,y*1000)

[1] -0.4105705

This is exactly how Pearson’s correlation is computed, and is available in R as cor(x,y).
Correlation is a useful statistic to measure the association between two variables. Further-
more, its square, R2, is bounded between 0 and 1 and measures of the proportion of variance
accounted for in one set of data by another set. Typically, correlation can be viewed as an
effect size directly, although R2 is perhaps a bit more intuitive because it tells you directly
how much of the variance is accounted for by a particular variable.

We can verify this ‘proportion of variance’ assertion by simulation. For example, consider
the variable z, which is composed of two identically-distributed uniform random variables,
which should each contribute half of the variance.

1 x <- runif (10000)

y <- runif (10000)

3 z <- x + y

5 > cor(x,y)

[1] 0.003103427

7 > cor(x,z)

[1] 0.70823555

9 > cor(x,z)^2

[1] 0.5015975

11 > sqrt (.5)

[1] 0.7071068

Notice that the square of the correlation is about .5, and that sqrt(.5) is close to the
correlation. We could create variables that are related to one another with other proportions
by mixing the proportion of x and y, and the squared correlation will tend to recover the
mixing proportion.

8.7 A statistical test for correlation

You can do a significance test on a correlation using the cor.test function. This test
compares the observed value to the distribution that would be expected from a data set of
equivalent size that are completely independent. The outcome is actually a t test:

set.seed (1000)

2 x<- -500:500/100

y <- rnorm (1001)*5-x

4 cor.test(x,y)

6

Pearson ’s product -moment correlation

8

data: x and y

10 t = -18.953, df = 999, p-value < 2.2e-16

alternative hypothesis: true correlation is not equal to 0

12 95 percent confidence interval:

-0.5584397 -0.4671979

207

Chapter 8 Applied Statistics in R

14 sample estimates:

cor

16 -0.5142725

The current x/y data set has 1001 points, and a correlation of around -.5. How sensitive
is correlation to the range of our data? What if we had only sampled the smallest 100 x
points, which go from -5 to -4, instead of the whole range from -5 to +5?

> sub <-1:100

2 > cor.test(x[sub],y[sub])

4 Pearson ’s product -moment correlation

6 data: x[sub] and y[sub]

t = 1.4361 , df = 98, p-value = 0.1542

8 alternative hypothesis: true correlation is not equal to 0

95 percent confidence interval:

10 -0.05438692 0.33065880

sample estimates:

12 cor

0.1435648

Here, the correlation is close to 0, because the range of the x values is so small (the red
points in Figure 8.8. A rule of correlation is that if there is no variance, there can be no
covariance (and thus no correlation). What if, instead, the 100 points were spread across
the values of x?

1 sub2 <-sample (1:1000 ,100)

cor.test(x[sub2],y[sub2])

3

> cor.test(x[sub2],y[sub2])

5

Pearson ’s product -moment correlation

7

data: x[sub2] and y[sub2]

9 t = -5.1485, df = 98, p-value = 1.355e-06

alternative hypothesis: true correlation is not equal to 0

11 95 percent confidence interval:

-0.6031627 -0.2913998

13 sample estimates:

cor

15 -0.4614086

When we sampled 100 spread across the range, it was significant. What if we only
sampled fewer? 20? Let’s do this 10000 times and see what the distribution of correlations
looks like:

1 cors <- rep (0 ,10000)

for(i in 1:10000)

3 {

sub <-sample (1:1000 ,20);

5 cors[i] <- cor.test(x[sub],y[sub])$estimate
}

208

Chapter 8 Applied Statistics in R

Figure 8.8: Effects of sampling a subset of data on correlation. When a truncated range
is sampled (red), no significant correlation is obtained, in contrast to when 100 points are
sampled throughout the range.

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●●

●

●

●

●

●
●

●

●●
●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

●●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●
●

●

●
●
●

●

●

●

●

●

●

●●

●

●

●

●

●●

●
●

●●

●

●
●

●

●

●
●

●

●

●

●
●●

●

●

●

●●
●
●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●
●
●

●

●●

●

●

●

●

●

●

●●

●

●●

●

●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●
●
●

●

●

●●
●

●●

●
●

●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●
●
●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●

●●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●●

●

●●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●●

●●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●●

●

●

●●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●●

●

●

●
●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●●

●

●

●

●

●
●●

●
●

●

●

●

●
●

●

●

●

●●

●
●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

−4 −2 0 2 4

−
20

−
10

0
10

x

y

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●●●

●

●

●

●
●

●
● ●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

209

Chapter 8 Applied Statistics in R

Figure 8.9: The effect on sampling small numbers of of two variables whose true relationship
has a correlation around -.5.

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●
●

−4 −2 0 2 4

−
10

−
5

0
5

Correlation = −0.667

x[sub]

y[
su

b]

●●

●
●

●

●

●

●
●

●
●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●●
●

−4 −2 0 2 4

−
15

−
5

5
15

Correlation = −0.625

x[sub]

y[
su

b]

●
● ●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

−4 −2 0 2 4

−
10

0
5

10

Correlation = −0.516

x[sub]

y[
su

b]

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

−4 −2 0 2 4

−
10

0
5

10

Correlation = −0.511

x[sub]

y[
su

b]

210

Chapter 8 Applied Statistics in R

Histogram of cors

Sampled correlation estimates

F
re

qu
en

cy

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2

0
50

0
15

00
25

00

Although the correlation is centered on -.3, it ranges quite a lot. This should give you
some clue about how many observations you need to find a correlation in the .3 range–many
more than 20!

Exercise 8.7

Suppose you have a true correlation of .3 between two variables, created by mixing
one uniform with a second like this:

x <- runif (10000)

2 y <- runif (10000)

z <- x + 3*y

4 > cor(x,z)

[1] 0.3096357

6 > cor(x,z)^2

[1] 0.09587427

Determine by monte carlo simulation roughly how many observations you would need
to find a 5% increase 95% of the time? How about a 10% difference?

211

Chapter 8 Applied Statistics in R

8.8 Robust non-parametric Correlation Estimates

What about if you have weird data, and want a non-parametric and more robust measure,
like the wilcox test? Consider the following data set:

1 x <- runif (100)

y <- runif (100)

3 > cor.test(x,y)

5 Pearson ’s product -moment correlation

7 data: x and y

t = -0.646, df = 98, p-value = 0.5198

9 alternative hypothesis: true correlation is not equal to 0

95 percent confidence interval:

11 -0.2582356 0.1329988

sample estimates:

13 cor

-0.06512051

These are uncorrelated. But what if we change just one value on each:

x[1] <- 500

2 y[1] <- 500

cor.test(x,y)

4 Pearson ’s product -moment correlation

6 data: x and y

t = 1135.746 , df = 98, p-value < 2.2e-16

8 alternative hypothesis: true correlation is not equal to 0

95 percent confidence interval:

10 0.9999434 0.9999745

sample estimates:

12 cor

0.999962

The correlation is almost perfect! This might seem like the correlation notion is broken
somehow, but remember how it is created: we divide the covariation by the variation, and in
a data set like this, these two will be almost the same. This single outlier shows how sensitive
correlation can be to individual points. This can cause trouble for skewed distributions as
well:

1 > x<- -500:500/100

> y <- rnorm (1001)*7 +x

3 >

> x2 <- exp(x)

5 > plot(x2 ,y)

> cor(x,y)

7 [1] 0.3744526

> cor(x2,y)

9 [1] 0.2393363

> cor(x2,y,method="spearman")

11 [1] 0.361875

>

212

Chapter 8 Applied Statistics in R

Figure 8.10: Here, x2 is highly skewed, and may distort the relationship between x2 and y.
Now, the positive correlation is higher when using the spearman correlation coefficient

●
●

●

●
●
●●

●
●●

●
●

●

●
●
●

●

●
●●
●

●

●
●
●

●

●
●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●
●
●

●

●

●
●

●
●

●

●

●●

●

●
●
●

●

●●

●

●

●
●

●●

●

●

●

●
●

●

●●

●

●

●

●●

●

●

●
●

●●

●
●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●●
●

●

●

●●

●

●●

●

●

●

●

●
●●

●
●

●

●●

●

●

●
●●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●
●

●●

●

●
●

●
●●

●

●
●●

●●

●●

●

●

●

●

●
●
●

●

●

●

●
●
●

●

●

●

●

●

●
●●●

●
●

●

●

●

●

●

●●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●
●

●

●●

●

●

●

●

●●

●

●

●●

●

●

●

●
●
●●

●
●

●

●●

●●

●
●

●

●
●

●

●
●●
●

●

●

●

●
●

●

●●
●

●

●

●

●

●
●
●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●
●●

●●
●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●●
●

●●
●
●
●

●

●
●●
●●
●

●

●

●

●

●
●
●

●

●●●

●

●
●

●

●●

●

●

●
●

●●
●

●

●●

●

●
●●
●●
●

●

●

●
●

●

●

●
●

●●
●●
●●
●

●

●
●

●

●●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●
●

●

●
●

●

●

●●

●
●●●

●

●

●

●
●●
●
●

●

●
●●●

●●
●
●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●
●

●

●
●●
●●
●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●●

●
●●

●
●
●

●

●
●

●

●
●●

●

●

●●
●●

●

●
●●
●

●

●

●

●

●

●●

●
●

●●●

●●

●

●

●

●

●●

●●

●

●

●
●

●

●

●

●

●

●
●
●
●

●

●

●
●

●

●

●

●

●●

●●
●

●
●

●
●

●

●

●
●

●●

●

●●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●●

●
●
●

●●●●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●
●
●

●
●

●●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●●●
●

●

●

●●

●

●

●●
●

●
●

●

●
●●

●

●

●●

●

●●

●

●

●●
●

●●
●

●
●

●●

●
●

●

●●

●

●

●

●

●

●●

●
●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●
●●

●

●

●

●

●●
●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●
●●
●
●

●

●
●

●

●

●

●

●

●

●●

●

●●

●
●
●

●

●

●●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●●
●

●

●

●
●

●

●●
●
●

●●

●

●●

●

●
●

●

●

●

●●●●

●
●

●

●●

●●

●

●

●
●
●

●●

●

●

●

●

●

●

●

●
●

●
●
●

●

●

●●
●

●

●

●

●

●

●

●●

●
●●

●●●

●
●

●

●

●

●

●

●

●●
●

●

●

●
●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

0 50 100 150

−
20

0
10

20

x2

y

●
●

●

●
●
●●

●
●●

●
●

●

●
●
●

●

●
●●
●

●

●
●
●

●

●
●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●
●
●

●

●

●
●

●
●

●

●

●●

●

●
●
●

●

●●

●

●

●
●

●●

●

●

●

●
●

●

●●

●

●

●

●●

●

●

●
●

●●

●
●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●●
●

●

●

●●

●

●●

●

●

●

●

●
●●

●
●

●

●●

●

●

●
●●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●
●

●●

●

●
●

●
●●

●

●
●●

●●

●●

●

●

●

●

●
●
●

●

●

●

●
●
●

●

●

●

●

●

●
●●●

●
●

●

●

●

●

●

●●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●
●

●

●●

●

●

●

●

●●

●

●

●●

●

●

●

●
●
●●

●
●

●

●●

●●

●
●

●

●
●

●

●
●●
●

●

●

●

●
●

●

●●
●

●

●

●

●

●
●
●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●
●●

●●
●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●●
●

●●
●
●
●

●

●
●●
●●
●

●

●

●

●

●
●
●

●

●●●

●

●
●

●

●●

●

●

●
●

●●
●

●

●●

●

●
●●
●●
●

●

●

●
●

●

●

●
●

●●
●●
●●
●

●

●
●

●

●●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●
●

●

●
●

●

●

●●

●
●●●

●

●

●

●
●●
●
●

●

●
●●●

●●
●
●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●
●

●

●
●●
●●
●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●●

●
●●

●
●
●

●

●
●

●

●
●●

●

●

●●
●●

●

●
●●
●

●

●

●

●

●

●●

●
●

●●●

●●

●

●

●

●

●●

●●

●

●

●
●

●

●

●

●

●

●
●
●
●

●

●

●
●

●

●

●

●

●●

●●
●

●
●

●
●

●

●

●
●

●●

●

●●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●●

●
●
●

●●●●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●
●
●

●
●

●●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●●●
●

●

●

●●

●

●

●●
●

●
●

●

●
●●

●

●

●●

●

●●

●

●

●●
●

●●
●

●
●

●●

●
●

●

●●

●

●

●

●

●

●●

●
●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●
●●

●

●

●

●

●●
●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●
●●
●
●

●

●
●

●

●

●

●

●

●

●●

●

●●

●
●
●

●

●

●●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●●
●

●

●

●
●

●

●●
●
●

●●

●

●●

●

●
●

●

●

●

●●●●

●
●

●

●●

●●

●

●

●
●
●

●●

●

●

●

●

●

●

●

●
●

●
●
●

●

●

●●
●

●

●

●

●

●

●

●●

●
●●

●●●

●
●

●

●

●

●

●

●

●●
●

●

●

●
●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

Pearson R = 0.239
Spearman Rho = 0.362

In this case, even though the original had a correlation of .37, the transformed data had
a correlation considerably lower, and you might not detect it. It is somewhat troubling that
the correlation can be dependent on simple transforms like this. What if we used some of
the same tricks for the wilcox test–using ranks. This is known as the ‘spearman’ correlation,
and can be given to cor or cor.test as an option. In fact, except for some decisions that
may need to be made about how to handle ties, it is just the pearson correlation on the
rank-order of the data:

cor.test(rank(x),rank(y))

2 > cor.test(rank(x2),rank(y))

4 Pearson ’s product -moment correlation

6 data: rank(x2) and rank(y)

t = 12.269 , df = 999, p-value < 2.2e-16

8 alternative hypothesis: true correlation is not equal to 0

95 percent confidence interval:

10 0.306792 0.414542

sample estimates:

12 cor

0.361875

14

16 cor.test(x2 ,y,method =" spearman ")

18 Spearman ’s rank correlation rho

20 data: x2 and y

S = 106670000 , p-value < 2.2e-16

22 alternative hypothesis: true rho is not equal to 0

sample estimates:

24 rho

0.361875

213

Chapter 8 Applied Statistics in R

In this case, because the x values were spaced constantly, and the y values are fairly contigu-
ous, the Spearman’s correlation is close to the Pearson’s correlation. Generally, Pearson’s
correlation is referred to as Pearson’s r, and Spearman’s as ρ or rho.

8.9 Correlations among a set of variables

In R, you can compute the entire correlation matrix of a data frame using cor, and visualize
these using pairs. A nice alternative is available in the GGally library with ggPairs.

2 data(iris)

pairs(iris)

4 pairs(iris ,col=iris[,5],pch =16)

6 library(GGally)

library(ggplot)

8 ggpairs(iris ,ggplot2 ::aes(colour=Species))

10 cor(iris [,1:4])

Sepal.Length Sepal.Width Petal.Length Petal.Width

12 Sepal.Length 1.0000000 -0.1175698 0.8717538 0.8179411

Sepal.Width -0.1175698 1.0000000 -0.4284401 -0.3661259

14 Petal.Length 0.8717538 -0.4284401 1.0000000 0.9628654

Petal.Width 0.8179411 -0.3661259 0.9628654 1.0000000

However, cor.test does not work this way. Instead, you will have to iterate over column
pairs. Notice how you can iterate so that you get each pair exactly once.

1 cor.test(iris)

Error in cor.test.default(iris) :

3 argument "y" is missing , with no default

5 for(i in 1:3)

{

7 for (j in (i+1):4)

{

9 cat("Comparing",i,"to",j,"\n")

print(cor.test(iris[,i],iris[,j]))

11

}

13 }

8.9.1 Bayes Factor test for correlation

The BayesFactor library provides a BayesFactor test for correlation as well. If we compare
just the first column of iris (Sepal.Length) to the others, we can see we get similar results:

1

for (j in 2:4)

3 {

cat("Comparing" ,1,"to",j,"\n")

5 print(correlationBF(iris[,1],iris[,j]))

}

7

Comparing 1 to 2

214

Chapter 8 Applied Statistics in R

Figure 8.11: Correlations among three subspecies of the iris data set. This figure is produced
by ggPairs in the GGally library, but similar functionality is available with the pairs function.

●

●

●
●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●
●

●
●

●

●
●
●

●
●

●

●
●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

● ●

●

●

●

●

●

●
●

●

●

●

●

●
● ●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●● ●

●

●
●

●

●

●

●

●

●●●
● ●

●
● ●● ● ●●

●
● ●

●
●●

●
●

●
●

●

●
●

●● ●●
●● ●● ●●

● ●●●
●

●●●
●
●

●
●

● ●●

●
●

●

●

●●
●

●

●

●
●

●
●

●

●

●●
●

●

●

●

●

●
●

● ●
●

●

●

●
●●

●

●

● ●
●

●
●●

●
●

●

●

●●● ●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●●
●
●

●
●

●

●

●

●

●

●
●

●●

●
●

●
●

●

●

●

●

●●

●

●
●

●●

●
●

●
●

●
●

●

●●●● ●

●
●

●●
●

●●
●●

●

●●
● ●●

●

●

●

●

● ●

●

●●●●

●

●
●●● ●

●
● ●

●●
●

●

●
●

●● ●●

●
● ●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

● ●

●

●

●
●
●

●

●
●

●
●

●●●
●

●

●

●

●
●
● ●

●

●

●

●

●

●

●
●

●
●●

●

●
●

●
●

●
●

●

●
●

●

●

● ●

●

●

●●●

●

●

●
●

●

●
●

●
●

●●

●

●
●

●

●

●

●

●
●

●

●

Cor : −0.118

setosa: 0.743

versicolor: 0.526

virginica: 0.457

●● ●
● ●

●
●●● ● ●●

●
● ●

●
●●

●
●

●
●

●

●
●

● ●●●
●● ● ●●●
● ●●●

●
●● ●
●

●

●
●

● ●●

●
●

●

●

●●
●

●

●

●
●

●
●

●

●

●●
●

●

●

●

●

●
●

●●
●

●

●

●
●●

●

●

● ●
●

●
●●

●
●

●

●

● ●●●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

● ●
●

●

●
●

●

●

●

●

●

●
●

● ●

●
●

●
●

●

●

●

●

●●

●

●
●

●●

●
●

●
●

●
●

●

●● ●● ●

●
●
●●

●
●●

●●
●

●●
● ●●

●

●

●

●

●●

●

●●●●

●

●
●●● ●

●
● ●

●●
●

●

●
●

●● ●●

●
●●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●
●
●

●

●
●

●
●

● ●●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●
●●

●

●
●

●
●

●
●

●

●
●

●

●

●●

●

●

●● ●

●

●

●
●

●

●
●

●
●

●●

●

●
●

●

●

●

●

●
●

●

●

Cor : 0.872

setosa: 0.267

versicolor: 0.754

virginica: 0.864

Cor : −0.428

setosa: 0.178

versicolor: 0.561

virginica: 0.401

●●●●●

●
●
●●
●
●●

●●
●

●●
●●●

●

●

●

●

●●

●

●●●●

●

●
●●●●
●

●●
●●
●

●

●
●

●●●●

●
● ●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●
● ●

●

●

●
●

●

●

●
●
●

●

●●●
●

●

●

●

●
●
●●

●

●

●

●

●

●

●
●

●
●●

●

●
●

●
●

●
●

●

●
●

●

●

● ●

●

●

●●●

●

●

●
●

●

●
●

●
●

●●

●

●
●

●

●

●

●

●
●

●

●

Cor : 0.818

setosa: 0.278

versicolor: 0.546

virginica: 0.281

Cor : −0.366

setosa: 0.233

versicolor: 0.664

virginica: 0.538

Cor : 0.963

setosa: 0.332

versicolor: 0.787

virginica: 0.322

●

●

●

●

●

●

●●

●●

●

●
●

Sepal.Length Sepal.Width Petal.Length Petal.Width Species

S
epal.Length

S
epal.W

idth
P

etal.Length
P

etal.W
idth

S
pecies

5 6 7 8 2.0 2.5 3.0 3.5 4.0 4.5 2 4 6 0.0 0.5 1.0 1.5 2.0 2.5 setosaversicolorvirginica

0.0

0.4

0.8

1.2

2.0

2.5

3.0

3.5

4.0

4.5

2

4

6

0.0

0.5

1.0

1.5

2.0

2.5

0.0
2.5
5.0
7.5

0.0
2.5
5.0
7.5

0.0
2.5
5.0
7.5

215

Chapter 8 Applied Statistics in R

9 Bayes factor analysis

11 [1] Alt., r=0.333 : 0.5090175 ?0%

13 Against denominator:

Null , rho = 0

15 ---

Bayes factor type: BFcorrelation , Jeffreys -beta*

17

Comparing 1 to 3

19 Bayes factor analysis

21 [1] Alt., r=0.333 : 2.136483e+43 ?0%

23 Against denominator:

Null , rho = 0

25 ---

Bayes factor type: BFcorrelation , Jeffreys -beta*

27

Comparing 1 to 4

29 Bayes factor analysis

31 [1] Alt., r=0.333 : 2.621977e+33 ?0%

33 Against denominator:

Null , rho = 0

35 ---

Bayes factor type: BFcorrelation , Jeffreys -beta*

37

8.10 Comparison of Categorical Variables

So far, we have looked at determining whether a continuous variable depends on a category
(t-tests), or whether two continuous variable depend on one another (correlation). Many
times you have two categorical variables and you want to determine whether one depends
on another. For example, you might ask whether the type of car someone drives depends on
gender, or whether hair color depends on eye color. In addition, you sometimes have contin-
uous data that you categorize into groups (e.g., positive or negative opinion of something),
and here you like to determine whether one measure depends on another. If you have a single
category survey instruments create data that are categorical Responses will sometimes have
an ordinal scale, but they may often be completely nominal. Consider the HairEyeColor
data set:

1 print(HairEyeColor)

, , Sex = Male

3

Eye

5 Hair Brown Blue Hazel Green

Black 32 11 10 3

7 Brown 53 50 25 15

Red 10 10 7 7

9 Blond 3 30 5 8

11 , , Sex = Female

216

Chapter 8 Applied Statistics in R

Figure 8.12: Graphic showing the distribution of eye and hair color

Brown Blue Hazel Green

Male

0
20

40
60

80
10

0

Brown Blue Hazel Green

Female

0
20

40
60

80
12

0

13 Eye

Hair Brown Blue Hazel Green

15 Black 36 9 5 2

Brown 66 34 29 14

17 Red 16 7 7 7

Blond 4 64 5 8

19

par(mfrow=c(1,2))

21 barplot(HairEyeColor [,,1],main="Male")

barplot(HairEyeColor [,,2],main="Female")

We can do better:

barplot(t(HairEyeColor [,,1]),

2 col=c("brown4","blue","khaki","darkgreen"),

main="Male eye color")

4 barplot(t(HairEyeColor [,,2]),

col=c("brown4","blue","khaki","darkgreen"),

6 main="Female eye color")

The two genders look roughly the same (although there seem to be more blonde women
than men, relatively-speaking), so maybe we can collapse over them:

hc2 <- t(HairEyeColor [,,1]+ HairEyeColor [,,2])

2 par(mfrow=c(1,1))

barplot(hc2 ,col=c("brown4","blue","khaki","darkgreen"))

How can we know whether we are justified in combining gender? How can we know
whether eye color is dependent on hair color? It looks like blond hair and blue eyes might
tend to be related, which makes sense, but how can we test this?

217

Chapter 8 Applied Statistics in R

Figure 8.13: Graphic showing the distribution of eye and hair color

Black Brown Red Blond

Male eye color

Hair color

0
20

60
10

0
14

0

Black Brown Red Blond

Female eye color

Hair color

0
20

60
10

0
14

0

Figure 8.14: Graphic showing the distribution of eye and hair color

Black Brown Red Blond

0
50

10
0

20
0

218

Chapter 8 Applied Statistics in R

To simplify things, let’s consider the question of whether eye color distribution differs
between blond and brown-haired people. First, let’s compute the expected frequencies, which
is the marginal distribution of eye color for these two conditions

1 ##select just the two hair colors

brownblond <- hc2[,c(2,4)]

3 brownblond

Hair

5 Eye Brown Blond

Brown 119 7

7 Blue 84 94

Hazel 54 10

9 Green 29 16

11 ##Compute the marginal mean

expected.prop <- rowSums(brownblond)/sum(brownblond)

13 expected.prop

Brown Blue Hazel Green

15 0.3050847 0.4309927 0.1549637 0.1089588

17 expected <- matrix(rep(colSums(brownblond),each =4),nrow =4)*

matrix(rep(expected.prop ,2),nrow =4)

19

expected

21 [,1] [,2]

[1,] 87.25424 38.74576

23 [2,] 123.26392 54.73608

[3,] 44.31961 19.68039

25 [4,] 31.16223 13.83777

The expected matrix is our best estimate for what the observed distribution should be
if the proportion was the same, i.e., independent. This is easiest to see of we plot it:

1 barplot(expected ,beside=T,names=c("Brown","Blond"),

col=c("brown4","blue","khaki","darkgreen"),

3 ylab="Expected count",main="Expected Distribution")

Now, we can compute the difference between this expected distribution and the observed
one

1 sumdiff <- sum((brownblond - expected)^2/(expected))

[1] 85.59659

This statistic is referred to as the χ2 (or Chi-squared) statistic. For data like this, samples
that are truly independent are modeled with a χ2 distribution having degrees of freedom
equal to (n − 1) ∗ (m − 1). Thus, just as with all the other tests, we can compute the
statistic for our data, and compare it to the expected distribution for the null hypothesis,
and determine whether the result was likely to have happened by chance. In this case,
because we have a 2 × 4 matrix, it has degrees of freedom 1 × 3 = 3. We can look this up
using the pchisq function, or allow the function chisq.test to do the whole operation for
us. Verify here that they do the same thing:

pchisq (85.5966 ,3)

2 [1] 1

>

219

Chapter 8 Applied Statistics in R

Figure 8.15: Graphic showing the expected distribution of eye and hair color, if they were
independent.

Brown Blond

Expected Distribution

E
xp

ec
te

d
co

un
t

0
20

40
60

80
12

0

4 chisq.test(brownblond)

6 Pearson ’s Chi -squared test

8 data: brownblond

X-squared = 85.5966 , df = 3, p-value < 2.2e-16

In R, you give chisq.test a matrix of counts, and it will compare the rows to the
expected proportions based on the marginal values, and determine whether the rows and
columns are independent. For example, we could do the entire data set:

1 chisq.test(hc2)

3 Pearson ’s Chi -squared test

5 data: hc2

X-squared = 138.2898 , df = 9, p-value < 2.2e-16

7

Just as with t-tests, we can also compute a Bayesian test:

1 contingencyTableBF(brownblond ,sampleType = "indepMulti", fixedMargin = "cols"

)

Bayes factor analysis

3 --------------

[1] Non -indep. (a=1) : 1.199192e+18

5

Against denominator:

220

Chapter 8 Applied Statistics in R

7 Null , independence , a = 1

9 Bayes factor type: BFcontingencyTable , independent multinomial

11

Here, 1.1999e+18 is a VERY large number: 1,000,000,000,000,000,000. the a=1 value
is a parameter controlling the prior hypotheses, in this case an equal probability of a inde-
pendence and non-independence. Generally, this is reasonable, because you don’t want your
prior hypothesis to bias your results and overwhelm the observed data. But there could
be cases where it makes sense; especially in more applied contexts. Suppose you have a
lot of experience is survey/questionnaires, and know that two variables are typically NOT
related–maybe you want to incorporate that knowledge into your test so that you don’t
false-alarm and end up down a rabbit hole. Finally, the test requires you to choose a fixed
margin. Sometimes it is arbitrary–if one of your arguments is a quasi-experimental or ex-
perimental variable that is selected or assigned, it is reasonable to consider this fixed with
the other variable dependent on it. The main impact for the Bayesian test is how it frames
the underlying sampling distribution, which must be done iteratively. For example, if you
were to ask each person two questions (e.g., maybe about trust and reliance) and wanted
to know whether their response depended on question, you might form a table of question
by response, and here question would be the fixed margin. Similarly, demographic variables
that you are selecting for (gender, age, etc.) would be fixed. In cases where neither are fixed,
you might have to make a reasonable decision or try both ways. For example, on a survey
you might ask a preferred music genre as well as a favorite food type–since you didn’t sample
based on either of these (i.e., choosing 10 people from each of 3 favorite genres), neither is
fixed but you still must choose for this test.

Here, both the χ2 and Bayes factor tests agree.
You may want to compare it to a specific expected set of values specify the ‘p’ argument

in that case. You can compare any observed distribution to any particular distribution.
For example, you can test whether the the overall hair color distribution differs from some
specific distribution, such as a uniform one.

colSums(hc2)

2 Black Brown Red Blond

108 286 71 127

4

chisq.test(colSums(hc2),p=c(.25 ,.25 ,.25 ,.25))

6

Chi -squared test for given probabilities

8

data: colSums(hc2)

10 X-squared = 182.527 , df = 3, p-value < 2.2e-16

This indicates that the observed distribution is not from the specified (uniform) distri-
bution, because it would have been very unlikely for the data to have been observed from it.
Let’s consider a few other tests we could do by specifying the null distribution:

Is the eye color distribution for black hair the same as the observed distribution of brown?

chisq.test(hc2[,1],p=hc2[,2], rescale.p=T)

2

Chi -squared test for given probabilities

4

221

Chapter 8 Applied Statistics in R

data: hc2[, 1]

6 X-squared = 20.8265 , df = 3, p-value = 0.0001144

Is the eye color distribution for brown the same as the observed distribution of blond?

1 chisq.test(hc2[,2],p=hc2[,4], rescale.p=T)

3 Chi -squared test for given probabilities

5 data: hc2[, 2]

X-squared = 798.4851 , df = 3, p-value < 2.2e-16

7

>

Are blond and brown the same as their average?

chisq.test(hc2[,c(2,4)])

2

4 Pearson ’s Chi -squared test

6 data: hc2[, c(2, 4)]

X-squared = 85.5966 , df = 3, p-value < 2.2e-16

It might seem strange that these last two are different. By default, the test compares
each observed to the expected produced by their average. By specifying p, you can test it
against a particular distribution.

8.10.1 Exercise

Suppose you counted the number of people that used each of four adjacent doors to a building,
and found that from left to right, there were 131, 151, 140, and 124 users. Use a chi-squared
test to determine whether people used the doors equally.

8.10.2 Technical issues

If instead of a table, you have a vector of categories (i.e, responses), you can compare that
vector to another vector directly using a chi-squared test to see if the two categories are
independent.

1 library(BayesFactor)

3 set.seed (100)

sample1 <- sample(LETTERS [1:6] ,1000 , prob=c(1,1,1,1,1,.2),replace=T)

5 sample2 <- sample(LETTERS [1:6] ,1000 , replace=T)

sample3 <- sample(c("yes","no","maybe"), 1000, replace=T)

7

9 ##do the pairings of sample 1 and sample 2 depend on eachother?

chisq.test(sample1 ,sample2)

11

Pearson ’s Chi -squared test

13

data: sample1 and sample2

222

Chapter 8 Applied Statistics in R

15 X-squared = 25.954 , df = 25, p-value = 0.4101

17 Warning message:

In chisq.test(sample1 , sample2) :

19 Chi -squared approximation may be incorrect

> chisq.test(sample1 ,sample3)

21

Pearson ’s Chi -squared test

23

data: sample1 and sample3

25 X-squared = 11.239 , df = 10, p-value = 0.3392

27 >

Before we look at the results of the test, see that it gives a warning ”Chi-squared ap-
proximation may be incorrect”. This is caused because some of the cell counts are small–in
this case a couple 3s and and 5 and some 6s. There is not anything you can do about this
except collect more data, and you just might want to be wary about the test results because
of the small counts.

Notice that this determines whether the categories of sample1 depend on the categories
of sample2. This is testing the cross-tab table of these two variables, and whether the
distribution of one variable depends on the distribution of the second. So, the two variables
do not have to have the same levels:

1 table(sample1 ,sample2)

sample2

3 sample1 A B C D E F

A 31 28 49 34 29 29

5 B 38 38 26 35 26 32

C 34 28 38 23 36 28

7 D 33 34 34 36 39 21

E 32 28 34 43 27 27

9 F 6 3 7 3 6 5

> table(sample1 ,sample3)

11 sample3

sample1 maybe no yes

13 A 53 76 71

B 67 60 68

15 C 67 63 57

D 72 70 55

17 E 69 63 59

F 8 8 14

Thus, this is the same as the test on the table:

chisq.test(table(sample1 ,sample2)) ##this is the same.

2 contingencyTableBF(table(sample1 ,sample2),

sampleType = "indepMulti", fixedMargin = "cols")

But since sample1 and sample2 are the same outcomes, maybe we want to know whether
they differ. We would need to make a 2x5 table to test whether these marginal distributions
are the same. There are several ways to do this, but here is one:

1 ##But are the proportions different in two independent conditions?

table <- tapply(rep (1 ,2000),list(c(sample1 ,sample2),

223

Chapter 8 Applied Statistics in R

3 c(rep(1:2, each =1000))),length)

table[is.na(table)]<- 0

5 table

> table

7 1 2

A 200 174

9 B 195 159

C 187 188

11 D 197 174

E 191 163

13 F 30 142

chisq.test(table)

15

Pearson ’s Chi -squared test

17

data: table

19 X-squared = 82.042 , df = 5, p-value = 3.137e-16

21 > contingencyTableBF(table ,

sampleType = "indepMulti",

23 fixedMargin = "cols")

Bayes factor analysis

25 --------------

[1] Non -indep. (a=1) : 1.005753e+14 ?0%

27

Against denominator:

29 Null , independence , a = 1

31 Bayes factor type: BFcontingencyTable , independent multinomial

33 >

Here, the p-value shows the Null hypothesis would be very unlikely to produce the data we
saw, and similarly the Bayes factor show strong evidence against the null hypothesis.

8.11 Special considerations for comparing group means

There are a number of things to consider when doing the simple mean comparisons we have
here. These include: What happens when you have non-normal data? What if you have
different sample sizes in two groups? What if the variance differs substantially between
groups? Finally, how do you compute an effect size for mean comparisons?

8.11.1 Non-normal and skewed data

Generally, we consider a random variable to introduce noise above and beyond the contribu-
tion of the mean. So, the noise is just a nuisance, and we try to see if the central tendency
is likely to differ in the population. But the mean is only the central tendency if the noise
is unskewed. If it is not, then it is not as clear. Sometimes, if we have a good model of the
noise, we might use a different test that estimates the parameters of the distribution itself.
One example comes when trying to understand response times in human choice. Response
time is highly skewed, but reasonably good models exist to predict the shape of the distri-
butions. The estimation process can be tricky, but we might estimate parameters from a
complex model, and then use the estimated parameters for each participant/condition as the
data we test.

224

Chapter 8 Applied Statistics in R

In other cases, we may just want to know that the data distribution does not violate our
test’s assumptions. Many ad hoc and principled transforms are used, depending on the shape
of the data distribution. These include log, exp, sqrt, and others. For accuracy/probability
data, people sometimes use log, log-odds, trigonometric functions, and and others. If we can
do a transform and get rid of a long tail, this will help us conduct a test that is more
reasonable. We will discuss transforms later in the context of regression models.

Overall, remember that non-normality matters most for small data sizes. As N gets large,
the hypothetical distribution of the means will approach normality. Finally, a non-parametric
test is always an alternative.

8.11.2 Different sample sizes between independent groups

We get the best power if the two groups have equal sample sizes, assuming you have the
chance to assign to treatment groups or select among cases to include. If you have unequal
sample sizes, there is generally no reason to discard data from the larger sample to make
the sample size equal–independent samples tests all account for sample size differences fairly
easily. Note that for independent samples tests, the standard deviation gets pooled across
groups. But this can also be problematic, especially if you have very different sample sizes.
For example, if you have 200 observations, but there are only 10 in one group and 190 in the
second, it may be misleading, because the pooling of standard deviation will more heavily
weigh the larger group, and you may be more likely to mistakenly detect a difference that
does not exist. The unequal can be handled, but the small sample size can still get washed
out when the standard error is computed.

For example, suppose we have a chance of increasing the number of observations of the
control group, but not the treatment group?

1 t.test(x1,y1)

t.test(c(x1,rnorm (20 ,.2)),y1)

3

5 > t.test(x1,y1)

7 Welch Two Sample t-test

9 data: x1 and y1

t = -1.4248, df = 37.967 , p-value = 0.1624

11 alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

13 -0.7956115 0.1383187

sample estimates:

15 mean of x mean of y

0.3078671 0.6365136

17

> t.test(c(x1,rnorm (20 ,.2)),y1)

19

Welch Two Sample t-test

21

data: c(x1, rnorm (20, 0.2)) and y1

23 t = -0.78246 , df = 42.855 , p-value = 0.4382

alternative hypothesis: true difference in means is not equal to 0

25 95 percent confidence interval:

-0.5948305 0.2623037

27 sample estimates:

mean of x mean of y

29 0.4702502 0.6365136

225

Chapter 8 Applied Statistics in R

Here, the t value actually got smaller–but this is not a general rule; it only happened be-
cause of randomness. But our confidence region got smaller because of additional observations–
from a band of about 0.95 to one of 0.75.

8.11.3 Between versus within studies

In general, you get more statistical power from within-participant experiments. This is
because you get to ignore any systematicity within each person, and focus only on the
differences:

t.test(x1-y1)

2 t.test(x1,y1 ,paired=T)

t.test(x1,sample(y1),paired=T) ##re-ordered so no linkage between groups

4 t.test(x1a ,y1a ,paired=T) ##200 values

t.test(x3,y3 ,paired=T) ##smaller variance

6 t.test(x4,y4 ,paired=T) ##same number

8

wilcox.test(x1,y1 ,paired=T) ##same number as above

10 wilcox.test(x1a ,y1a ,paired=T) ##200 values

wilcox.test(x3,y3 ,paired=T) ##smaller variance

12 wilcox.test(x4,y4 ,paired=T) ##

14

ttestBF(x1,y1,paired=T)

16 ttestBF(x1a ,y1a ,paired=T)

ttestBF(x3,y3,paired=T)

18 ttestBF(x3,sample(y3),paired=T)

ttestBF(x4,y4,paired=T)

20 ttestBF(x4,sample(y4),paired=T)

ttestBF(x4,sample(y4))

In some of the examples above, I reshuffled the second pairing so it was no longer yoked to
the first using the sample() command. Now, the results are going to be more like the unpaired
test. We get a lot of additional power by doing paired t-tests, as long as the measures we
are taking have some of their total variability tied to the person, not the measurement.

In general, this shows why doing a within-subject experiment can be so powerful. If every
participant shows an effect, you can establish reliable estimates of the population with just
a handful of subjects, and in perception research, it is typical for studies to have just a few
subjects (each of whom might be studied for thousands or tens of thousands of trials).

What happens if we have greater within-subject variability? That is, we have an unre-
liable measure. Here, the y values is on average 1.3 greater than the x value, but y2 has
normally-distributed noise having an s.d. of 5, instead of the 0.3 of y1:

set.seed (1001)

2 x <- runif (20)

y1 <- x + 1.3 + rnorm (20)*.3

4 y2 <- x + 1.3 + rnorm (20)*5

par(mfrow=c(1,2))

6 plot(x,y2)

matplot(cbind(x,y2))

8 delta <- y2 -x

t <- mean(delta)/(sd(delta)/sqrt (20))

10 pt(t,19)

t.test(x,y2,paired=T)

12

>data: x and y1

226

Chapter 8 Applied Statistics in R

14 t = -18.387, df = 19, p-value = 1.461e-13

alternative hypothesis: true difference in means is not equal to 0

16 95 percent confidence interval:

-1.479736 -1.177280

18 sample estimates:

mean of the differences

20 -1.328508

22 > t.test(x,y2,paired=T)

24 Paired t-test

26 data: x and y2

t = -1.6731, df = 19, p-value = 0.1107

28 alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

30 -5.856208 0.652935

sample estimates:

32 mean of the differences

-2.601637

With small within-subject variability, the paired t-test is highly significant; when this
increases it no longer is helpful.

8.11.4 Effect sizes for t tests

Many journals now recommend reporting ‘effect size’ which go beyond ‘statistical signifi-
cance’ and hope to give a guideline of how much of the variability is explained. An effect size
can be a really useful statistic to help judge how important an effect is. You might have a
very small difference between two groups that have a large overlap in their distributions, but
if you collect enough data, you could conclude they are different. However, the effect size
will help you judge that, out of all the ways that people differ in the task, your manipulation
is only explaining a small amount. The most common effect size for a simple comparison is
called Cohen’s d.

In a two-sample t-test, the effect size is calculated as the difference between means divided
by the pooled standard deviation. Note that to pool sd, subtract the mean from each group.
There are other schemes for pooling variance of two groups, but the result should be roughly
the same:

2 (mean(x)-mean(y1)) / sd(c(x-mean(x),y1 -mean(y1)))

[1] -3.436513

4

(mean(x)-mean(y2)) / sd(c(x-mean(x),y2 -mean(y2)))

6 [1] -0.5291243

However, we did treat x and y1/y2 as paired samples. Shouldn’t the effect size be larger
in this case? Here, we can simply find the relative size of the mean of the difference, in
comparison to the standard deviation of the difference:

1 delta1 <- x - y1

delta2 <- x - y2

3

> mean(delta1)/sd(delta1)

5 [1] -4.111412

227

Chapter 8 Applied Statistics in R

> mean(delta2)/sd(delta2)

7 [1] -0.374121

In this case, the effect size is larger in the case of y1; in the case of y2 it is actually a bit
smaller. labelsection:ex8-8

Exercise ??

• Generate a set of 150 random numbers, and compare them to their sorted values
with the Wilcox test. What value do you get for W? Why?

• Generate another set of 150 normal random numbers whose means differ by .2
standard deviation units, but that are unrelated to the first set. Run a standard
t-test comparing these, and then a wilcox test. How do the p values differ?

• For the data you created in the previous exercise, exponentiate using the exp

function, and plot the distributions using hist. Then do a wilcox test on the
exponentiated values. How do this test compare to the previous test?

• For the same data, run a paired t-test, as well as a paired wilcox test, even
though the data were not paired. How do these compare to the unpaired versions
of the tests?

8.11.5 Effect sizes for Wilcox test

Cowan’s d is not tied directly to the statistical test, and so it might be reasonable to use a
standard computation of effect size on your data, even if you are not using a t test. But you
might like the equivalent that is robust to the same issues the wilcox test is. Rand Wilcox
has published several papers on effect sizes 1, and has produced an R library that includes
some effect size measures that are probably more relevant2.

One simple approach to reporting an effect size for the Wilcox test is to compute the
average proportion of the lower group that each member of the higher group was greater
than. The U or W statistic reported by wilcox.test reports the total number, and if you divide
that by the total number of comparisons, this gives a value. So, if you have 20 observations
in each group and a W of 300, you divide 300 by (20*20), to get a proportion of .75. The
farther the value is from 0.5, the greater the difference between groups. The value of .75
corresponds closely to the Area under the ROC Curve (AUC), which is a commonly-used
effect size measure in human and machine classification.

8.11.6 The effectsize Library

The effectsize library in R provides dozens of functions that help calculate effect size. It
even has an all-in-one function that takes the results of any particular analysis and tries to
compute the effect size. Here are three examples using t tests calculated in the previous
section:

1See Wilcox, R. R. (2011). Inferences about a Probabilistic Measure of Effect Size When Dealing with
More Than Two Groups. Journal of Data Science, 9, 471-486; Wilcox, R. R. & Tian, S. (2011). Measuring
effect size: a robust heteroscedastic approach for two or more groups, Journal of Applied Statistics, 38:7,
1359-1368.

2http://r-forge.r-project.org/projects/wrs/

228

http://r-forge.r-project.org/projects/wrs/

Chapter 8 Applied Statistics in R

1 > effectsize(t.test(x,y1 ,paired=T))

Cohen’s d | 95% CI

3 --------------------------

-4.11 | [-5.47, -2.74]

5

7 > effectsize(t.test(x,y2 ,paired=T))

Cohen’s d | 95% CI

9 -------------------------

-0.37 | [-0.82, 0.08]

11

13 > effectsize(t.test(x,y2))

Cohen’s d | 95% CI

15 -------------------------

-0.52 | [-1.16, 0.13]

17

- Estimated using un -pooled SD.

The library will produce reasonable of standard effect sizes for many tests, either by
default using effectsize or via special-purpose functions

> chisq.test(table)

2

Pearson ’s Chi -squared test

4

data: table

6 X-squared = 107.43 , df = 5, p-value < 2.2e-16

8 > effectsize(chisq.test(table))

Cramer ’s V (adj.) | 95% CI

10 --------------------------------

0.23 | [0.18, 1.00]

12

> cramers_v(table)

14

Cramer ’s V (adj.) | 95% CI

16 --------------------------------

0.23 | [0.18, 1.00]

The functions sometimes will take the input of a test, and other times take the output
of a test, so you need to be careful about reading the instructions to be sure you are giving
it the right information.

The effectsize library includes many conversion functions, including converting from
inferential stats (like t) to an effect size stat (like Cohen’s d). This can be helpful in a
meta-analysis, to allow you to calculate a common effect size across many experiments–even
those that did not report them directly.

229

Chapter 8 Applied Statistics in R

8.12 Exercise Solutions

Exercise 8.3.2 Solution

Compute a one-sample t-test for x01 x1a, x2, and x3. For each one, determine the
probability you would have seen the value if the null hypothesis were true.

1 t.test(x0,alternative="greater")

t.test(x1a ,alternative="greater")

3 t.test(x2,alternative="greater")

t.test(x3,alternative="greater")

230

Chapter 8 Applied Statistics in R

Exercise 8.3.4 Solution

Compute a one-sample Bayes factor test for x0, x1a, x2, and x3. For each one,
determine the probability you would have seen the value if the null hypothesis were
true.

2 > ttestBF(x1a)

Bayes factor analysis

4 --------------

[1] Alt., r=0.707 : 1.000153 ?0%

6

Against denominator:

8 Null , mu = 0

10 Bayes factor type: BFoneSample , JZS

12 > ttestBF(x2)

Bayes factor analysis

14 --------------

[1] Alt., r=0.707 : 0.6329924 ‘0.01’

16

Against denominator:

18 Null , mu = 0

20 Bayes factor type: BFoneSample , JZS

22 > ttestBF(x3) #very large

Bayes factor analysis

24 --------------

[1] Alt., r=0.707 : 495.6574 ‘0’

26

Against denominator:

28 Null , mu = 0

30 Bayes factor type: BFoneSample , JZS

32 > ttestBF(x4)

Bayes factor analysis

34 --------------

[1] Alt., r=0.707 : 16.72785 ‘0’

36

Against denominator:

38 Null , mu = 0

40 Bayes factor type: BFoneSample , JZS

231

Chapter 8 Applied Statistics in R

Exercise 8.4.3 Solution

Compute each paired-samples test (t-test, wilcox, and Bayes factor) for the following
data, in comparison to the original values (e.g., compare x1.2 versus x1):

y1 <- x1 + rnorm(20,mean =.25)

2 y1a <- x1a + rnorm (200, mean =.25)

y2 <- x2 + rnorm(20,mean=0,sd=5) #no differences

4 y3 <- x3 + rnorm(20,mean=.2,sd=3)

y4 <- x4 + exp(rnorm (100)) -1

232

Chapter 9

Introduction to Linear
Regression

Libraries used in this chapter: rgl (if available), quantreg scatterplot3d, manipulate, plotly

9.1 Linear Regression: The Eyeball Method

Linear regression models are the basis for much of applied statistics, including factorial
ANOVA models used frequently in psychology. This relationship is often hidden from the
researcher, who is led to believe that linear regression is a completely different procedure,
because it appears in a different menu or one has to purchase a different license to use it, but
a clearer understanding can be obtained by learning the ANOVA procedure after learning
regression.

At its core, linear regression is a slight elaboration to correlation. You try to explain the
variability in one measured variable based on the variability in another measured variable.
But instead of just measuring the strength of the relationship, we assume the relationship
is linear, and use the best line we can find (described by an intercept and a slope) to make
inferences and make predictions.

9.2 Least-squares fitting with one variable

We will start with a simple demonstration at the heart, using the manipulate library, which
is already part of RStudio. This will allow us to make little controllers for our data. Here is
a sample randomly generated data set, where y depends on x in a linear fashion, but with
some extra noise thrown in.

1 set.seed (500)

x <- runif (100)*10

3 y <- x*5 + 15 + rnorm (100)*10

We’d like to infer a line to represent the data. A line is represented mathematically using
a slope and a height. The slope indicates how many units of the y value change for each
unit of the x value. If the slope is set, the height of the line is most intuitively measured
at the center-point of the data. However, because of mathematical simplicity and tradition,

233

Chapter 9 Applied Statistics in R

we usually represent the height by the point at which the line intercepts the y-axis–where
x=0. This is thus referred to as the intercept of the line, and is generally not interpretable
directly, unless the value of the predictor x=0 is really meaningful.

In this example, we’d like to find the parameters of a linear model that represent the
data–ideally a model with intercept=15, slope=5, and variance=10, matching the process
that generated the data. To begin, I’ll create a little function that will plot the data and let
us choose the slope and intercept by hand, allowing us to find the best fitting line by hand.
Try a few examples with different parameters close to the slope and intercept of the data.

1 plotme <- function(x,y,a=0,b=1)

{

3 plot(x,y,ylim=c(-20,100),col="gold",pch=16,

main=paste("intercept:",a,"slope:",b))

5 points(x,y)

abline(a,b)

7

pred <- a + b*x

9 points(x,pred ,pch=1,cex =.5)

11 rmse <- sqrt(mean((y-pred)^2))

text(4,-10,paste("RMSE=",round(rmse ,3)))

13

}

15

plotme(x,y,10,7)

Some examples are shown in Figure9.1. You can play with plotme to find values that
seem to work. In the figure shown here, we see that, at least in terms of deviation from the
original, an incorrect model fits slightly better than the correct one.

The manipulate function let’s you create a slider widget that makes this easier.

library(manipulate)

2 manipulate(plotme(x,y,a,b),

a=slider (0,100,step =.1),

4 b=slider (0,20,step =.1))

When considering a linear model as a model of the world, it is often written as follows:

ŷ = β0 + β1x̂+ ϵ (9.1)

Here, ŷ and x̂ represent the entire set of observed x and y values, and you might refer to
pairs of them individually as xi and yi. β represent fixed parameter values, and in this model
there are two: β0 is known as the intercept term, and β1 the slope. These correspond to the
a and b parameters in the plotme function. Finally, ϵ represents a random variable, typically
arising from a normal random variable, so ϵ ∝ N(0, σ2). We assume that any deviation from
the linear model comes from this noise source, and that the noise is not dependent on values
of x, and that the noise is independent.

Just as when we learned about estimating parameters of a normal distribution in Chapter
7, we need to come up with an approach to deciding what the parameters should be, including
the the variance of the normal distribution describing the deviations from the model. This
error model is important because it is used for making inferences about the population
parameters.

234

Chapter 9 Applied Statistics in R

Figure 9.1: Four example plots created by plotme, with slope and intercept parameters
chosen by hand

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

0 2 4 6 8 10

−
20

0
20

40
60

80
10

0

intercept: 50 slope: 0

x

y

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●● ●● ● ●●● ● ●●● ● ●●●● ●●● ●● ●● ● ●● ●● ●●●●● ●●● ●● ●● ●● ●● ●● ●●●● ● ●●● ● ●● ●●● ● ● ●●● ● ●● ● ●●● ● ● ● ●●● ● ●●● ●●●● ●● ●●● ●● ● ●●● ●

RMSE= 19.842

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

0 2 4 6 8 10

−
20

0
20

40
60

80
10

0

intercept: 0 slope: 8

x

y

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

RMSE= 14.063

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

0 2 4 6 8 10

−
20

0
20

40
60

80
10

0

intercept: 20 slope: 4

x

y

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

RMSE= 11.108

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

0 2 4 6 8 10

−
20

0
20

40
60

80
10

0

intercept: 15 slope: 5

x

y

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

RMSE= 10.829

235

Chapter 9 Applied Statistics in R

Figure 9.2: Example use of the manipulate function

.

There are several approaches commonly used for doing this estimation, and others used
less often. The most traditional approach is to find a line that minimizes a least-squares
criterion–the smallest root-mean square error, and then taking the residuals and estimating
the variance using the methods described in Chapter 7. An alternative approach is to
estimate the values based on maximum likelihood–these produce the same estimates for β,
and a similar estimate for σ. There are some non-parametric approaches that use other
criteria, like attempting to fit the quantile (available in the quantreg library in R). Another
approach is based on Siegel’s (1982) method, and available in the mblm library in R, but this
approach only permits single linear predictors. Finally, Bayesian approaches use a likelihood-
based approach, and estimate a distribution of probable parameter estimates that might
explain the observed data. The BayesFactor package includes lmBF and regressionBF that
use the standard linear model for estimating β values, but uses a Bayes Factor criterion for
testing between models, which we will discuss in the next chapter.

236

Chapter 9 Applied Statistics in R

Exercise 9.2

Exercise 1 Improve the plotme function to make it better, in one of the following
ways, or in a way you choose yourself.

• compute expected values of the line

• coloring/shading of points based on under/over

• Compute R2 or other statistic

• Count how many points are over/under

Exercise 2 Create a new set of x and y values and try to use the plotme/manipulate
to find the best-fitting line.

So, we’d like to be able to estimate these values–especially the β weights in a way that
doesn’t require eyeballing. It turns out that there are computationally-efficient ways of
doing this, which involve some matrix algebra and matrix inversion, which can be solved
numerically. We can’t just estimate slopes by computing means like we estimated the pa-
rameters of the normal random variable, but we can still estimate them with a closed-form
formula. Without worrying about the details too much, this set of formulas work for the
intercept+slope model:

n <- 100

2 beta1 <- (sum(x*y) - sum(x) * sum(y)/n) /(sum(x^2) - sum(x)^2/n)

beta2 <- mean(y) - beta1 * mean(x)

4 > beta1

[1] 5.147532

6 > beta2

[1] 14.05491

The above formulas are shortcuts for a slope-intercept model. In reality they are special
cases for a general formula involving transforming x and y values. The linear model can be
written more generally as follows:

X⃗β = Y⃗ (9.2)

This just means the best guess for each Y value will be found by a weighted sum of the
corresponding X and β values. In this case, X has two values per Y; the observed X and a
stand-in of 1–a constant that lets us estimate the intercept. We want to find the β values
that minimize sum squared error, which is:

SSE =
∑
i

(Yi − X⃗iβ)
2 (9.3)

Without doing the calculus, this is minimized when

(X⃗ ′X⃗)β̂ − X⃗Y = 0 (9.4)

and β values can be obtained after some linear algebra:

β̂ = (X⃗ ′X⃗)−1X⃗ ′Y (9.5)

The above formulas split this up for a two-beta model, and the following code computes
it for two predictors (1 and x), but could be extended to any number of predictors:

237

Chapter 9 Applied Statistics in R

1 xs <- cbind(1,x)

solve(t(xs) %*% xs) %*% t(xs) %*% y

3 [,1]

14.054913

5 x 5.147532

The insight this should give you is that the β coefficients require a mathematical function
of data to estimate them–just as with the normal distribution, where we used the mean
of the data to estimate the mean of the distribution. However, now it is no longer as
straightforward. The estimation here is exact though–there is no need for searching through
parameter values to find the best set.

The lm function in R will fit this automatically and report the results in an easier to view
format:

1 model <- lm(y~x)

> model

3

Call:

5 lm(formula = y ~ x)

7 Coefficients:

(Intercept) x

9 14.055 5.148

We can use the coefficients of the lm to draw the best-fit line on a scatterplot in Figure
9.3

plot(x,y,pch=16,cex=1.5,col="gold",

main=paste("Best-fitting line\n",

"y = ",round(model$coef[1] ,2) ," + ", round(model$coef[2],3) , " * x",sep=""))

points(x,y,pch=1,cex=1.5,col="grey20")

abline(model$coef,lwd=2)

Because we have a best-fit model, we can use it for prediction and identifying the best-fit
values for the observed data.

For the latter, the best-fit values are stored in model$fitted.values. Or we could use
the coefficients to make these by hand:

#we can use the model for prediction:

2 predictedy <- model$coef [1] + model$coef [2]* x

plot(y,predictedy ,cex=.5,col="grey20",pch =16)

4 abline (0,1)

cor(y,predictedy)^2

6 [1] 0.7005609

8

cor(predictedy ,model$fitted.values)
10 [1] 1

cor(predictedy ,predict(model ,newdata=data.frame(x=x)))

12 [1] 1

238

Chapter 9 Applied Statistics in R

Figure 9.3: The relationship between x and y, and the line describing that relationship

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●● ●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

0 2 4 6 8 10

0
20

40
60

80

Best−fitting line
y = 14.05 + 5.148 * x

x

y

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●● ●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

Here, if we square our correlation between y and predicted, it gives us a goodness-of-fit
statistic that tells us how much of the variability in the outcome we have accounted for. In
this case, it is .7, or about 70%. At the end, you can see that there are at least two other
ways to get these predicted values.

We can use predict to get predictions for x values we did not see. Here, we need to
give it a data frame of data values having the same names as our predictor variables. In this
case, there was only one (x).

predict(model ,newdata= data.frame(x=c(-100 ,0 ,10 ,30 ,5000)))

2 1 2 3 4 5

-500.69829 14.05491 65.53023 168.48087 25751.71500

Notice that when making these predictions, they are almost all outside the range of data we
actually observed. We are extrapolating here, and the model has no way of judging whether
this is a good idea.

9.2.1 Estimating a slope-only model

There are many cases where we are confident that there should be no intercept, or we want
to interpret the relationship on the assumption that the intercept is 0. For example, you
might want a way to convert prices from the 1950s to prices in prices for the same products
in the 1990s. You know that cost 0 should be the same in both cases. Taking real prices
that are published on the internet for five grocery products, we see that the best-fit line has
a slope of 2.07 and an intercept of .54.

slope -only

2 costs <- data.frame(

product=c("apples", "bananas", "eggs", "steak", "potatoes"),

4 cost1950=c(0.39 ,0.14 ,0.79 ,0.59 ,0.07) ,

cost1990=c(1.98, 0.48, 1.05, 2.99, 0.31)

6)

239

Chapter 9 Applied Statistics in R

8 > lm(cost1990~cost1950 ,data=costs)

10 Call:

lm(formula = cost1990 ~ cost1950 , data = costs)

12

Coefficients:

14 (Intercept) cost1950

0.5391 2.0781

This means that if you wanted to predict the cost of another product, you would take
the 1950 price, multiply by 2.078, and add $0.54. But since we expect this to be a ratio,
we’d like to get the slope if the line passed through 0.

lm(cost1990~cost1950+0,data=costs)

2

Call:

4 lm(formula = cost1990 ~ cost1950 + 0, data = costs)

6 Coefficients:

cost1950

8 3.007

10 ##Plot the relationship here:

plot(costs$cost1950 ,costs$cost1990 ,xlim=c(0,1),cex=.3,ylim=c(0,4))
12 text(costs$cost1950 ,costs$cost1990 ,costs$product)

abline(lm(cost1990~cost1950 ,data=costs)$coef , col="red")

14 abline(0,lm(cost1990~cost1950+0,data=costs)$coef ,col="black")

Here, the ratio is just about exactly 3. The slope is substantially different, and this might
really be a better estimate, because costs scale with quantity, and the quantity is somewhat
arbitrary.

9.3 Estimating parameters with quantile regression

Most estimation and inference methods for regression produce the same estimates as least-
squares. But if you have a few outliers or something that is skewed, you can explicitly fit
the median values (or any other quantile) using the quantreg library.

In the example below (with completely fake data), suppose we want to model the rela-
tionship between socio-economic status of the parents (on a 1 to 10 scale) and the income
of the children. As we can see in the left panel of Figure 9.4, income is highly skewed. Any
linear model fit using least-squares criteria will be highly influenced by outliers. Because we
created the data, we can estimate that the median value of the noise distribution is about
20. That is, although it is skewed, the best discription of the central tendency is about 20.
A linear model will be highly influenced by the skewness, but a good model might try to fit
a line thruogh the median, but with a slope of 5/ses unit.The thick dashed line in each figure
shows this ideal relationship, generated from the true values we created the data with.

240

Chapter 9 Applied Statistics in R

Figure 9.4:

●

●

●●

●

●
● ● ● ●

●

●
●● ●●●

● ●
●

●● ●

●

●
●● ●●

●●●●
●

●

●

●

●

●

●
● ●●

●
●

●●

●
●

●
●

● ● ●●

●

●●● ●
●●

●
●

●● ●●●● ●
●

● ●

●

●
●●

●● ●●●
●

●

●

●

●

● ●
●

●

● ● ●● ●

●

● ● ●●● ●●●●

●

● ●●● ●●

●

●

●●

●

●

●

●●● ●
●

●●
●

●

● ●●●
●●●● ●●●● ● ●

●

● ● ●●●

●

● ●
● ●●

●

●

●●

●●●
●●●

●

● ●●●
● ● ●● ● ● ●

●

●● ●
●

●

●
● ●

● ●● ●
●●

●
●

● ● ●
●

●

● ●● ●

●

● ●●

●

●
●● ●●

●

●
●●

●

●
● ●

● ●

●

●

●

● ● ●●

●

● ●●
●

●

● ● ●

●

●●

●

●
●

● ●●●
● ●

●●● ●
●

● ● ●● ●● ● ●●
●

●
●

●

●
● ●●●

●
●● ● ●●●●

●● ● ● ●●●●
●

● ●●
● ●●●

●

● ● ●●●
● ●

● ● ●●● ●

●

● ●● ●
●

●●●
●

●
●

●
●

● ●
●●

●
●

●●
●

●●
●● ●● ● ● ●●●

● ●

●

●● ●

●

● ●●
●●

●
●

●
● ●

●● ●
●

●●●

●

● ●
●

● ●

●

●● ● ●● ● ●● ●●
●

●

●

●● ●●●
●

●●
●

●
●

●● ●●● ● ●

●

●
●

●
●●

●● ●● ●●●● ●●
●

●● ●●●●
●●

●

●
●●●

●●● ●●●

●

●●●
● ●●●

●
●

●●●
● ●

●
●

●● ●
●

● ●● ●●●●

●

●
●

●●

●

●
●

●
● ●●

● ●● ●● ●●
●

●

●

●● ●

●

●

0 2 4 6 8 10

0
50

0
10

00
15

00
20

00
25

00

Socio−economic status of parents
 and children's income

Parent Socio−economic status

C
hi

ld
's

 in
co

m
e

(x
10

00
)

linear
quantile
ideal

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 2 4 6 8 10

0
20

40
60

80
10

0

Socio−economic status of parents
 and children's income

Parent Socio−economic status

C
hi

ld
's

 in
co

m
e

(x
10

00
)

On the right panel, we can see that the solid line of the linear model over-estimates this
midpoint, and also misses the slope. In contrast, the quantile regression hits the ideal best
line on the nose.

library(quantreg)

2

set.seed (3)

4 n <- 500

ses <- runif(n)*10

6 ##one -predictor model

y <- -12 + 5*ses + (exp(rnorm(n)*1.4 -.25))* 25

8

mod1.lm<-lm(y~ses)$coef
10 mod1.rq <- rq(y~ses)$coef

12 par(mfrow=c(1,2))

plot(ses ,y,col="gold",pch=16,cex=.8,

14 main="Socio -economic status of parents\n and children ’s income",

xlab="Parent Socio -economic status",ylab="Child ’s income (x1000)")

16 abline(mod1.lm,lty =1)

abline(mod1.rq,lty =3)

18 abline (-12+20,5,lwd=2,lty=2)

legend (0,2500,c("linear","quantile","ideal"),lty=c(1,3,2),lwd=c(1,1,2))

20

plot(ses ,y,col="gold",pch=16,cex=.8,

22 main="Socio -economic status of parents\n and children ’s income",

xlab="Parent Socio -economic status",ylab="Child ’s income (x1000)",

24 ylim=c(0 ,100))

26 abline(mod1.lm,lty =1)

abline(mod1.rq,lty =3)

28 abline (-12+20,5,lwd=2,lty=2)

241

Chapter 9 Applied Statistics in R

9.4 Least-squares fitting with two variables

Suppose you have a DV that is related to two IVs? Now, a simple line no longer can
describe the relationship. We could visualize this in a 3-dimensional space though, with the
two predictors along the two horizontal dimensions, and the dv on the third dimension.

A corresponding relationship, and improved plotme function, are:

set.seed (1)

2 x <- runif (50)*10

y <- runif (50)*10

4 z <- 5*x + 15*y -12 + rnorm (50)*10

6 plotme2 <- function(x,y,z,b0 ,b1,b2)

{

8

pred <- b0 + b1 * x + b2 * y

10 cols <- c(rgb (.9 ,.2 ,.2 ,.7), rgb (.2 ,.8 ,.4 ,.7))[1+(z<pred)]

12 par(mfrow=c(1,3))

plot(x,z,pch =16)

14 points(x,pred ,cex=1.4,col=cols ,pch =16)

title(main=paste(round(b0 ,3), "+",round(b1 ,3), "*x +" ,round(b2 ,3), "*y"))

16

draw segments between each given and preidcted value ,

18 ## with a color that tells up whether it is an under or

over -estimate

20

22 segments(x,z,x,pred ,lty=1,col=cols)

abline(b0+b2*5,b1)

24

plot(y,z,pch =16)

26 points(y,pred ,pch=16,cex=1.4,col=cols)

abline(b0+b1*5,b2)

28 segments(y,z,y,pred ,lty=3,col=cols)

30 rmse <- mean(sum((z-pred)^2))

32 plot(z,pred ,main=paste(round(rmse),round(cor(z,pred)^2,3)),

xlim=range(z),ylim=range(z),col=cols ,pch =16)

34

abline (0,1)

36 }

Now, use the new plotme, adjust the three new values to find a best-fitting prediction
line.

1 manipulate(plotme2(x,y,z,b0,b1,b2),

b0=slider (-20,20,step=.1, initial =0),

3 b1=slider (0,20,step =.1),

b2=slider (0,20,step =.1))

242

Chapter 9 Applied Statistics in R

Finding the best prediction is more difficult when you have multiple predictor variables.
For a certain class of relationships between variables, we can compute the parameters directly
from the data. Other sources provide the mathematical basis for this. For other models,
we can’t estimate these parameters directly as a function of the data, but we can usually
devise a search method that systematically explores the parameter space in order to find a
best-fitting model.

The formulas we used before won’t quite work, because we have two different slopes now,
plus an intercept. So really we have three predictors in x: a set of 1s (indicating the intercept
term) and a set of the observed x values and a set of y values. Using the same formula we
did before, we can compute the least-squares coefficients like this (now z is the predicted
variable).

1 xs <- cbind(1,x,y)

betas <- solve(t(xs) %*% xs) %*% t(xs) %*% z

3 betas

[,1]

5 -16.477098

x 5.854821

7 y 15.218176

The process of fitting a linear model to sets of data such is this is known as linear
regression, and one can do it in R using the lm function.

1 model1 <- lm(z ~ x+y)

print(model1)

3

Call:

5 lm(formula = z ~ x + y)

7 Coefficients:

(Intercept) x y

9 -16.477 5.855 15.218

The lm function finds the best-fitting line that minimizes the squared deviations from
the model, using the exact same method we did above. Again, you specify the parts of the
model using a formula, with the DV on the left side of the ,̃ and the set of IVs on the right
side. The lm function will produce an object you can save to a variable name and later get
information about or extract different values from.

The lm function computes statistics on the data that estimate a set of linear slopes,
typically called coefficients or ’beta’ weights, where beta0=intercept, beta1 = first slope beta2
= second slope, etc. Along with model$coef, These can be obtained using coef(model).
Each slope is associated with a different predictor variable you provide. We can now provide
the plotme function with the best-fitting coefficients, as shown in Figure 9.5

1 betas <- lm(z ~ x+y)$coef
plotme2(x,y,z,betas[1],betas [2],betas [3])

For linear combinations of variables (e.g., b1x1 + b2x2 + . . .), and assuming a linear
relationship between each predictor and outcome, the lm() function tries to infer what the
relationships are. Let’s try one with no noise:

243

Chapter 9 Applied Statistics in R

Figure 9.5: Output of the plotme function, with the three coefficients estimated from the
linear regression model.

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

0 2 4 6 8 10

0
5
0

1
0
0

1
5
0

x

z ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

0 2 4 6 8 10

0
5
0

1
0
0

1
5
0

y

z

0 50 100 150

0
5
0

1
0
0

1
5
0

4969 0.95

z

p
re

d

x <- 1:100

2 y <- x*3 + 55

4 plot(x,y,main="Data and predicted model with no noise",col="cadetblue3",pch

=16)

g1 <- lm(y~x)

6 abline(g1$coef)
print(g1)

8 print(g1$coef)

10 Call:

lm(formula = y ~ x)

12

Coefficients:

14 (Intercept) x

55 3

With no noise, we can estimate the original relationship with exact precision. But there is
usually noise in the measurement. So, let’s try one with noise:

x <- 1:100

2 y <- x *3 + 55 + rnorm (100)*50

4 g2 <- lm(y~x)

plot(x,y,main="Data and predicted model with some noise",col="cadetblue3",pch

=16)

6 abline(g2$coef)
print(g2)

8

10 Call:

lm(formula = y ~ x)

244

Chapter 9 Applied Statistics in R

Figure 9.6: Example best-fit line (solid red), along with a line describing the actual linear
model that generated the data (dashed).

.

●

●

●

●

●

●

●●

●
●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●
●
●
●

●

●

●
●

●

●
●

●●
●

●

●

●

0 20 40 60 80 100

0
10

0
20

0
30

0
40

0

x

y

12

Coefficients:

14 (Intercept) x

47.402 3.106

Here, the parameters we estimated are somewhat off–an intercept of 47.4 instead of 55,
and a slope of 3.1 instead of 3. But that model fit the data better than the one that actually
generated it. We can be confident of this because the least-squares model is guaranteed to
fit the model the best of all linear models.

We can get the coefficients directly, and plot the line inferred using abline, which is
shown in Figure 9.6

plot(x,y,cex=2)

2 g2 <- lm(y~x)

print(g2)

4 g2$coeff ##<<- get coefficients directly

6 abline(g2$coeff ,lwd=3,col="red")
abline (55,3,col="blue",lty=2,lwd =3)

We can also look at the observed versus predicted values, shown on the left panel of
Figure 9.7, and a normal qqplot of the residual (right panel).

1 plot(x,y,cex=2,col="gold",pch =16)

points(x,y,cex=2,col="grey20")

3 abline(g2$coeff ,lwd=3,col="red") ##the best model

abline (55,3,col="grey20",lty=2,lwd=3) ##the true model

245

Chapter 9 Applied Statistics in R

Figure 9.7: Plots showing the fit of our regression model. Left panel shows the actual versus
fitted values. Center panel shows histogram of residuals. Right panel shows normal q-q plot.

● ●●● ●● ●●●●●● ● ●●● ●● ● ●● ●●●●● ●●● ●● ● ●●● ●● ●●● ● ●● ●●●●●● ● ●● ●● ●●●● ●● ●● ●● ●● ●● ●●● ●●● ● ●● ●●● ●● ●● ●● ●● ●●● ●●● ●●●● ●●

0 100 200 300 400

10
0

15
0

20
0

25
0

30
0

35
0

y

g2
$f

it

● ●●● ●● ●●
● ●●● ● ●● ● ●● ● ●● ●●●●●

●●● ●● ● ●●● ●● ●●● ● ●● ●●●●●
● ● ●● ●● ●●●● ●● ●● ●● ●● ●● ●●● ●●● ● ●● ●●● ●● ●● ●● ●● ●●● ●●● ●● ●● ●●

Histogram of g2$resid

g2$resid

F
re

qu
en

cy

−100 −50 0 50 100

0
2

4
6

8
10

● ● ●●●●
●
●●●●

●

●●●
●●●

●●●●
●●●
●●●●●

●●●●
●●●●●

●●●●●
●●●●
●●●●●

●●
●●●
●●●
●●
●●
●●
●●●
●●●●●●●

●●●
●●●
●●●

●●
●●●●

●●●
●●●

● ●

−2 −1 0 1 2

−
10

0
−

50
0

50
10

0

Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

The residuals, equivalent to (y-g2$fit), can be accessed via model$residuals. The
residuals are one of the first things you should look at to assess whether a linear model is
appropriate, and to determine whether the model is fitting well. Also, if you want to do
inferential statistics, the residuals are usually assumed to be normally distributed, and so
this will help test whether the assumptions of a statistical test are met. The histogram and
qqnorm plots are shown in the center and right panels of Figure 9.7.

par(mfrow=c(1,3))

2 plot(y,g2$fit ,col="gold",pch=16,cex =1.2)
points(y,g2$fit ,col="grey20")

4 abline (0,1)

hist(g2$resid ,breaks =20,col="gold")
6 qqnorm(sort(g2$resid))

Exercise 9.2

Exercise: A problematic linear model
Consider the following two variables, with a known relationship between them:

x <- 1:100

2 y <- -.4*x - 150 - log(runif (500)*x*.3)*10

1. Look at the relationship visually

2. Compute the linear model for y versus x

3. Determine you best estimate for y based only on x

4. Plot actual versus predicted.

5. Examine the residuals.

When you fit the model, how close is it? What do the residuals look like?

246

Chapter 9 Applied Statistics in R

9.5 Examining Models with multiple predictors

Here is an example with multiple predictors, which we will call x and y, and z, where z

depends on x and y with some noise.

x <- runif (100)*5

2 y <- 1:100

z <- 100 + 3*x -y*.2 + rnorm (100)*5

We can fit a regression model easily by including both x and y as predictors in the
formula:

1 g3 <- lm(z~x+y)

g3

3 > g3

5 Call:

lm(formula = z ~ x + y)

7

Coefficients:

9 (Intercept) x y

100.3945 2.9313 -0.2031

For the most part, the regressions work the same, but have multiple predictors. To make
a new prediction, it becomes more difficult to use the raw coefficients. The prediction of z
in this case becomes 100.39 plus 2.93 times x plus -.203 times y. That would not be too
difficult, but if we had ten predictors, it would get more challenging. We can use predict()
to do this, giving it a data frame with all the values:

> predict(g3,data.frame(x=10,y=-15))

2 1

132.7537

An number of additional predictors can be added using this syntax (as long as we don’t
have more predictors than we have complexity in our data). But this gets harder to visualize
individual effects. One approach is to look at each predictor variable one at a time.

1 par(mfrow=c(1,2))

plot(x,z)

3 plot(y,z)

This can be useful, but another approach is to use a library that allows us to look at
things in 3D. Here are 9 panes of a 3d scatterplot, each from a different angle between 0 and
90 (see Figure 9.8:

247

Chapter 9 Applied Statistics in R

1 library(scatterplot3d)

for(angle in (0:8)*90/8)

3 {

s3d <-scatterplot3d(x,y,z ,pch=16, highlight .3d=TRUE ,

5 angle=angle ,

type="h", main="3D Scatterplot")

7 s3d$plane3d(g3,lty.box="solid")

9 }

For two predictors, the best fitting model is no longer a line; it is a plane. For more
predictors, the best fitting model becomes a hyperplane in a high dimensional space. If you
add more complexities (such as interactions, power terms, etc.) the model might become
some curved surface within a higher-dimensional space.

Another library let’s you rotate 3-D data directly:

1 library(rgl)

plot3d(z,x,y,col="red", size =3)

Finally, a third (more modern) library that supports a 3d scatterplot is plotly. Its syntax
is unlike what we have used so far, but it creates nice web-enabled visualizations that can
be interacted with. A screenshot of the visualization is shown in Figure 9.9.

2 library(plotly)

##This is hard to visualize

4

data <- data.frame(x,y,z)

6 plot_ly(data , x = ~x, y = ~y, z = ~z) %>% add_markers ()

For more than one predictor, you can visualize observe versus predicted, or predicted vs.
single variable, possibly including predicted. (see plotme2 example above)

9.6 Solutions to Exercises

Exercise 9.2 Solution

plot(x,y)

2 lm2 <- lm(y~x)

abline(lm2$coef)
4

pred <- lm2$coef [1] + lm2$coef [2]*x
6 pred2 <- lm2$fit

plot(pred ,pred2)

8

plot(y,pred)

10 abline (0,1)

12 hist(lm2$resid ,breaks =20)
qqnorm(lm2$resid)

248

Chapter 9 Applied Statistics in R

Figure 9.8: Nine panels visualizing the data at different angles, using the scatterplot3d
function

3D Scatterplot

 0 20 40 60 80100 7
0

 8
0

 9
0

10
0

11
0

12
0

−100 0 100 200 300 400 500

x

y

z ●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

● ●●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●●

●

●●

●

●

3D Scatterplot

 0 20 40 60 80100 7
0

 8
0

 9
0

10
01

10
12

0

−100 0 100 200 300 400 500

x
y

z

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

● ●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

● ●●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●●

●

●●

●
●

3D Scatterplot

 0 20 40 60 80100 7
0

 8
0

 9
01

00
11

01
20

−100 0 100 200 300 400 500

x

y

z

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

● ●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

● ●●
●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●●

●

●
●

●
●

3D Scatterplot

 0 20 40 60 80100 7
0

80
 9

01
00

11
01

20

−100 0 100 200 300 400 500

x

yz

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

● ●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

● ●●
●

●

●

●

●

●
●

●

●

●
●
●

●
●

●

●

●●

●

●

●

●

●●

●

●
●

●
●

3D Scatterplot

 0 20 40 60 80100 7
0

80
 9

01
00

11
01

20

−100
 0

 100
 200

 300
 400

 500

x

yz

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

● ●

●

●●
●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

● ●●
●

●

●

●

●

●
●

●

●

●
●
●

●
●

●

●

●●

●

●

●

●

●●

●

●
●

●
●

3D Scatterplot

 0 20 40 60 80100 7
0 8

0 9
01

001
101

20

−100
 0
 100
 200
 300
 400
 500

x
y

z

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

● ●

●

●●
●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

● ●●
●

●

●

●

●

●
●

●

●

●
●
●

●
●

●

●

●●

●

●

●

●

●●

●

●
●

●
●

3D Scatterplot

 0 20 40 60 80100 7
0 8

0 9
01

001
101

20

−100
 0
 100
 200
 300
 400
 500

x

y

z

●
●

●●

●

●

●
●

● ●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●●

●

●

●

●
●

● ●

●

●●
●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

● ●●
●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●●

●

●
●

●

●●

●

●

●

●
●

3D Scatterplot

 0 20 40 60 80 100 7
0 8

0 9
010

011
012

0

−100
 0
 100
 200
 300
 400
 500

x

y

z

●
●

●●

●

●

●
●

● ●

●

●

●

●

●

●

●

●
●●

●●
●

●

●

●

●

●

●
●

●

●

●

●
●●
●

●●

●

●

●

●
●

● ●

●

●●
●

●
●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

● ●●
●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●●

●

●
●

●

●●

●

●

●

●●

3D Scatterplot

 0 20 40 60 80 100 7
0 8

0 9
010

011
012

0

−100
 0
 100
 200
 300
 400
 500

x

y

z

●
●

●●

●

●

●
●

● ●

●

●

●

●

●

●

●

●
●●

●●
●

●

●

●

●

●

●
●

●

●

●

●
●●
●

●●

●

●

●

●
●

● ●
●

●●
●

●
●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

● ●●
●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●●

●

●
●

●

●●

●

●

●

●●

249

Chapter 9 Applied Statistics in R

Figure 9.9: A 3D scatterplot created using the plotly package, that produces interactive
web-enabled graphics.

.

250

Chapter 10

Testing the Linear Model

Libraries used in this chapter: quantreg, faraway

10.1 Estimating the variability of the linear regression
model

In the previous chapter, we looked at how we can use a linear regression model for estimating
how a combination of predictor variables can reproduce an outcome variable. The relative
change of each variable per unit of the outcome is called a beta weight or coefficient, and
can be interpreted as a slope in a geometric space.

This process is the equivalent to estimating the mean of a normal distribution when
comparing the means of two groups. But to conduct an inferential test, such as the t-test,
we need to look at the variability around the mean. We have the same situation in regression
modeling. In the t-test, the standard deviation is used, which is really the residual variation
that cannot be accounted for by the mean-only model. Now, just like in the t-test, we will
look at the residual variation that cannot be accounted for by the model, but we can expand
the model to include additional predictors.

If you consider a linear model with only an intercept prediction, this is identical to a
one-sample t-test. Similarly, if you have a single predictor with two levels, this is identical
to a two-sample t-test.

10.1.1 Analogy to simpler tests

Just like the earlier hypothesis tests, we can either take the approach of a null-hypothesis
test, or a Bayes Factor test. In fact, suppose we had a single predictor that had exactly two
levels, and we want to test whether the predictor impacts the dependent variable. This is
sort of like doing a standard t-test:

1 set.seed (20)

predictor <- c(0,

3 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)

5 outcome <- predictor + rnorm (40)

aggregate(outcome ,list(predictor),mean)

7

9 > aggregate(outcome ,list(predictor),mean)

Group.1 x

251

Chapter 10 Applied Statistics in R

11 1 0 -0.1877639

2 1 0.8281528

13

model <- lm(outcome~predictor)

15 model

17 Call:

lm(formula = outcome ~ predictor)

19

Coefficients:

21 (Intercept) predictor

-0.1878 1.0159

23

plot(predictor ,outcome ,col="cadetblue",pch=16,

25 main="Fitting difference in mean\nwith linear regression")

abline(lm(outcome~predictor)$coef)

We can see here that the means of predictor value 0 and 1 are -0.1878 and .82. The
lm model handles this a bit differently. In this case, the intercept is the same as value 0:
-.1878. But the slope now becomes the difference between .82 and -.1878: 1.0159. Of course,
the t test wants to know if the means of these two groups differ, and the slope computes
that same difference. For a null-hypothesis test of whether the slope differs, we just have
to ask whether a slope of 1.0159 could have happened by chance if the null hypothesis were
true. For the t test, this probability is .0058, as we can see below. We can get an equivalent
statistical test of the regression model by using summary:

1 t.test(outcome~predictor)

3 Welch Two Sample t-test

5 data: outcome by predictor

t = -2.9235, df = 37.919 , p-value = 0.005809

7 alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

9 -1.7194373 -0.3123962

sample estimates:

11 mean in group 0 mean in group 1

-0.1877639 0.8281528

13

> summary(model)

15

Call:

17 lm(formula = outcome ~ predictor)

19 Residuals:

Min 1Q Median 3Q Max

21 -2.70195 -0.50156 -0.00853 0.63584 1.97323

23 Coefficients:

Estimate Std. Error t value Pr(>|t|)

25 (Intercept) -0.1878 0.2457 -0.764 0.4495

predictor 1.0159 0.3475 2.924 0.0058 **

27 ---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

29

Residual standard error: 1.099 on 38 degrees of freedom

31 Multiple R-squared: 0.1836 , Adjusted R-squared: 0.1621

F-statistic: 8.547 on 1 and 38 DF , p-value: 0.005804

252

Chapter 10 Applied Statistics in R

Now, each predictor has a null hypothesis test, which are all actually one-sample t-tests–
comparing whether the value is different from 0. Here, the intercept test has a low t value
and a high p, and so we cannot conclude that the value of is different from 0. But the t
value for the predictor (the slope) is identical to the t test for the difference: 2.9.

The summary function provides other important information about the regression model,
including the R2 values. In addition, it computes an F test at the bottom. This tests whether
the entire model is better than a model with a single mean (the intercept-only model). In
other words, is the model with a slope better than the model without a slope. Although this
is an F test, the p value here is identical to the p value for our slope alone! This is not a
coincidence, because in this model the slope is the only difference between the intercept-only
model and the full model. Mathematically, the t and F distributions are closely linked, so
that they can produce the same p-values.

The t-test of the parameter estimate in the regression is based on the variability of
the residuals. This variability is reported in the model under “residual standard error”,
which is 1.099. The variability of each estimate is based on this, in relationship to how
many of the observed points helped make the estimate. For the intercept, the std. error
is RSE/

√
20, and for the slope, the std. error is RSE/

√
10, so you can see that there is

some relationship between these. The standard error of each term is calculated based on
an estimated covariance matrix of the parameter estimates, and the RSE is based on the
residual error once all predictors are accounted for, so you can see there is a close relationship
between these.

10.2 Inferential statistics about parameter estimates

Just as with the inferential t-tests, we need to be able to test whether a slope coefficient is
useful in a regression model. We’d like to know if the slope we observed was likely to have
arisen even if there was not a relationship with that variable in “the population”–the null
hypothesis. But if it were 0, we wouldn’t expect to estimate exactly a slope of 0. We can
try to determine the chance that we would have observed the outcome we did if this were
true. If this probability is low, we reject the null hypothesis.

Although the most common case is we want to know whether a parameter estimate differs
from 0, we might also want some other related tests, such as which of two slopes is larger,
whether a slope is negative, and if two two slopes differ from one another. There are a
number of ways of running these tests and framing the models to make these tests easier to
run.

So far, we’ve estimated the linear coefficients of the function, and shown how a simple
regression with two levels of a predictor map onto the same test we do for a t-test. Let’s try
this again for a more complex model with two predictors that are both continuous. We will
create three DVs, each of which have the same relationship with the IVs, but with different
levels of random noise, to see how our estimates of residual standard error are impacted.

1 set.seed (1000)

x <- runif (100)*10

3 y <- runif (100)*10

z1 <- 10 +3*x + 5*y + rnorm (100)*5

5 z2 <- 10 +3*x + 5*y + rnorm (100)*10

z3 <- 10 +3*x + 5*y + rnorm (100)*25

253

Chapter 10 Applied Statistics in R

Figure 10.1: Three 3D scatterplots, each from the same perspective, of z1, z2, and z3.

These are sort of difficult to visualize, so we will use the plot3d function from the rgl

library

library(rgl)

2 plot3d(x,y,z1)

plot3d(x,y,z2)

4 plot3d(x,y,z3)

Or use plotly:

library(plotly)

2 df <- data.frame(x,y,z1 ,z2,z3)

plot_ly(df, x = ~x, y = ~y, z = ~z1) %>% add_markers ()

4 plot_ly(df, x = ~x, y = ~y, z = ~z2) %>% add_markers ()

plot_ly(df, x = ~x, y = ~y, z = ~z3) %>% add_markers ()

Next, we’ll make three models, one for each DV:

1 lm1 <- lm(z1~x+y)

lm2 <- lm(z2~x+y)

3 lm3 <- lm(z3~x+y)

Let’s compute the root mean square of the residuals, as a measure of the remaining
variability of the model:

1 rmse1 <- sqrt(mean(lm1$resid ^2))
rmse2 <- sqrt(mean(lm2$resid ^2))

3 rmse3 <- sqrt(mean(lm3$resid ^2))
rmse1

5 rmse2

rmse3

These values approximate the generating values of std. dev of the error term, but how
accurate are these values? Are they biased? Let’s find out via a simulation

The following will generate data then re-estimate the parameters of the model, including
the slopes and standard error.

254

Chapter 10 Applied Statistics in R

Figure 10.2: Histogram of residual standard errors of linear models.

10 samples

RSE

F
re

qu
en

cy

0 5 10 15 20

0
50

10
0

15
0

100 samples

RSE

F
re

qu
en

cy

0 5 10 15 20

0
10

0
20

0
30

0
40

0
50

0

1000 samples

RSE

F
re

qu
en

cy

0 5 10 15 20

0
10

0
20

0
30

0
40

0
50

0

test <- function(sd,n=10)

2 {

x <- 1:n/n*10

4 y <- runif(n)*10

z <- 10 +3*x + 5*y + rnorm(n)*sd

6 lm1 <- lm(z~x+y)

c(lm1$coef , sqrt(mean(lm1$resid ^2)))
8 }

10 out <- matrix(0,ncol=12,nrow =1000)

for(i in 1:1000)

12 {

out[i,1:4] <- test (10 ,10)

14 out[i,5:8] <- test (10 ,100)

out[i ,9:12] <- test (10 ,1000)

16

if(i%% 100==0) print(i)

18 cat(".")

}

First, we can see how as the number of observations increase, the residual standard error
decreases–just as with the standard error of a simple model. This also appears biased–with
fewer data points, we tend to underestimate the variability (by a lot!!!). Like with estimating
the s.d. in a sample, there is an adjustment: divide sum by n-p, where n is the number of
observations and p is the number of parameters (intercept=1,) each slope +1. But the
residual standard error doesn’t say much about the parameters of the model. It sort of says
the mean of any given set of independent values should be within +/- 1 value about 2/3
of the time. What we are more interested in is the possible estimated values of the slopes.
Here, when we know the true slope we see that the actual slopes we observe can vary greatly,
just as the RSE varies. We can look at the estimates of the intercept and the two slope
parameters in Figure ??.

Under a NHST, we’d like to be able to estimate the variability of means if we had a
model without a slope, but observed the same residual error we did in this model. In the
next section, we will see how we can generate these estimates and use them as part of a

255

Chapter 10 Applied Statistics in R

Figure 10.3: Histogram of estimates of parameters as sample size increases.

10
 s

am
pl

es
10

0
sa

m
pl

es
10

00
 s

am
pl

es

Intercept

F
re

qu
en

cy

−10 0 10 20 30

0
50

10
0

15
0

20
0

F
re

qu
en

cy

−10 0 10 20 30

0
50

10
0

20
0

F
re

qu
en

cy

−10 0 10 20 30

0
50

10
0

15
0

20
0

x slope

F
re

qu
en

cy

−2 0 2 4 6 8

0
50

15
0

25
0

F
re

qu
en

cy

−2 0 2 4 6 8

0
50

10
0

15
0

20
0

F
re

qu
en

cy

−2 0 2 4 6 8

0
50

10
0

15
0

20
0

y slope

F
re

qu
en

cy

0 2 4 6 8 10

0
50

10
0

20
0

30
0

F
re

qu
en

cy

0 2 4 6 8 10

0
50

10
0

15
0

20
0

F
re

qu
en

cy

0 2 4 6 8 10

0
50

15
0

25
0

256

Chapter 10 Applied Statistics in R

null-hypothesis statistical test. In each case, the test ends up being identical to a one-sample
t-test: we determine whether the parameter value we observed (i.e., a slope or intercept)
would have been probable to have occurred by chance if there really were no relationship.

Exercise 10.2

Load a data set from the faraway library.

1 install.packages("faraway")

library(faraway)

3 data(stat500)

summary(stat500)

Follow the basic steps below:

1. Look at the relationships and correlations between the four variables.

2. Compute a linear model predicting the final based on the midterm.

3. Look at the parameter estimates and residuals

4. Compute a linear model predicting final based on midterm + homework

5. Look at the parameter estimates and the residuals. Look especially at the
standard deviation of the residuals. How much of an improvement do you get?
Do the estimates change?

10.3 The estimate of sigma provided by lm

Usually we won’t have to estimate sigma by ourselves, because lm will tell us what it is. Here
is a linear model. Notice that if we sum the squared residuals and divide by n− 3 (instead
of n, which would be biased), we get the exact same value that summary reports.

set.seed (1000)

2 sd <- 10

n <- 50

4 x <- 1:n/n*10

y <- runif(n)*10

6 y2 <- runif(n) * 3

z <- 10 +3*x + 5*y + rnorm(n)*sd

8 lm1 <- lm(z~x+y+y2)

10 lm1

12 Call:

lm(formula = z ~ x + y + y2)

14

Coefficients:

16 (Intercept) x y y2

7.803 3.547 4.680 2.011

Let’s compute the unbiased MSE of our residuals–the sum of the squared errors, divided
by n− p, (where p = 4):

257

Chapter 10 Applied Statistics in R

res1 <- sqrt(sum(lm1$resid ^2)/(n-4))
2 print(res1)

[1] 10.68216

The summary function will compute various inferential statistics and hypothesis tests on
the linear model. First, look at summary(lm1) and examine what it reports for the ‘Residual
Standard Error’ value.

1 summary(lm1)

3 Call:

lm(formula = z ~ x + y + y2)

5

Residuals:

7 Min 1Q Median 3Q Max

-24.886 -5.701 0.414 6.042 22.081

9

Coefficients:

11 Estimate Std. Error t value Pr(>|t|)

(Intercept) 7.8033 4.7711 1.636 0.109

13 x 3.5475 0.5411 6.556 4.23e-08 ***

y 4.6796 0.5631 8.311 1.03e-10 ***

15 y2 2.0106 1.7924 1.122 0.268

17 Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

19 Residual standard error: 10.68 on 46 degrees of freedom

Multiple R-squared: 0.743 , Adjusted R-squared: 0.7263

21 F-statistic: 44.34 on 3 and 46 DF , p-value: 1.277e-13

You can see that these values are identical. There RSE gives a measure of the overall
standard error–the combined noise of all the estimated predictor together. The summary also
provides more information though.

10.4 Summarized results from a linear model

The summary() function does more than just report the residual errors; it will conduct a
t-test of each parameter against 0, compute RSE, R2, and an overall F test of the model.
We will go over each of these in turn.

10.4.1 What is the std. error and what does the t-test for a coeffi-
cient compute?

The formula for computing std. error of a coefficient is not incredibly intuitive. But the
outcome is a value that tells you the estimated variability of the estimate, which let’s you
do a null-hypothesis significance test using the t distribution.

1

Coefficients:

3 Estimate Std. Error t value Pr(>|t|)

(Intercept) 7.8033 4.7711 1.636 0.109

5 x 3.5475 0.5411 6.556 4.23e-08 ***

y 4.6796 0.5631 8.311 1.03e-10 ***

258

Chapter 10 Applied Statistics in R

7 y2 2.0106 1.7924 1.122 0.268

9 Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

The summary computes a t-test for each predictor, including the intercept. The t-test
for an individual parameter estimate can be interpreted several ways.

First, it is just like a t-test studied in earlier chapters–it determines whether the data
can be explained by the null hypothesis (that the parameter value is equal to 0). If the t
value is big and the p value is small, the null model is rejected. For the intercept, this just
asks whether the model predicts the value should be different from zero if all other input
values are also zero. This usually does not make much sense, and so a significant intercept
term is rarely very interesting unless you have a very specific hypothesis you are testing.
But the slope values are more interesting. A slope of 0 indicates that the outcome is not
related to the predictor, and so if the observed beta value was unlikely to have been produced
in a data set where there was no relationship, we say that the parameter was statistically
different from 0. In lm1, we can see that the intercept was not significant, which has no
real importance. Then, x and y were both significant, which means there each predicted
the outcome independently. But y2 did not. It is important to note that the least-squares
criterion estimates all predictors simultaneously. When two predictors are correlated, you
will get estimates, but may not be able to interpret the estimates properly, and perhaps you
can only make sense of the model by comparing sets of models.

This leads to the alternative way of interpreting slope coefficients. Asking whether a beta
is different from 0 is equivalent to asking whether the model improves over the model not
containing the parameter.

To demonstrate this, let’s compare the residuals of lm1 to a model without y:

lm2 <- lm(z~x+y)

2 res2 <- sum(lm2$resid ^2)
summary(lm2)

Then compute the model without y:

1

lm3 <- lm(z~x)

3 res3 <-(sum(lm3$resid ^2))
summary(lm3)

5

tval <- sqrt((res3 -res2)/(res2/(50-3)))

Here, we computed a t value directly by comparing the residuals from two nested models.
The t value computed here is the square root of an statistic known to follow an F distribution,
which we use to compare models. Consequently, they are testing exactly the same thing.
Look at how the 8.486 we calculated by hand appears in the regression as a t-test on the
missing predictor.

> tval

2 [1] 8.485574

> summary(lm2)

4

Call:

6 lm(formula = z ~ x + y)

259

Chapter 10 Applied Statistics in R

8 Residuals:

Min 1Q Median 3Q Max

10 -25.4453 -5.7720 0.2618 5.5046 24.3513

12 Coefficients:

Estimate Std. Error t value Pr(>|t|)

14 (Intercept) 10.9649 3.8601 2.841 0.00664 **

x 3.4168 0.5298 6.449 5.62e-08 ***

16 y 4.7560 0.5605 8.486 4.85e-11 ***

18 Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

20 Residual standard error: 10.71 on 47 degrees of freedom

Multiple R-squared: 0.736 , Adjusted R-squared: 0.7248

22 F-statistic: 65.52 on 2 and 47 DF , p-value: 2.557e-14

This second interpretation seems a bit more complicated, but it is important to keep in
mind, especially as we look at Bayes Factor version of these tests.

10.4.2 What is Multiple R2 and Adjusted R2

Multiple R2 is the square of the correlation coefficient of observed vs. predicted:

2 cor(lm1$fit ,z)^2
[1] 0.7430299

4

summary(lm1)

6

Call:

8 lm(formula = z ~ x + y + y2)

10 Residuals:

Min 1Q Median 3Q Max

12 -24.886 -5.701 0.414 6.042 22.081

14 Coefficients:

Estimate Std. Error t value Pr(>|t|)

16 (Intercept) 7.8033 4.7711 1.636 0.109

x 3.5475 0.5411 6.556 4.23e-08 ***

18 y 4.6796 0.5631 8.311 1.03e-10 ***

y2 2.0106 1.7924 1.122 0.268

20 ---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

22

Residual standard error: 10.68 on 46 degrees of freedom

24 Multiple R-squared: 0.743 , Adjusted R-squared: 0.7263

F-statistic: 44.34 on 3 and 46 DF , p-value: 1.277e-13

R2 is useful because it tells you the proportion of the variance your model accounts for.
Multiple R2 is sort of unfair, because you have multiple predictors, even if they are

random, they will by chance increase the goodness of fit. Adjusted R2 is an attempt to
counteract the improvement you get by chance alone.

Whereas R2 is computed as:

R2 = 1− SSresid/SStotal (10.1)

260

Chapter 10 Applied Statistics in R

Adjusted R2 is an attempt to counteract the improvement you get by chance alone:

R2
adj = 1− (1−R2)× n− 1

n− k − 1
(10.2)

Where n is the number of observations and k is the number of predictors. As a conse-
quence, adjusted R2 tries to ’punish’ models for having more predictors, accounting for the
potential additional spurious correlations.

For example, look what happens when we add additional random predictors

1 q1 <- runif (50)

q2 <- runif (50)

3 q3 <- runif (50)

q4 <- runif (50)

5 q5 <- runif (50)

q6 <- runif (50)

7 q7 <- runif (50)

q8 <- runif (50)

9 q9 <- runif (50)

q10 <- runif (50)

11

summary(lm(z~q1))$r.squared
13 [1] 0.001243165

summary(lm(z~q1))$adj.r.squared
15 [1] -0.01956427

17 summary(lm(z~q1+q2))$r.squared
[1] 0.001615148

19

summary(lm(z~q1+q2))$adj.r.squared
21 [1] -0.04086931

23 summary(lm(z~q1+q2+q3))$r.squared
[1] 0.006983906

25

summary(lm(z~q1+q2+q3))$adj.r.squared
27 [1] -0.05777801

29 summary(lm(z~q1+q2+q3+q4))$r.squared
[1] 0.00761476

31

summary(lm(z~q1+q2+q3+q4))$adj.r.squared
33 [1] -0.08059726

35 summary(lm(z~q1+q2+q3+q4+q5))$r.squared
[1] 0.02241639

37

summary(lm(z~q1+q2+q3+q4+q5))$adj.r.squared
39 [1] -0.08867266

41 summary(lm(z~q1+q2+q3+q4+q5+q6+q7+q8+q9+q10))$r.squared
[1] 0.2007088

43

summary(lm(z~q1+q2+q3+q4+q5+q6+q7+q8+q9+q10))$adj.r.squared
45 [1] -0.004237655

Notice how R2 always goes up when you add more predictors, but adjusted R2 stays
around 0–where it probably should, given that these predictors are randomly generated and
not intentionally related to the outcome variable.

261

Chapter 10 Applied Statistics in R

Exercise 10.4.2

Create four correlated data sets, and another 4 independent ones. Compute the
sum of four of these, and create a regression model predicting that sum by all eight
variables. Examine what happens to R2 and adjusted R2 as you remove and add
predictors from the model.

10.4.3 How do you interpret the F-statistic?

In regression, the F statistic works like the χ2 statistic we computed in the previous chapters.
In fact, the χ2 is a special case of the F distribution. It is a comparison of two variances:
the variance associated with the model, in comparison to the variance associated with the
intercept-only model. To the extent that the model explains enough variance given the
degrees of freedom it uses, this test will be significant, and tells you that the results would
be unlikely to have occurred by chance. In later chapters, we will use this F test extensively.

Be careful when reporting the F statistic of a regression. It does not really mean “the
model is significant”; it compares the model you looked at versus the best-fitting 1-parameter
intercept model, and asks if your model is better. So, your F statistic may be significant
even if it contains many predictors that are not significant. It is usually better to compare
pairs of models that differ by just a single predictor, which is what the t-test does, and this
t-test turn out to be equivalent to an F-test comparing that pairing of models.

10.5 Bayes Factor Regression Model

Instead of computing a NHST test on the entire model (i.e., the F test reported) or on
individual predictors (i.e., the t-tests), you might use a Bayes Factor test to look at support
for alternate hypotheses. The Bayes Factor regression is available in the functions lmBF,
which computes the Bayes factor for a single model, and regressionBF, which computes
Bayes factors for comparing all submodels–all combinations of predictors. In both cases,
the Bayes Factor test is about inference, and not estimation of coefficients–if you need those
coefficients, residuals, predicted values, and other aspects of a regression, you will have to
run the traditional lm() function.

In these tests, we don’t test individual coefficients differently from the entire model. The
Bayes Factor package computes a Bayes Factor for the model versus the null hypothesis
model of intercept-only–this is analogous to the F-test reported by the summary function of
lm. Furthermore, the Bayes Factor approach tests all possible nested models and provides a
Bayes factor that can be examined between any pairing of models. Thus, if you have three
predictors (x, y, and z), and want to know if z is useful, traditionally you would compare
intercept + x+y+z against intercept x+y in an F test or the equivalent t-test for significant
slope of the βz. But the Bayes factor model also compares the intercept+z to the intercept-
only model; the intercept+x+z to the intercept + x model, and so on.

The BayesFactor regression requires a data frame argument, so we will need to combine
our predictors into a single data frame. We will re-use the data set we created earlier:

1 library(BayesFactor)

262

Chapter 10 Applied Statistics in R

set.seed (1000)

3 sd <- 10

n <- 50

5 x <- 1:n/n*10

y <- runif(n)*10

7 y2 <- runif(n) * 3

9 ##z is made from x and y, but not y2:

z <- 10 +3*x + 5*y + rnorm(n)*sd

11

df=data.frame(x,y,y2 ,z)

13 lmbayes <- lmBF(z~x+y+y2,data=df)

summary(lmbayes)

15

> summary(lmbayes)

17 Bayes factor analysis

19 [1] x + y + y2 : 61257302941 ?0%

21 Against denominator:

Intercept only

23 ---

Bayes factor type: BFlinearModel , JZS

Here, the Bayes Factor test shows strong evidence for the set of predictors, in comparison
to the intercept-only null hypothesis. However, in our example, y2 was generated indepen-
dently. We’d like to be able to test individual submodels. The regressionBF lets us test all
submodels at once.

lmbayes2 <- regressionBF(z~x+y+y2,data=df)

2

lmbayes2

4 Bayes factor analysis

6 [1] x : 1393.108 0%

[2] y : 1038588 0.01%

8 [3] y2 : 0.2925324 0%

[4] x + y : 240747175456 0%

10 [5] x + y2 : 750.9676 0%

[6] y + y2 : 187407.8 0%

12 [7] x + y + y2 : 61257302941 0%

This compares a set of all possible submodels to the intercept-only model. This set of
models forms a lattice, and if we’d like to know whether any predictor improves on another
model, we can just compute a relative Bayes Factor as the ratio of the two factors in the
table above. Each Bayes factor is in relationship to the intercept-only Bayes factor, and you
can compare any two models by forming their ratio. So, in comparison to the intercept-only
model, the x predictor has a Bayes factor of about 1393–strong support for the hypothesis
that x matters. But we can also look at how x does when added to other models. The ratio
of the x+y Bayes Factor (model 4) to the y Bayes factor (model 2) is the relative factor
between these models, and we can actually get this test by dividing one submodel against
the other:

1 > lmbayes2 [4]/lmbayes2 [2]

Bayes factor analysis

3 --------------

263

Chapter 10 Applied Statistics in R

[1] x + y : 231802.4 0.01%

5

Against denominator:

7 z ~ y

9 Bayes factor type: BFlinearModel , JZS

In the context of y, the x Bayes Factor is more than 230,000! Similarly, there is ambivalent
evidence for y2 in comparison to the intercept-alone (BF=.29), actually with fairly strong
evidence for the null hypothesis. For any pair of models you might compare where one
involves y2 and the other does not, the Bayes Factor is similarly small.

1 > lmbayes2 [5]/lmbayes2 [1]

Bayes factor analysis

3 --------------

[1] x + y2 : 0.5390591 0%

5

Against denominator:

7 z ~ x

9 Bayes factor type: BFlinearModel , JZS

11

> lmbayes2 [6]/lmbayes2 [2]

13 Bayes factor analysis

15 [1] y + y2 : 0.1804448 0.01%

17 Against denominator:

z ~ y

19 ---

Bayes factor type: BFlinearModel , JZS

In these cases, we would tend to prefer the smaller model, but there is not extremely
strong evidence against y2 being involved.

10.6 Categorical Predictors

When people think of regression analysis, they often think that it only is valid for sets of
continuous predictors, and not categorical predictors. When we have categorical predictors,
there are several approaches people take. If your categorical predictor is binary, then it
fits into the regression model very easily. The coefficient simply codes the extent to which
the two levels differ. If you have multiple levels, the regression model needs to do some
underlying coding scheme to represent those levels as a combination of binary predictors. If
you give lm a categorical predictor, it will code it for each of its levels with respect to the
first level of a factor, so that the first level is equivalent to the intercept-only model.

For example, suppose we want to predict longevity of a fruitfly based on its size (measured
by its thorax), and a behavior category of activity level. Start with a simple model of the
thorax alone:

1 library(faraway)

data(fruitfly)

3 summary(fruitfly)

ff.lm <- lm(longevity~thorax ,data=fruitfly)

264

Chapter 10 Applied Statistics in R

5

7 summary(ff.lm)

9 Call:

lm(formula = longevity ~ thorax , data = fruitfly)

11

Residuals:

13 Min 1Q Median 3Q Max

-28.364 -9.986 1.258 9.264 36.825

15

Coefficients:

17 Estimate Std. Error t value Pr(>|t|)

(Intercept) -61.86 13.37 -4.625 9.39e-06 ***

19 thorax 145.28 16.19 8.971 4.27e-15 ***

21 Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

23 Residual standard error: 13.65 on 122 degrees of freedom

Multiple R-squared: 0.3975 , Adjusted R-squared: 0.3926

25 F-statistic: 80.49 on 1 and 122 DF , p-value: 4.275e-15

Here, thorax is a continuous predictor of measured thorax size. The intercept of -61.86
is the baseline model, and your best prediction is -61.86 + 145.28 times thorax-size.

Now, consider the categorical predictor, which has five categories: isolated, one, low,
many, and high.

1 ff.lm2 <- lm(longevity~thorax+activity ,data=fruitfly)

summary(ff.lm2)

3

5 Call:

lm(formula = longevity ~ thorax + activity , data = fruitfly)

7

Residuals:

9 Min 1Q Median 3Q Max

-26.108 -7.014 -1.101 6.234 30.265

11

Coefficients:

13 Estimate Std. Error t value Pr(>|t|)

(Intercept) -48.749 10.850 -4.493 1.65e-05 ***

15 thorax 134.341 12.731 10.552 < 2e-16 ***

activityone 2.637 2.984 0.884 0.3786

17 activitylow -7.015 2.981 -2.353 0.0203 *

activitymany 4.139 3.027 1.367 0.1741

19 activityhigh -20.004 3.016 -6.632 1.05e-09 ***

21 Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

23 Residual standard error: 10.54 on 118 degrees of freedom

Multiple R-squared: 0.6527 , Adjusted R-squared: 0.638

25 F-statistic: 44.36 on 5 and 118 DF , p-value: < 2.2e-16

Here, the coefficient for thorax stays about the same, but we have four values for different
levels of activity. Notice that the output is missing an ‘activityisolated’ level, and includes
an (Intercept). The way to interpret this table is that the first level of activity has a value
of 0, so adds nothing to the baseline intercept-only model: -48.75 + 0 + 135 * thorax. To

265

Chapter 10 Applied Statistics in R

predict activity level ‘one’, we would add the appropriate coefficient to this model: -48.75
+2.6 + 135* thorax. Each level of activity is essentially scored relative to the baseline model.

This might not always make sense, and so an alternative is to force the baseline-only
model to be 0. Then, each level of your categorical predictor will be scored with respect to
0. You can do this by adding a 0 predictor to the model:

1 ff.lm3 <- lm(longevity~0+ thorax+activity ,data=fruitfly)

3

Coefficients:

5 Estimate Std. Error t value Pr(>|t|)

thorax 134.34 12.73 10.552 < 2e-16 ***

7 activityisolated -48.75 10.85 -4.493 1.65e-05 ***

activityone -46.11 10.72 -4.301 3.52e-05 ***

9 activitylow -55.76 10.87 -5.130 1.15e-06 ***

activitymany -44.61 10.57 -4.222 4.78e-05 ***

11 activityhigh -68.75 10.40 -6.610 1.17e-09 ***

13 Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

15 Residual standard error: 10.54 on 118 degrees of freedom

Multiple R-squared: 0.9708 , Adjusted R-squared: 0.9694

17 F-statistic: 654.7 on 6 and 118 DF , p-value: < 2.2e-16

This gives up more interpretable coefficients. If you do the math, the model is identical
to the one above, but now we can see that the predictive model for isolated is -48.75+134.34.
However, the t-tests in this new model are a bit misleading. In this case, they test whether
the predictor is different from 0, which is probably not interesting. What we might really care
about is whether they are larger than a control condition–in this case maybe the first level
of our predictor. So the first model may provide us a more interesting default test, because
it shows that activity level on and many are not different from the isolated condition.

As we develop the linear model for categorical predictors more in the form of the factorial
ANOVA models, we will delve into how categorical factors can be represented in the model,
and how the values can be interpreted.

10.6.1 Caveats and Warnings

You need to be careful specifying categorical predictors in a linear regression model. If
your category is numerically-labeled (e.g., participant code), you need to be sure it is a
factor before using it as a predictor. If you do not, it will treat the predictor as a numerical
predictor, and estimate a slope for that predictor, and this is not what you meant to do. Read
output carefully to be sure all the levels you expect to be there have their own coefficients.

You need to be careful and precise when interpreting the t-test and F-tests reported by
a regression. The fact that a test is ‘significant’ does not give a stamp of approval. It is
testing a very specific hypothesis, and that hypothesis is not often what you are interested
in. You may have to craft a different test to address the thing you are truly interested in. For
example, the t-tests on coefficients each test whether a value is likely to have been obtained
if the true coefficient were 0. As we can see above i the fruitfly example, this may not be
what we are interested in if we have forced the model intercept to 0, and it may not be what
we are interested unless the first level of our factor happens to be the control condition. You
can reorder levels of a factor to be in a convenient order (look at the documentation for
factor()), which can be helpful, but even then you may want to test other hypotheses about
the slope coefficients.

266

Chapter 10 Applied Statistics in R

Similarly, the main F test for the model simply compares the entire model to the intercept-
only model. It uses the intercept-only model as a null hypothesis, and asks whether a you
might have observed what you did by chance, if you had assigned predictors randomly. This
does not mean that everything within the model is useful, and although it usually means
that one or more things are useful (statistically significant), you would need to look at other
tests to isolate that.

Regression models with categorical predictors form the basis for what is frequently re-
ferred to as “ANOVA” models, which stands for “Analysis of Variance”. This is somewhat
of a misnomer. The regression model is used to estimate the effects, and the ANOVA is the
inferential statistical test used to compare related models to one another to judge whether
individual sets of predictors are useful. However, many people fail to recognize the intrinsic
link between regression and ANOVA. In fact, they are the same thing, and ANOVA is a
special case.

10.6.2 Category by slope interactions

We might want to determine whether there is a different coefficient for thorax for each level
of activity. When the effect of one variable depends on the level of another variable, this
is called an interaction–just like we refer to drug interactions as when the effect of a drug
depends on whether another drug is being taken.

It makes logical sense that the thorax coefficient may depend on activity–an activity level
could impact not only mean longevity, but how strongly longevity is associated with body
size. We can do this using an interaction term, which can be specified using the ‘:’ operator
instead of the ‘+’. The following model only tests whether the slopes differ, assuming the
same intercept.

1 > ff.lm4a <- lm(longevity~thorax:activity ,data=fruitfly)

> summary(ff.lm4a)

3

Call:

5 lm(formula = longevity ~ thorax:activity , data = fruitfly)

7 Residuals:

Min 1Q Median 3Q Max

9 -26.5039 -6.1796 -0.9561 7.0033 30.2081

11 Coefficients:

Estimate Std. Error t value Pr(>|t|)

13 (Intercept) -53.16 10.51 -5.057 1.58e-06 ***

thorax:activityisolated 139.59 12.70 10.988 < 2e-16 ***

15 thorax:activityone 142.80 12.90 11.070 < 2e-16 ***

thorax:activitylow 131.27 12.72 10.324 < 2e-16 ***

17 thorax:activitymany 144.85 13.10 11.057 < 2e-16 ***

thorax:activityhigh 114.94 13.28 8.654 2.97e-14 ***

19 ---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

21

Residual standard error: 10.54 on 118 degrees of freedom

23 Multiple R-squared: 0.6524 , Adjusted R-squared: 0.6377

F-statistic: 44.3 on 5 and 118 DF, p-value: < 2.2e-16

What do the different coefficients tell us? Although we can now see a different slope for each
group, each test just tells us whether that slope differs from 0. This on its own is not very
interesting; we might prefer to understand whether the isolated slope (139.6) differs from

267

Chapter 10 Applied Statistics in R

the high-activity slope (114.9). That can’t be done directly in this particular framing of the
model.

We could also look at estimating a separate intercept and slope for each group. This is
like doing five completely separate regressions, but puts them all into the same model, which
could be useful if the first level is a control group. Looking at this test, try to determine
whether any specific group has a distinct slope and intercept from the first ‘isolated’ group.
Comparing this to the ff.lm2 model, where we found significant differences in the relative
intercept for isolated vs. high, this is no longer apparent.

1 > summary(ff.lm5)

3 Call:

lm(formula = longevity ~ thorax * activity , data = fruitfly)

5

Residuals:

7 Min 1Q Median 3Q Max

-25.9509 -6.7296 -0.9103 6.1854 30.3071

9

Coefficients:

11 Estimate Std. Error t value Pr(>|t|)

(Intercept) -50.2420 21.8012 -2.305 0.023 *

13 thorax 136.1268 25.9517 5.245 7.27e-07 ***

activityone 6.5172 33.8708 0.192 0.848

15 activitylow -7.7501 33.9690 -0.228 0.820

activitymany -1.1394 32.5298 -0.035 0.972

17 activityhigh -11.0380 31.2866 -0.353 0.725

thorax:activityone -4.6771 40.6518 -0.115 0.909

19 thorax:activitylow 0.8743 40.4253 0.022 0.983

thorax:activitymany 6.5478 39.3600 0.166 0.868

21 thorax:activityhigh -11.1268 38.1200 -0.292 0.771

23 Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

25 Residual standard error: 10.71 on 114 degrees of freedom

Multiple R-squared: 0.6534 , Adjusted R-squared: 0.626

27 F-statistic: 23.88 on 9 and 114 DF , p-value: < 2.2e-16

Unfortunately, this situations happens more often than we’d like. By adding additional
predictors to the model, we are giving ourselves a higher bar. For a simple model, there are
not a lot of ways that we could have observed a large deviation from the null hypothesis
model by accident; as the model gets larger, the number of ways increases, and for a fixed
number of observations, this means that the size of the effects needs to be larger for us to
be confident the effect is real.

This type of model forms the baseline for what is generally referred to as ‘ANCOVA’
models–analysis of covariance. They are used frequently in social and personality research,
and are typically used to examine how the relationship between two continuous variables
(i.e, personality and an outcome) depend on group membership (gender, age, etc.).

268

Chapter 10 Applied Statistics in R

Exercise 10.6.2

Use the galapagos (data(gala)) data set, try to predict the number of plant species
found on each island based on the other factors. At each step of your model, try to
look at the observed vs. predicted, and the residuals to determine whether they are
appropriate for the statistical test. Conduct a Bayes Factor test of the model space.
Try to identify which predictors are important, and which are not, and for those that
are, interpret what the model is telling you.

10.6.3 Variable Selection

So far, we’ve seen how adding predictors will always make our R2 value better (or at least
not worse). Sometimes, the amount they make the fit better is not worthwhile, and so we
would favor using a model without a predictor–even if it makes our fit better. Your intuition
for this should be that if a predictor is not very useful, it will still tend to make the current
model a little better, but it will probably make future prediction worse, because it is likely
to be explaining the non-systematic noise more than the systematic pattern. So, we are
generally interested in finding the smallest useful model that predicts our data. This is a
typical and normal phase of regression analysis–trying to select the parameters that help
enough to justify their use. In more general situations such as classification and machine
learning, a lot of research involves trying to find schemes for selecting which predictors (often
referred to as features) are useful, and this is the exact same problem faced in regression
analysis.

10.7 Solutions to exercises

10.7.1 Stat500 data

Begin by loading the data set and looking at correlations between the data

1 >library(faraway)

> data(stat500)

3 >summary(stat500)

5 stat500$total2 <- stat500$midterm*.25 + stat500$final*.50 + stat500$hw*.25
> print(cor(stat500) ,3)

7 midterm final hw total

midterm 1.000 0.5452 0.2721 0.844

9 final 0.545 1.0000 0.0873 0.779

hw 0.272 0.0873 1.0000 0.564

11 total 0.844 0.7789 0.5644 1.000

13

pairs(stat500)

269

Chapter 10 Applied Statistics in R

It looks like there is a high correlation between midterm and final, as well as the homework
and final. Let’s try to predict how somebody should do on the final based on their homework
and midterm. To do this, we’ll start by making two models.

1 s500.1 <- lm(final~midterm ,data=stat500)

s500.2 <- lm(final ~ midterm + hw,data=stat500)

3

> summary(s500 .1)

5

Call:

7 lm(formula = final ~ midterm , data = stat500)

9 Residuals:

Min 1Q Median 3Q Max

11 -9.932 -2.657 0.527 2.984 9.286

13 Coefficients:

Estimate Std. Error t value Pr(>|t|)

15 (Intercept) 15.0462 2.4822 6.062 1.44e-07 ***

midterm 0.5633 0.1190 4.735 1.67e-05 ***

17 ---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

19

Residual standard error: 4.192 on 53 degrees of freedom

21 Multiple R-squared: 0.2973 , Adjusted R-squared: 0.284

F-statistic: 22.42 on 1 and 53 DF , p-value: 1.675e-05

23

> summary(s500 .2)

25

Call:

27 lm(formula = final ~ midterm + hw, data = stat500)

29 Residuals:

Min 1Q Median 3Q Max

31 -10.0388 -2.5964 0.3714 3.0063 9.3497

33 Coefficients:

Estimate Std. Error t value Pr(>|t|)

35 (Intercept) 16.81061 4.08112 4.119 0.000137 ***

midterm 0.58179 0.12445 4.675 2.12e-05 ***

37 hw -0.08157 0.14916 -0.547 0.586836

39 Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

41 Residual standard error: 4.22 on 52 degrees of freedom

Multiple R-squared: 0.3013 , Adjusted R-squared: 0.2744

43 F-statistic: 11.21 on 2 and 52 DF , p-value: 8.948e-05

45

plot(stat500$final ,s500.2$fit)
47 cor(stat500$final ,s5002$fit)

49

##compare the residuals of the two models. Is one better

51 plot(rep(1,length(s500.1$resid)),s500.1$resid ,xlim=c(0,3))
points(rep(2,length(s500.2$resid)),s500.2$resid ,xlim=c(0,3),add=T)

53 library(vioplot)

vioplot(s500.1$resid ,s500.2$resid)

Notice that the hw variable is not predictive of the final when combined with the midterm.
The fit of the model does not change much when hw is added. Also, notice that the coefficient

270

Chapter 10 Applied Statistics in R

Figure 10.4: Histograms of the residual (errors) of the model,either with or without the hw

predictor.

Histogram of s500.1$resid

s500.1$resid

F
re

q
u
e
n
c
y

−10 −5 0 5 10

0
3

6

Histogram of s500.2$resid

s500.2$resid

F
re

q
u
e
n
c
y

−10 −5 0 5 10

0
3

6

of hw is negative, which indicates that the better somebody did on the hw the worse they
did on the final (although this was not significant).

Looking at the residuals (in Figure 10.4, we can see that the error distribution does not
change much. All signs point to the conclusion that the homework is not predictive of final
test performance.

g <- lm(Species~.,data=gala)

2 g2 <- lm(Species~Endemics+Area+Elevation+Nearest+Adjacent ,data=gala)

g3 <- lm(Species~Endemics+Area+Elevation+Nearest ,data=gala)

4 g4 <- lm(Species~Endemics ,data=gala)

271

Chapter 10 Applied Statistics in R

272

Chapter 11

Comparing Regression Models,
Variable Selection, Prediction

11.1 Comparing (nested) Regression Models

A regression model involves a single dependent variable, a set of predictor variables, and beta
weights or coefficients that constitute the combination of slopes of each predictor that fit the
data the best. As was discussed in the previous chapter, each parameter can be evaluated
with a t-test, which can be interpreted EITHER as a test of whether that parameter could
have arisen from the null model (where that dimension was unrelated to the outcome), or
as a comparison of models with and without that predictor. If a predictor is not significant,
it is typical to remove it from the model and use the smaller, simpler model. This has two
benefits. First, unless you have strong control over the predictors, they are likely to be
somewhat correlated, and so removing a predictor is likely to allow other predictors to show
their effects without complications. And second, a model with too many predictors risks
over-predicting the data–fitting noise as well as the actual effects. By removing predictors,
the model is less likely to over-predict, and more likely to reveal the truth.

11.1.1 Parameter selection versus model testing

The process of building linear regression models is often one of variable selection. Moreover,
variable selection is really model comparison. To determine whether you want to use a
variable or set of variables, you compare the model with the variable to the model without
the variable or set of variables. When you build a regression model, the summary() gives a
statistical test at the end, reported as an F test. This test compares the smallest reasonable
model to your model, and asks “is the goodness of fit I observed likely to have occurred if
the smallest model were the truth?”. The smallest model is the model that assumes all of
the data come from a single distribution with a single mean. So the F test asks whether
the goodness-of-fit of your model would have been produced in a situation where all of the
predictors were not predictive.

We can examine this using a data set that looks at a survey of faculty, students, and
industry representatives. In this survey, respondents were asked to rate the most important
skills among the Michigan Tech grads they hired, including academic performance, commu-
nication skill, leadership experience, hands-on experience, teaming, prior work experience,
multi-cultural experience, and creativity. We’d like to know if academic performance is

273

Chapter 11 Applied Statistics in R

viewed as a proxy for some combination of these, so we’d like to make a linear regression
predicting the academic rating by the other ratings. First, load the data and look at some
basic statistics.

dat <− read . csv (” survey . csv ”)
2

summary(dat)
4 group academic communication l e ade r sh i p

Faculty : 65 Min . : 1 . 0 00 Min . : 1 . 0 00 Min . : 1 . 0 0
6 Industry : 99 1 s t Qu. : 3 . 0 0 0 1 s t Qu. : 4 . 0 0 0 1 s t Qu . : 3 . 0 0

Student :119 Median : 4 . 0 00 Median : 5 . 0 00 Median : 4 . 0 0
8 Mean : 3 . 4 96 Mean : 4 . 4 42 Mean : 3 . 9 1

3 rd Qu. : 4 . 0 0 0 3 rd Qu. : 5 . 0 0 0 3 rd Qu . : 4 . 7 5
10 Max. : 5 . 0 00 Max. : 5 . 0 00 Max. : 5 . 0 0

12 handson teaming priorwork
Min . : 2 . 0 00 Min . : 1 . 0 00 Min . : 1 . 0 00

14 1 s t Qu. : 4 . 0 0 0 1 s t Qu. : 4 . 0 0 0 1 s t Qu. : 3 . 0 0 0
Median : 4 . 0 00 Median : 4 . 0 00 Median : 4 . 0 00

16 Mean : 4 . 1 34 Mean : 4 . 3 34 Mean : 3 . 9 33
3 rd Qu. : 5 . 0 0 0 3 rd Qu. : 5 . 0 0 0 3 rd Qu. : 5 . 0 0 0

18 Max. : 5 . 0 00 Max. : 5 . 0 00 Max. : 5 . 0 00

20 mu l t i c u l t u r a l c r e a t i v e e t h i c a l
Min . : 1 . 0 00 Min . : 1 . 0 00 Min . : 1 . 0 00

22 1 s t Qu. : 2 . 0 0 0 1 s t Qu. : 3 . 0 0 0 1 s t Qu. : 3 . 0 0 0
Median : 3 . 0 00 Median : 3 . 0 00 Median : 4 . 0 00

24 Mean : 2 . 5 99 Mean : 3 . 3 25 Mean : 3 . 6 33
3 rd Qu. : 3 . 0 0 0 3 rd Qu. : 4 . 0 0 0 3 rd Qu. : 5 . 0 0 0

26 Max. : 5 . 0 00 Max. : 5 . 0 00 Max. : 5 . 0 00

28 round (cor (dat [, 2 : 9]) ,3)
academic commun . l e ade r sh i p handson teaming priorwork mu l t i cu l t c r e a t i v e

30 academic 1 .000 0.172 0.064 0.030 0.164 0.166 −0.056 −0.104
communication 0.172 1.000 0.264 0.105 0.411 0.085 0.131 0.239

32 l e ade r sh i p 0.064 0.264 1.000 0.167 0.386 0.132 0.147 0.106
handson 0.030 0.105 0.167 1.000 0.167 0.142 −0.051 0.094

34 teaming 0.164 0.411 0.386 0.167 1.000 0.082 0.181 0.205
priorwork 0.166 0.085 0.132 0.142 0.082 1.000 0.034 −0.144

36 mu l t i c u l t u r a l −0.056 0.131 0.147 −0.051 0.181 0.034 1.000 0.318
c r e a t i v e −0.104 0.239 0.106 0.094 0.205 −0.144 0.318 1.000

Because these are all on 5-point scales, we are not too worried about outliers, and the
looking at boxplots of the data they do not seem to violate normality substantially. There
are some moderate correlations between different predictors, but if we focus on academic
performance, the best correlation is about .17, with some actually negatively correlated.
Let’s create an initial regression model predicting academic by everything else:

2 lm1 <- lm(academic~communication+leadership+handson+teaming+priorwork+

multicultural+creative+group ,data=dat)

summary(lm1)

4

> summary(lm1)

6

Call:

8 lm(formula = academic ~ communication + leadership + handson +

teaming + priorwork + multicultural + creative + group , data = dat)

10

Residuals:

12 Min 1Q Median 3Q Max

-2.44275 -0.50211 0.07341 0.53071 2.02186

14

Coefficients:

16 Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.39548 0.44209 5.419 1.32e-07 ***

18 communication 0.15613 0.07769 2.010 0.04545 *

leadership -0.02104 0.06484 -0.325 0.74580

20 handson -0.04730 0.05628 -0.841 0.40133

teaming 0.15394 0.07787 1.977 0.04905 *

22 priorwork 0.14145 0.05196 2.722 0.00690 **

multicultural -0.06659 0.05144 -1.294 0.19662

24 creative -0.06472 0.04873 -1.328 0.18525

274

Chapter 11 Applied Statistics in R

groupIndustry -0.01054 0.13292 -0.079 0.93687

26 groupStudent -0.34770 0.13144 -2.645 0.00863 **

28 Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

30 Residual standard error: 0.8193 on 273 degrees of freedom

Multiple R-squared: 0.121 , Adjusted R-squared: 0.092

32 F-statistic: 4.175 on 9 and 273 DF , p-value: 4.58e-05

The first thing to recognize is that there are significant predictors, although the adjusted
R2 is just .09, which means we are not explaining much at all. Looking at it the t-values,
we’d expect leadership, hands-on, multicultural, and creative to not be significant predictors
of rated importance of academic ability. The best practice would be to remove each one of
these one at a time and see how it impacts the model. At each point, we could evaluate
multiple R2 or adjusted R2 to determine whether it produces a reasonable fit. These are all
common ad hoc approaches, and they are governed as much by intuition about the predictors
as evidence. For example, you might typically use some measure of socio-economic status as
a predictor. You might find that for a particular outcome, it is not significant, but decide to
retain the predictor anyway so you can interpret parallel models more easily.

11.2 Parameter selection/Model testing using F Tests
and the Analysis of Variance procedure

To be more specific, let’s define a few terms:

• RSS = Residual Sum Squared

• RSS1 = RSS of larger model

• RSS2 = RSS of smaller model

• RSS(1−2) = improvement in RSS by moving to the larger model.

The basic test we want to perform looks at RSS(1−2) in comparison to RSS1. If the
reduction in fit was big enough to matter, you should choose the more complex model. If it
is not big enough, choose the smaller model. Here, we can interpret “big enough to matter”
as “unlikely to have occurred if there additional parts of the larger model did not have an
effect”.

It can be shown that the ratio of these variances have an F distribution under the Null
hypothesis. That is, if the additional parameters really were 0, you’d still find some difference,
and this difference has an F distribution if we were to run the experiment repeatedly. If we
find a difference that is enough larger than the null, we would reject the null and decide that
the parameter is useful.

Here is the logic of an inferential test we can use:

• Ratios of independent variances have an F distribution when they are identical (Null
hypothesis).

• Using this type of test of ratios of variances is known as the Analysis of Variance, or
ANOVA procedure.

• The test you may know as the ANOVA is really about comparing variances you can
explain to ones you cannot explain (a ratio of two independent variances).

275

Chapter 11 Applied Statistics in R

Under the null hypothesis that there is no difference between the two models (and so
should prefer the smaller), these variances have an F distribution (assuming normal and
independent error). That is, if the additional parameters really did nothing to predict the
data, you’d still find some difference just by chance. If we find a difference that is enough
larger than the null, we would reject the null and decide that the parameter is useful.

The test commonly labeled by software tools as the “Univariate ANOVA” or “Factorial
ANOVA” is just a systematic way to compare a set of nested models, by including and
excluding sets of predictors related to factors. We typically don’t think of the ANOVA as
a test of two specific linear models, but that is exactly what it is doing. In R, the general
version of the test–used to compare models, can be invoked using the anova() function. So,
by giving anova two models, it will compute the F test comparing them–provided they are
nested–and determine the probability of the observed outcome given the null hypothesis (the
smaller/first model).

Let’s start by choosing a new model with fewer parameters, but how can we do that? A
reasonable approach would be to look at the predictor with the smallest t-value or p-value,
but really what we want to know is which resulting smaller model loses us the least amount
of predictability. Thus, we can compare each model to a neighboring model with one fewer
predictors, using an F-test/ANOVA. The easy way to do all of these models is using the
drop1 function, with the test="F" argument:

1 > drop1(lm1 ,test="F")

Single term deletions

3

Model:

5 academic ~ communication + leadership + handson + teaming + priorwork +

multicultural + creative + group

7 Df Sum of Sq RSS AIC F value Pr(>F)

<none > 183.27 -102.955

9 communication 1 2.7114 185.99 -100.799 4.0389 0.045446 *

leadership 1 0.0707 183.34 -104.846 0.1053 0.745796

11 handson 1 0.4743 183.75 -104.223 0.7065 0.401335

teaming 1 2.6238 185.90 -100.932 3.9084 0.049051 *

13 priorwork 1 4.9749 188.25 -97.375 7.4105 0.006902 **

multicultural 1 1.1248 184.40 -103.223 1.6755 0.196618

15 creative 1 1.1841 184.46 -103.132 1.7639 0.185250

group 2 7.4194 190.69 -95.724 5.5259 0.004441 **

17 ---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

19 >

Here, we can see the relative change in sum-of-squares, along with the absolute RSS
for each adjacent model. The next column shows a related statistic call the AIC (Akaike
Information Criterion)–which balances goodness-of-fit and number of parameters, which we
will talk about in the next section. Finally, it shows an F value and the probability of the
F test showing a result like we saw if the variable had no effect. Based on this, we might
consider dropping leadership and handson and repeating the process:

1 lm2 <- lm(academic~communication+teaming+priorwork+multicultural+creative+

group ,data=dat)

3 summary(lm2)

5 Call:

lm(formula = academic ~ communication + teaming + priorwork +

7 multicultural + creative + group , data = dat)

276

Chapter 11 Applied Statistics in R

9 Residuals:

Min 1Q Median 3Q Max

11 -2.4230 -0.5262 0.1163 0.5299 1.9868

13 Coefficients:

Estimate Std. Error t value Pr(>|t|)

15 (Intercept) 2.23799 0.40793 5.486 9.32e-08 ***

communication 0.15309 0.07704 1.987 0.04790 *

17 teaming 0.13869 0.07390 1.877 0.06162 .

priorwork 0.13233 0.05093 2.598 0.00987 **

19 multicultural -0.06243 0.05076 -1.230 0.21975

creative -0.07043 0.04817 -1.462 0.14484

21 groupIndustry -0.01583 0.13253 -0.119 0.90500

groupStudent -0.33539 0.13034 -2.573 0.01060 *

23 ---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

25

Residual standard error: 0.8177 on 275 degrees of freedom

27 Multiple R-squared: 0.1182 , Adjusted R-squared: 0.09571

F-statistic: 5.264 on 7 and 275 DF , p-value: 1.174e-05

29

31 > drop1(lm2 ,test="F")

Single term deletions

33

Model:

35 academic ~ communication + teaming + priorwork + multicultural +

creative + group

37 Df Sum of Sq RSS AIC F value Pr(>F)

<none > 183.86 -106.047

39 communication 1 2.6399 186.50 -104.012 3.9485 0.047904 *

teaming 1 2.3548 186.22 -104.445 3.5220 0.061619 .

41 priorwork 1 4.5140 188.38 -101.183 6.7515 0.009872 **

multicultural 1 1.0115 184.87 -106.494 1.5129 0.219747

43 creative 1 1.4294 185.29 -105.855 2.1379 0.144836

group 2 6.9734 190.84 -99.512 5.2150 0.005985 **

45 ---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

47 >

Notice that the model coefficients change a bit between the two models. This will usually
happen when you add or remove predictors from a model, unless the predictors are specifically
designed to be independent. Now, compare the goodness of fit of these models (R2 and RSE).
How do they differ? They are very close to one another. The first model has all the same
predictors as the smaller model, with two additional predictors, and so must have a larger
R2, but maybe it isn’t much better. In our case, the improvement is so small it barely
changes register on the output. Logically, if two models provide the same fit, but one is
more complicated, we should usually prefer the smaller model. But the larger model will
usually be a little better. But it still looks like some of the predictors are not important,
and drop1 suggests that dropping multicultural and probably creative is justifiable.

Also, notice the the F test p-values of drop1 are exactly the same as the t-test values in
the summary of the model. We are really asking the same question in two different ways
here. Let’s remove multicultural:

1 > lm3 <- lm(academic~communication+teaming+priorwork+creative+group ,data=dat)

> summary(lm3)

3

277

Chapter 11 Applied Statistics in R

Call:

5 lm(formula = academic ~ communication + teaming + priorwork +

creative + group , data = dat)

7

Residuals:

9 Min 1Q Median 3Q Max

-2.4702 -0.5165 0.1198 0.5041 2.0287

11

Coefficients:

13 Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.18141 0.40570 5.377 1.62e-07 ***

15 communication 0.15348 0.07711 1.990 0.0475 *

teaming 0.12913 0.07356 1.755 0.0803 .

17 priorwork 0.12669 0.05077 2.496 0.0132 *

creative -0.08869 0.04587 -1.934 0.0542 .

19 groupIndustry 0.00705 0.13134 0.054 0.9572

groupStudent -0.31426 0.12932 -2.430 0.0157 *

21 ---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

23

Residual standard error: 0.8184 on 276 degrees of freedom

25 Multiple R-squared: 0.1133 , Adjusted R-squared: 0.09402

F-statistic: 5.878 on 6 and 276 DF , p-value: 8.679e-06

27

> drop1(lm3 ,test="F")

29

Single term deletions

31

Model:

33 academic ~ communication + teaming + priorwork + creative + group

Df Sum of Sq RSS AIC F value Pr(>F)

35 <none > 184.87 -106.49

communication 1 2.6534 187.53 -104.46 3.9614 0.047543 *

37 teaming 1 2.0642 186.94 -105.35 3.0816 0.080291 .

priorwork 1 4.1714 189.04 -102.18 6.2275 0.013162 *

39 creative 1 2.5042 187.38 -104.69 3.7385 0.054195 .

group 2 6.6938 191.57 -100.43 4.9966 0.007385 **

41 ---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

43 >

Now, remember that drop1 is really comparing the given model to every neighboring model
with one fewer predictor, and we see that each one is significant. Here, the null hypothesis
that the two models are the same and the additional predictors really don’t matter. The
fact that all comparisons to smaller models are significant tells us that any smaller model
produces more error than we’d expect just by chance, so using an ANOVA/t-test criterion,
we’d prefer the larger model 3.

Because we only examined model3 with respect to model2, We’d like to be sure that
model doesn’t lose anything over the most complex model. We can do an ANOVA test
between any pairing of models:

1 anova(lm1 ,lm3)

Analysis of Variance Table

3

Model 1: academic ~ communication + leadership + handson + teaming + priorwork

+

5 multicultural + creative + group

Model 2: academic ~ communication + teaming + priorwork + creative + group

7 Res.Df RSS Df Sum of Sq F Pr(>F)

278

Chapter 11 Applied Statistics in R

1 273 183.27

9 2 276 184.87 -3 -1.6004 0.7947 0.4977

Here, we see that the smaller model3 is not significantly different from model1, and so we
would still prefer the smaller model3.

We can give anova() a series of models, and as long as they are nested, it will compare
each consecutive pair. How would you interpret the following:

1 lm4 <- lm(academic~communication+priorwork+creative+group ,data=dat)

lm5 <- lm(academic~communication+priorwork+group ,data=dat)

3 lm6 <- lm(academic~priorwork+group ,data=dat)

lm7 <- lm(academic~group ,data=dat)

5 lm8 <- lm(academic~1,data=dat)

7 anova(lm1 ,lm2 ,lm3 ,lm4 ,lm5 ,lm6 ,lm7 ,lm8)

9 Analysis of Variance Table

11 Model 1: academic ~ communication + leadership + handson + teaming + priorwork

+

multicultural + creative + group

13 Model 2: academic ~ communication + teaming + priorwork + multicultural +

creative + group

15 Model 3: academic ~ communication + teaming + priorwork + creative + group

Model 4: academic ~ communication + priorwork + creative + group

17 Model 5: academic ~ communication + priorwork + group

Model 6: academic ~ priorwork + group

19 Model 7: academic ~ group

Model 8: academic ~ 1

21

Res.Df RSS Df Sum of Sq F Pr(>F)

23 1 273 183.27

2 275 183.86 -2 -0.5889 0.4386 0.645372

25 3 276 184.87 -1 -1.0115 1.5067 0.220696

4 277 186.94 -1 -2.0642 3.0747 0.080640 .

27 5 278 188.89 -1 -1.9497 2.9042 0.089487 .

6 279 192.90 -1 -4.0136 5.9786 0.015113 *

29 7 280 200.07 -1 -7.1706 10.6811 0.001221 **

8 282 208.50 -2 -8.4248 6.2747 0.002166 **

31 ---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

33

35 anova(lm1 ,lm4 ,lm8)

37 Analysis of Variance Table

39 Model 1: academic ~ communication + leadership + handson + teaming + priorwork

+

multicultural + creative + group

41 Model 2: academic ~ communication + priorwork + creative + group

Model 3: academic ~ 1

43 Res.Df RSS Df Sum of Sq F Pr(>F)

1 273 183.27

45 2 277 186.94 -4 -3.6646 1.3647 0.2464

3 282 208.50 -5 -21.5587 6.4227 1.162e-05 ***

47 ---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

49 >

279

Chapter 11 Applied Statistics in R

Each row compares the model to the adjacent model. As we remove predictors, at
some point additional predictors become too costly, in that the smaller model is significantly
worse than the larger model. This just shows again that we can’t really justify the additional
complexity of model4. This should make some sense–we are explaining only about 10% of
the variance, and so any one predictor is really pretty small, and we probably won’t lose
much by ignoring it.

This ANOVA/drop1 method requires the to have different numbers of predictors. If we
look at at two models that are not nested, it does not really know what to do:

1 lm9 <- lm(academic~communication ,data=dat)

lm10 <- lm(academic~creative ,data=dat)

3 anova(lm9 ,lm10)

5 Analysis of Variance Table

7 Model 1: academic ~ communication

Model 2: academic ~ creative

9 Res.Df RSS Df Sum of Sq F Pr(>F)

1 281 202.30

11 2 281 206.24 0 -3.9375

However, in this case, because the number of predictors are the same and one model
predicts better, you might prefer that model (in this case, lm9), but we aren’t doing an F
test to determine this.

Also, we typically only use anova tests for nested models. Consider comparing lm10 to
lm5:

1 > anova(lm5 ,lm10)

Analysis of Variance Table

3

Model 1: academic ~ communication + priorwork + group

5 Model 2: academic ~ creative

Res.Df RSS Df Sum of Sq F Pr(>F)

7 1 278 188.89

2 281 206.24 -3 -17.351 8.5121 1.989e-05 ***

9 ---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

We can still perform the F test, but the basic logic no longer completely makes sense.
Here, we see a significant difference, suggesting we’d prefer the more complex model 5 versus
the simpler model 10–but that doesn’t tell us which predictors of model 5 are better, or
whether the predictor of model 10 is not any good.

Exercise 11.2

Load the galapogos data set from the faraway library (its name is gala). Make
a model predicting the number of species (Species) on each island based on all the
other variables. Remove variables one at a time, until you have the smallest justifiable
model.

280

Chapter 11 Applied Statistics in R

11.2.1 Parameter selection/Model comparison using AIC and BIC

The drop1 also gave us a statistic called AIC (Akaike Information Criterion). This criterion
asks whether adding or removing a parameter is worthwhile with respect to the increased or
decreased goodness of fit. The way the AIC is framed here, the more negative the better.
So we can see if we remove group, the fit gets so much worse that it the AIC says it is worth
keeping that variable. The SS, RSS, and AIC indicate that leadership and hands-on may
not really matter, so let’s drop those and redo the model.

The AIC is a common way of deciding whether to remove a variable. There are other
information criteria as well–the most popular is the Bayesian Information Criterion (BIC;
Schwarz et al. 1977). The BIC is related to AIC but incorporates the number of observations
you have, and so is generally a bit more conservative about adding additional parameters, as
each additional parameter essentially requires a larger sample size to justify. The AIC score
is sometimes reported positive and sometimes negative depending on the software, so you
have to be careful to interpret it correctly. The absolute value is hardly ever interpretable,
instead we look for relative values between two models. The drop1 gives an AIC score where
the more negative (less positive) the score, the better the model.

If we revisit he AIC values for consecutive lm1, we see:

> drop1(lm1 ,test="F")

2 Single term deletions

4 Model:

academic ~ communication + leadership + handson + teaming + priorwork +

6 multicultural + creative + group

Df Sum of Sq RSS AIC F value Pr(>F)

8 <none > 183.27 -102.955

communication 1 2.7114 185.99 -100.799 4.0389 0.045446 *

10 leadership 1 0.0707 183.34 -104.846 0.1053 0.745796

handson 1 0.4743 183.75 -104.223 0.7065 0.401335

12 teaming 1 2.6238 185.90 -100.932 3.9084 0.049051 *

priorwork 1 4.9749 188.25 -97.375 7.4105 0.006902 **

14 multicultural 1 1.1248 184.40 -103.223 1.6755 0.196618

creative 1 1.1841 184.46 -103.132 1.7639 0.185250

16 group 2 7.4194 190.69 -95.724 5.5259 0.004441 **

18 Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

>

Here, the AIC of the standard model is -102.955. Any time we drop a parameter, the two
components of the AIC change. It gets a little better (more negative) because we are using
fewer parameters, but gets a little worse (less negative) because the likelihood of the model
goes down. These together result in the AIC for each new model In this case, removing
leadership, handson, multicultural, and creative each produce AIC values that are a little
better (more negative), so we’d like prefer models without these. We can follow the same
process as with F tests, but use the AIC at each point. Rather than using drop, we can get
the AIC value using extractAIC from each model. You can obtain the AIC for any model
like this:

1

data.frame(model=paste("lm" ,1:10,sep=""),

3 rbind(extractAIC(lm1),

extractAIC(lm2),

5 extractAIC(lm3),

extractAIC(lm4),

281

Chapter 11 Applied Statistics in R

7 extractAIC(lm5),

extractAIC(lm6),

9 extractAIC(lm7),

extractAIC(lm8),

11 extractAIC(lm9),

extractAIC(lm10)))

13

model X1 X2

15 1 lm1 10 -102.95477

2 lm2 8 -106.04683

17 3 lm3 7 -106.49417

4 lm4 6 -105.35191

19 5 lm5 5 -104.41563

6 lm6 4 -100.46527

21 7 lm7 3 -92.13634

8 lm8 1 -84.46352

23 9 lm9 2 -91.00088

10 lm10 2 -85.54560

Note that doing this produces the same AIC values that drop1 did. Looking across the
AIC values, the models got better (more negative) through lm3, but then started getting
worse. This is a similar conclusion to what we found with F-tests.

To compute the value, the AIC (and BIC) measures start with a value known as log-
likelihood. Technically, for b predictors,

AIC = 2b− 2ln(Likelihood) (11.1)

To compute the likelihood of a model, you take the product of the likelihood of each
observed data point. The likelihood of an observed data point is the height of the density
function of the error distribution at that point, with an assumption about the particular
form of the error distribution. For normal linear regression we would typically assume a
normal distribution. So, this is the density of the model’s prediction for each observed point,
and the likelihood of the model is the product of the likelihoods of each data point. We use
log-likelihood because the log of a product is the sum of the logs, which is easier to calculate.
Models that are better will have a larger (more positive and or less negative) log-likelihood,
but because AIC subtracts this from the total, the more negative the better. The AIC takes
2b as a baseline, where b is the number of predictors. Consequently, AIC essentially punishes
likelihood for each parameter used.

In contrast, BIC also considers the size of the experiment, and punishes for the total
number of parameters b multiplied by the logarithm of the number of observed data points
n.

BIC = bln(n)− 2ln(Likelihood) (11.2)

BIC punishes each additional parameter more than AIC does (as long as n is greater
than 7). Consequently, BIC is usually more conservative than AIC and will tend to select
fewer parameters, and a smaller overall model. Note that the formula for BIC gets larger
(worse) as n increases. This is a bit counterintuitive because it suggests that BIC will get
worse by conducting a larger experiment, but AIC and BIC are only useful for a fixed data
set in which n does not change. Furthermore, log-likelihood will also get higher as more data
is added to a data set, so the ln(n) balances this out.

BIC can be computed from extractAIC and other R functions by feeding it a k argument
of ln(N) (which in R is log(n)). Note that in extractAIC, k refers to the value that the
number of predictors gets multiplied by.

282

Chapter 11 Applied Statistics in R

2 extractBIC <- function(model)

{

4 extractAIC(model ,k=log(length(model$residuals)))
}

6

8 data.frame(model=paste("lm" ,1:10,sep=""),

rbind(extractBIC(lm1),

10 extractBIC(lm2),

extractBIC(lm3),

12 extractBIC(lm4),

extractBIC(lm5),

14 extractBIC(lm6),

extractBIC(lm7),

16 extractBIC(lm8),

extractBIC(lm9),

18 extractBIC(lm10)))

20

22 model X1 X2

1 lm1 10 -66.50030

24 2 lm2 8 -76.88325

3 lm3 7 -80.97604

26 4 lm4 6 -83.47923

5 lm5 5 -86.18840

28 6 lm6 4 -85.88349

7 lm7 3 -81.20000

30 8 lm8 1 -80.81807

9 lm9 2 -83.70999

32 10 lm10 2 -78.25470

34 lm5

36 Call:

lm(formula = academic ~ communication + priorwork + group , data = dat)

38

Coefficients:

40 (Intercept) communication priorwork groupIndustry groupStudent

2.305585 0.169360 0.150266 -0.004061 -0.358903

In this case, the best BIC criteria suggests model 5, which has just communication, prior
work, and group as predictors. This turned out to be the smallest model we have selected
so far.

11.2.2 Stepwise variable selection

When you have a large model, you have a large number of submodels to possible compare.
This forms a lattice of models, and with enough parameters you won’t be able to check them
all. A common strategy for searching among these models is to use a stepwise procedure,
which will often use an AIC or BIC criterion to compare models. In this procedure, you
pick a model starting point, and then compare to all models with one more and one fewer
parameter. One of these models may provide a better AIC value than your current model.
If so, you move to that model; otherwise you choose the model you last tested. This can
sometimes get caught finding a local optimum, so you may want to repeat this process from
different starting models.

283

Chapter 11 Applied Statistics in R

The ’step’ function (and the stepAIC function in the MASS package) will use AIC to
selectively add, prune, or move both ways within the model space to find the ‘best’ model
according to that criterion. Note that with N parameters, the total number of models is 2N ,
and it may quickly be impossible to test all possible alternatives, so you are not guaranteed
to find the truly best model. The function step() lets you specify a direction, which can
be “both”, “backward”, or “forward”. You should typically try “both”, but backward and
forward selection let you either move only to smaller or larger models from a starting point.
As with extractAIC, by specifying the k parameter as log(n), you can get step to use BIC.

To use step, give it a complex model and watch it iterate until it stops. Giving it a k
value that computes BIC, this will produce the same results as the BIC analysis we already
did, but it will do so automatically.

1 gsmall <- step(g1,direction="both", k=log(nrow(dat)))

3 > summary(gsmall)

5 Call:

lm(formula = academic ~ communication + priorwork + group , data = dat)

7

Residuals:

9 Min 1Q Median 3Q Max

-2.5609 -0.5448 0.1003 0.5587 2.0562

11

Coefficients:

13 Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.305585 0.364619 6.323 1.02e-09 ***

15 communication 0.169360 0.069682 2.430 0.01571 *

priorwork 0.150266 0.050037 3.003 0.00292 **

17 groupIndustry -0.004061 0.131958 -0.031 0.97547

groupStudent -0.358903 0.128505 -2.793 0.00559 **

19 ---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

21

Residual standard error: 0.8243 on 278 degrees of freedom

23 Multiple R-squared: 0.09405 , Adjusted R-squared: 0.08101

F-statistic: 7.215 on 4 and 278 DF , p-value: 1.534e-05

11.3 Using Bayes Factor for Model Selection

The logic of the Bayes Factor parameter selection is similar to the BIC, with fairly similar
motivation, but overall it is often somewhat simpler to manage. Because each model will have
a Bayes Factor associated with it that compares it to the intercept-only model, comparing
nested models is simply comparing the ratio of these factors. We need to run each model
using a Bayes factor test first:

library(BayesFactor)

2 b1 <- lmBF(academic~communication+leadership+handson+teaming+priorwork+

multicultural+creative+group ,data=dat)

plot(b1)

4 b3 <- lmBF(academic~communication+teaming+priorwork+creative+group ,data=dat)

b3/b1

6

b3/b1

8 Bayes factor analysis

284

Chapter 11 Applied Statistics in R

10 [1] communication + teaming + priorwork + creative + group : 14.20427 1.57%

12 Against denominator:

academic ~ communication + leadership + handson + teaming + priorwork +

multicultural + creative + group

14 ---

Bayes factor type: BFlinearModel , JZS

Here, the test prefers the smaller model by a factor of 14. We can compute pairwise
comparisons, but a slightly easier way to do this is to compare all sub-models using regres-
sionBF. However, this will not accept factor variables, so we will have to get rid of group.
There are 127 remaining models and submodels, and so we will just look at the best few:

1 bmodel <- regressionBF(academic~communication+leadership+handson+teaming+

priorwork+multicultural+creative ,data=dat)

3 plot(head(bmodel))

head(bmodel)

5 Bayes factor analysis

7 [1] communication + teaming + priorwork + creative : 92.49299

0%

[2] communication + priorwork + creative : 65.31011

0.01%

9 [3] communication + teaming + creative : 51.61002

0.01%

[4] communication + teaming + priorwork + multicultural + creative : 39.729

0%

11 [5] teaming + priorwork + creative : 35.22326

0.01%

[6] communication + priorwork : 33.54419

0%

13

Against denominator:

15 Intercept only

17 Bayes factor type: BFlinearModel , JZS

Here, we would prefer the model with communication, teaming, priorwork, and creative,
which is the same as model3 (but without including group).

11.4 Parameter Selection when using Regression for Pre-
diction

When we fit a model using lm, the predicted values for our observed cases are saved in the
$fitted.values slot of the model. However, we can also make predictions about new cases that
we did not observe. You need to be careful–there is no guarantee you will be as accurate for
new data. You should be especially cautious if you are extrapolating to a new region of the
parameter space. For example, maybe you found a relationship between age and working
memory for a group of school-age adolescents, such that the score on a 10-point test goes up
.5 points per year. It would be a mistake to assume that the score of a 30-year-old would by
10 points higher than a 10-year-old.

To examine prediction, suppose the truth involved a simple linear relationship between
age, income, and digit span.

285

Chapter 11 Applied Statistics in R

1 ##normal prediction

set.seed (100)

3 age <- 20+ runif (50) * 80

income <- 20000+ runif (50)*50000

5 digitspan <- (age * .5 + income * .003)/20 + rnorm (50)

data=data.frame(age ,income ,digitspan)

7 model <- lm(digitspan~age+income ,data=data)

summary(model)

9

11 Call:

lm(formula = digitspan ~ age + income , data = data)

13

Residuals:

15 Min 1Q Median 3Q Max

-2.14574 -0.90181 0.02403 0.69711 2.75379

17

Coefficients:

19 Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.2071955 0.7907307 0.262 0.79444

21 age 0.0266162 0.0084632 3.145 0.00288 **

income 0.0001414 0.0000129 10.962 1.52e-14 ***

23 ---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

25

Residual standard error: 1.211 on 47 degrees of freedom

27 Multiple R-squared: 0.7393 , Adjusted R-squared: 0.7282

F-statistic: 66.65 on 2 and 47 DF , p-value: 1.9e-14

Note that we can get the fitted values with model$fit, which is the same as what the
predict function will produce if given the model and our original data set:

model$fit
2 predict(model ,data)

cor(model$fit ,predict(model ,data))
4 1.0

But what if we wanted to predict the digit span for someone who was 30 years old and
had an income of 10,000/year? To do this, create a custom data frame or list that has
named values with each of the predictor names. You can give it an entire data set to make
predictions about too–maybe for validation or other means.

predict(model ,list(age=30, income =10000))

2 2.260161

It will do this, but be careful, because nobody in our sample had income this low.

predict(model ,list(age=30, income =40000))

2 6.795762

This is our best prediction about the value we would have observed. Is it correct? It will
only be approximately correct considering the entire range of the data we observed.

286

Chapter 11 Applied Statistics in R

It is hardly ever the case in which we know all the right things to measure, and none of
the wrong things, in order to best predict our outcome. Let’s consider what would happen
if we have measured a lot of uninteresting values that don’t really predict the outcome.

#WHAT IF WE HAD OTHER VARIABLES TOO?

2 set.seed (1001)

n <- 50

4 xcat <- as.factor(sample(c("A","B","C"), n,replace=T))

x2 <- runif(n)

6 x3 <- runif(n)

x4 <- 1/runif(n)

8 x5 <- runif(n)

x6 <- runif(n)

10 x7 <- runif(n)

12 y <- as.numeric(xcat)*3 + 5*x2 - 10*x3 + rnorm(n)*2.5

14 #optional: add additional large noise to a handful of points

#y[sample (1:n,5)] <- rnorm(5,mean(y),sd(y))

16

dat <- data.frame(xcat ,x2,x3,x4 ,x5,x6,x7 ,y)

18 model <- lm(y~0+xcat+x2+x3+x4+x5+x6+x7,data=dat)

20

> summary(model)

22

Call:

24 lm(formula = y ~ 0 + xcat + x2 + x3 + x4 + x5 + x6 + x7, data = dat)

26 Residuals:

Min 1Q Median 3Q Max

28 -4.431 -1.468 0.010 1.415 5.946

30 Coefficients:

Estimate Std. Error t value Pr(>|t|)

32 xcatA 0.759131 1.452895 0.522 0.6041

xcatB 3.272940 1.529143 2.140 0.0383 *

34 xcatC 7.368993 1.512420 4.872 1.69e-05 ***

x2 6.753986 1.180098 5.723 1.07e-06 ***

36 x3 -10.937376 1.251518 -8.739 6.56e-11 ***

x4 0.008137 0.022416 0.363 0.7185

38 x5 1.124921 1.210535 0.929 0.3582

x6 0.074951 1.273840 0.059 0.9534

40 x7 3.046021 1.303627 2.337 0.0244 *

42 Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

44 Residual standard error: 2.355 on 41 degrees of freedom

Multiple R-squared: 0.9021 , Adjusted R-squared: 0.8807

46 F-statistic: 42 on 9 and 41 DF, p-value: < 2.2e-16

We could predict a specific value from the data

1 predict(model ,dat[1,])

dat[1,]

Or a new value. what if it had been a ”B” but otherwise the same:

tmp <- dat[1,]

287

Chapter 11 Applied Statistics in R

2 tmp$xcat="B"

4 predict(model ,tmp)

Or this could work for a completely new value, using a list or data that contains named
variables with all predictor variables:

1 predict(model ,list(xcat="A",x2=.8,x3=.01,x4=1.5,x5=3,

x6=1.5,x7 =1.3))

Because we created the data, we know that x4..x7 shouldn’t matter. But the model is
using these extra predictors, and so by using them, it may harm its ability to predict data
that were not in the data set. Ideally, we would have removed variables that did not matter,
so this might not be a case. But of course, had we removed those variables, we might have
removed some variables that did matter as well.

In addition to all the model selection methods we used earlier, you can also use cross-
validation. In this scheme, you fit the model on subset of your data, and then predict the
other subset. Different schemes might do this repeatedly with different subsets, or use a
fitting subset of N-1 points, predicting the leftover point each time. In the example below,
we know that modelc is the correct model because we created the data.

2

set.seed (8)

4 reorder <- (1:n)[order(runif(n))]

half <- floor(n/2)

6 fitset <- reorder [1: half]

extra <- reorder [(half +1):n]

8

##fit the model on a random half of the data:

10 modelb <- lm(y~0+xcat+x2+x3+x4+x5+x6+x7,data=dat[fitset ,])

modelc <- lm(y~0+xcat+x2+x3,data=dat[fitset ,])

12

summary(model)

14 summary(modelb)

summary(modelc)

16

> summary(model)$r.squared
18 [1] 0.8841388

> summary(modelb)$r.squared
20 [1] 0.9164083

> summary(modelc)$r.squared
22 [1] 0.8527432

The exact results depend on the random data set, but here we see that the R2 for model
b is .92 and for modelc is .85. As you might expect, the over–specified model b fits better.
Are the actual parameters any different?

1

params <- rbind(model$coef ,
3 modelb$coef ,

c(modelc$coef ,0,0,0,0),
5 c(3,6,9,5,-10,0,0,0,0))

288

Chapter 11 Applied Statistics in R

7 > round(params ,3)

xcatA xcatB xcatC x2 x3 x4 x5 x6 x7

9 [1,] 0.759 3.273 7.369 6.754 -10.937 0.008 1.125 0.075 3.046

[2,] -2.654 1.072 5.581 8.476 -11.256 0.130 1.194 0.899 4.490

11 [3,] 1.874 4.766 9.485 7.527 -11.319 0.000 0.000 0.000 0.000

[4,] 3.000 6.000 9.000 5.000 -10.000 0.000 0.000 0.000 0.000

The last row is the true values, but overall different models give different estimates. So,
to be fair, let’s see what happens if we predict the left-out subset based on the original model
(which used these data to produce the fit):

1 > cor(dat$y[fitset],predict(model ,dat[fitset ,]))^2
[1] 0.7984062

3 > cor(dat$y[extra],predict(model ,dat[extra ,]))^2
[1] 0.8421875

Here, the fit was pretty good for each half. The model was fitted to the entire data set,
and so if we look at half of the data, we’d expect each to fit about the same; here the second
half is a bit better than the first half, and we can use these values as a baseline.

Now, if we do the same for our complex over-fitted model:

1

> cor(dat$y[fitset],predict(modelb ,dat[fitset ,]))^2
3 [1] 0.8607574

> cor(dat$y[extra],predict(modelb ,dat[extra ,]))^2
5 [1] 0.6170834

Now, the fitted value for the fitting set is a bit better than the first model, but the the
fit on the cross-validation is worse. Let’s look at the smaller model:

> cor(dat$y[fitset],predict(modelc ,dat[fitset ,]))^2
2 [1] 0.7547074

> cor(dat$y[extra],predict(modelc ,dat[extra ,]))^2
4 [1] 0.7752517

Here, it fits both halves of the data about as well as the model fitted to the entire data
set. So, by removing predictors, although the fit to the data we see goes down a bit, the fit
to data we don’t see should improve. Of course, this assumes that the smaller model you
select is really a better model. In the following exercise, use variable selection methods to
pick a smaller model, and see if you come up with one identical to model c.

Exercise 11.4

Create a model predicting y using all the x values. Use one of the following model
selection approaches to find the smallest model that is predictive: F-tests; AIC, BIC,
Bayes Factor, or cross-validation.

289

Chapter 11 Applied Statistics in R

11.4.1 Predicting Categorical Variables

Although the linear model is not typically used to predict categories, it can sometimes be used
in this way. There are better methods of course, including logistic regression and discriminant
analysis, but these are essentially versions of regression with certain transformations applied.

If we have a two-level outcome variable such as gender, or any other binary outcome, we
can code these, for example, as 1 and 2. When we build a model, the outcome predicted
value will be a continuous number, and we pick a criterion between the two (maybe 1.5) to
make a decision about our best guess. In fact, there are special versions of the regression
model that might be better (logistic regression), but a normal regression can still work.

2 gender <- sample(as.factor(c("F","M")) ,50,replace=T)

height <- 30 + as.numeric(gender) * 10 + runif (50)*30 ##height depends on

gender

4 weight <- 100 + as.numeric(gender) * 20 + runif (50)*50 ##weight depends on

gender too

6 plot(height ,weight ,col=gender ,pch =16)

Notice that gender is related to both height and weight, although neither one alone is perfect
at discriminating the two. If we build a model by turning gender into a numeric, it will code
female=1, male =2 (alphabetical order).

2 model <- lm(as.numeric(gender)~height+weight)

model

4 plot(model$fit~gender ,ylab="Gender coefficient")

points(as.numeric(gender),model$fit)
6 abline (1.5,0,lwd=3)

Our prediction about gender is a real-valued number that in this case ranges between
about 0.8 and 2.2. If we use 1.5 as the cutoff, we can use a table to see how well we did
(since we know what the true outcome is).

predictedgender <- model$fit > 1.5

2 table(gender ,c("F","M")[(predictedgender +1)])

4 gender F M

F 20 5

6 M 4 21

In this case, we got 41/50 correct–82%.

11.5 Worked Example: Categorical and linear predic-
tors

Remember back to the chickweight data set, which we only looked at graphically. It tracked
the growth of about 50 chicks from birth to 21 days, with four different feeds. The growth
curves would be a good target for linear regression. But how do we incorporate the feed?

290

Chapter 11 Applied Statistics in R

They could be labeled 1 through 4, but they really have no order, and are categorical
predictors.

The plotchicks function incorporates the plotting we defined in Chapter 3.

1 summary(ChickWeight)

plotchicks <- function ()

3 {

cscheme <- c("red","darkgreen","black","orange")

5 ##write down the times of measurement --they are not regular

times <- (c(0,2,4,6,8,10,12,14,16,18,20,21))

7

##Aggregate growth over the diets and times

9

cw.agg <- tapply ((ChickWeight$weight), list(time=ChickWeight$Time ,
11 diet=ChickWeight$Diet),mean)

cw.bysub <- tapply ((ChickWeight$weight),
13 list(time=ChickWeight$Time ,

chick=ChickWeight$Chick),mean)
15

diets <- aggregate(as.numeric(as.character(ChickWeight$Diet)),
17 list(chick=ChickWeight$Chick),median)

19 #Replot the growth curves , but and make reasonable headers

matplot(times ,cw.bysub ,col=cscheme[diets$x],type="l",lty=3,
21 ylab="Weight (mg)",xlab="Age (days)",ylim=c(0 ,400),las=1)

points(ChickWeight$Time ,ChickWeight$weight ,cex=.5,
23 pch=1, col=cscheme[ChickWeight$Diet])

25 #Underlay a white line

matplot(times ,cw.agg ,add=T,type="l",lwd=15, col="white",lty =1)

27 matplot(times ,cw.agg ,add=T,type="l",lwd=5, col=cscheme ,lty=1)

##Whoops , no title:

29 title("Chick weights over time by diet")

##Lets add some gridpoints

31 points(rep(-10:25, each =17), rep (0:16*25 ,36),pch=".",cex =2)

33 ##Make a legend here.

legend (2,350, paste("Diet",c(1:4)),col=cscheme ,lty=1,lwd=5)

35 }

37 plotchicks ()

summary(ChickWeight)

To start with, we might be able to answer a lot of questions we have without a linear
model. We might want to know a few things about the chicks:

1. On average, are chicks from one diet heavier than another?

2. Do the diets give a higher end-weight?

3. Do the diets give chicks different growth rates?

The first question is easy (or is it?).

cwd <- ChickWeight$Diet
2 t.test(ChickWeight$weight[cwd==1], ChickWeight$weight[cwd ==2])

t.test(ChickWeight$weight[cwd==1], ChickWeight$weight[cwd ==3])
4 t.test(ChickWeight$weight[cwd==1], ChickWeight$weight[cwd ==4])

t.test(ChickWeight$weight[cwd==2], ChickWeight$weight[cwd ==3])
6 t.test(ChickWeight$weight[cwd==2], ChickWeight$weight[cwd ==4])

291

Chapter 11 Applied Statistics in R

Figure 11.1: Depiction of the chick weight data set, for four different diets across the first
21 days of life.

0 5 10 15 20

0

100

200

300

400

Age (days)

W
e

ig
h

t
(m

g
)

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●
●

●

●
● ●

● ●
●

●

●

●

●

●

● ●

● ●

●
●

●

●

●

●

●
●

●
● ● ●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●
●

●

●
●

●
●

●

●
● ● ●

● ● ●

● ●
●

●

●
●

●
●

●

●
●

●

●
●

●

●

●

●

●
●

● ● ●
●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

● ●
● ● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

● ● ● ●

●
●

● ●
●

● ●

●
●

●

●

●
●

●
●

●

●

●
●

●
●

●
●

●
● ●

●

●
●

●

●

●

●

●
●

●
●

●
●

●

●
●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

● ●

●

●

● ●

●
●

●

●

●

●

●
●

●

●
●

●

●

●
●

●
● ● ● ● ● ●

● ●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●
●

●
●

●

●

● ●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ● ● ●

●
●

●

●

●

●
●

●
● ●

●
●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

Chick weights over time by diet

Diet 1

Diet 2

Diet 3

Diet 4

t.test(ChickWeight$weight[cwd==3], ChickWeight$weight[cwd ==4])
8

But there are problems with this approach: a. Is this really what we want? b. Multiple
tests start reducing the validity of a .05 probability; and c. d.f. are around 230–Is this
right?; and d. we aren’t factoring in or factoring out the growth curve, and the repeated
measurements of each chick. We shouldn’t get credit for measuring each chick 12 times–had
we measured every day instead of every other day, we shouldn’t really get the same benefit
as if we observed twice as many chicks. Let’s ignore this issue for the moment though, and
look at the results of the pairwise t tests.

According to the results, we get reliable differences 4/6 times:

1 2 3 4

1 * * *

3 2 * 0

3 0

5

Because diet is coded as a factor (rather than an integer), let’s try a regression model that
essentially corresponds to these t-tests. To do this, we will just give Diet and a predictor:

1 lm1 <- lm(weight~Diet ,data=ChickWeight)

summary(lm1)

3

plotchicks ()

2 abline (102,0,col="red",lwd=3)

abline (102+19.97 ,0 , col="darkgreen",lwd =3)

4 abline (102+40.3 ,0 , col="black",lwd =3)

abline (102+32.62 ,0 , col="orange",lwd=3)

292

Chapter 11 Applied Statistics in R

6

This is basically like a one-way factorial ANOVA, with each effect of Diet coded relative
to Diet 1. Typically, an ANOVA procedure will hide these parameter estimates from you,
and packages like SPSS and SAS may code each level with respect to the last level instead
of the first.

Without going into too much detail, we will probably find close to the same reliable
outcomes, but now we can see that our R2 is abysmally low–.048. There is so much more
variability in the data we aren’t accounting for that it silly to compare means.

11.5.1 Compare end weight or weight gain or end/start ratio

As discussed earlier, we need to find a single value per chick, not their whole history:

##Pick out the diet of each chick:

2 diets <- tapply(ChickWeight$Diet ,list(ChickWeight$Chick),function(x)x[[1]])

4 minweights <- tapply(ChickWeight$weight ,list(ChickWeight$Chick),min)
maxweights <- tapply(ChickWeight$weight ,list(ChickWeight$Chick),max)

6

##Let ’s recategorize by weight gains

8 ratio <- maxweights/minweights

gain <- maxweights -minweights

10

hist(ratio ,breaks =20)

12 hist(gain ,breaks =20)

plot(ratio ,gain)

14

##It hardly matters

16 t.test(gain[diets ==1], gain[diets ==2])

t.test(gain[diets ==1], gain[diets ==3])

18 t.test(gain[diets ==1], gain[diets ==4])

t.test(gain[diets ==2], gain[diets ==3])

20 t.test(gain[diets ==2], gain[diets ==4])

t.test(gain[diets ==3], gain[diets ==4])

22

plotchicks ()

24

end <- tapply(gain ,list(diets),mean)

26

abline(end[1],0,col="red",lwd=3)

28 abline(end[2],0,col="darkgreen",lwd=3)

abline(end[3],0,col="black",lwd=3)

30 abline(end[4],0,col="orange",lwd=3)

Why don’t these line up with the end weights? This factored out starting weights.

plotchicks ()

2 start <- tapply(minweights ,list(diets),mean)

end <- tapply(gain ,list(diets),mean)

4

abline(end [1]+ start [1],0,col="red",lwd=3)

6 abline(end [2]+ start [2],0,col="darkgreen",lwd=3)

abline(end [3]+ start [3],0,col="black",lwd=3)

8 abline(end [4]+ start [4],0,col="orange",lwd=3)

293

Chapter 11 Applied Statistics in R

According to these new results, we get fewer reliable comparisons:

2 3 4

2 1 . * *

2 . 0

4 3 0

6

This is partially because the d.f. are correct, and starting weights were subtracted out.
There were dozens of chicks, not hundreds, and you are trying to do inference about the
population of chicks, not the population of measurements. Importantly, we can assume the
error in measurement is very small, but the variability in chick weight stemming from genetic
variability across the population is larger.

So let’s put this in a linear model, and while we are at it, incorporate a ’growth’ factor:

1 lm2 <- lm(weight~ Time+Diet ,data=ChickWeight)

summary(lm2)

3

plotchicks ()

5 abline(lm2$coef[1],lm2$coef[2],col="red",lwd=3)
abline(lm2$coef [1]+ lm2$coef[3],lm2$coef[2],col="darkgreen",lwd =3)

7 abline(lm2$coef [1]+ lm2$coef[4],lm2$coef[2],col="black",lwd =3)
abline(lm2$coef [1]+ lm2$coef[5],lm2$coef[2],col="orange",lwd=3)

9

But, this is not really appropriate, because it essentially assumes that the chicks started
out at different weights, then gained the same amount regardless of diet, and only lets the
starting weights change.

Here, we need to make an ’interaction’ predictor: time x diet. This will force a single
intercept across all groups, and a different slope for each:

lm3 <- lm(weight~Time:Diet ,data=ChickWeight)

2 summary(lm3)

plotchicks ()

2 abline(lm3$coef[1],lm3$coef[2],col="red",lwd=5,lty=4)
abline(lm3$coef[1],lm3$coef[3],col="darkgreen",lwd=5,lty =4)

4 abline(lm3$coef[1],lm3$coef[4],col="black",lwd=5,lty=4)
abline(lm3$coef[1],lm3$coef[5],col="orange",lwd=5,lty=4)

6

We can include all intercepts by using the * instead of the, which tells it to use both
main effects and the interaction:

1 lm4 <- lm(weight~Time*Diet ,data=ChickWeight)

summary(lm4)

3

294

Chapter 11 Applied Statistics in R

11.5.2 Exercise

Plot the predicted lines for lm4.

11.5.3 Categorical outcome variables

Suppose a chicken farmer gets more money for ’jumbo’ chicks; those above 300g; but cannot
sell ’runts’, those below 150 g. She may not care about any of this modeling, and may only
be concerned with whether the feed impacts her bottom line. We can transform the DV into
those categories, ignore the models, and just do a simple chi-squared test to see the answer.

weightgain <- ifelse(maxweights >=300,"jumbo",

2 ifelse(maxweights <=150,"runt","normal"))

chickTable <- table(diets ,weightgain)

4 ## Does the type of chick depend of feed?

chisq.test(chickTable)

Suppose diet 2 cost half as much as diet3. Is there a reliable difference between these
two? Is it enough to make the more expensive feed worthwhile?

295

Chapter 11 Applied Statistics in R

Exercise Solution 11.2

We can see this by examining the galapagos data set, in the Faraway library:

1 library(faraway)

First, let’s look at the full model, as well as one without the Scruz predictor:

1 g1 <- lm(Species~.,data=gala)

g2 <- lm(Species~Endemics+Area+Elevation+Nearest+Adjacent ,data=gala)

3

> summary(g1)

5

Call:

7 lm(formula = Species ~ ., data = gala)

9 Residuals:

Min 1Q Median 3Q Max

11 -68.219 -10.225 1.830 9.557 71.090

13 Coefficients:

Estimate Std. Error t value Pr(>|t|)

15 (Intercept) -15.337942 9.423550 -1.628 0.117

Endemics 4.393654 0.481203 9.131 4.13e-09 ***

17 Area 0.013258 0.011403 1.163 0.257

Elevation -0.047537 0.047596 -0.999 0.328

19 Nearest -0.101460 0.500871 -0.203 0.841

Scruz 0.008256 0.105884 0.078 0.939

21 Adjacent 0.001811 0.011879 0.152 0.880

23 Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

25 Residual standard error: 28.96 on 23 degrees of freedom

Multiple R-squared: 0.9494 , Adjusted R-squared: 0.9362

27 F-statistic: 71.88 on 6 and 23 DF , p-value: 9.674e-14

296

Chapter 11 Applied Statistics in R

Exercise Solution 11.2 Continued

Here, the F-statistic is 71, p < .001. This indicates that the goodness of fit we
observed was very unlikely to have happened by chance. Because of this, the larger
model is better than the small (mean-only) model, and we would prefer using the
larger model, even though it is more complex.
What if we removed scruz:

> summary(g2)

2 Call:

lm(formula = Species ~ Endemics + Area + Elevation + Nearest +

4 Adjacent , data = gala)

6 Coefficients:

Estimate Std. Error t value Pr(>|t|)

8 (Intercept) -15.056413 8.522230 -1.767 0.090 .

Endemics 4.383999 0.455268 9.629 1.02e-09 ***

10 Area 0.013207 0.011146 1.185 0.248

Elevation -0.046921 0.045953 -1.021 0.317

12 Nearest -0.077612 0.388341 -0.200 0.843

Adjacent 0.001763 0.011615 0.152 0.881

14 ---

16 Residual standard error: 28.36 on 24 degrees of freedom

Multiple R-squared: 0.9494 , Adjusted R-squared: 0.9388

18 F-statistic: 89.98 on 5 and 24 DF , p-value: 9.61e-15

297

Chapter 11 Applied Statistics in R

298

Chapter 12

Identifiability, Orthogonality,
linear independence, and
Multi-colinearity in Regression
Models

Supplemental reading: Faraway’s chapters 3.6, 3.7, and 3.9

12.0.1 Terminology

The concepts of identifiability, orthogonality, linear independence, and correlated/uncorre-
lated predictors are all related. In addition, predictors that are highly correlated are some-
times referred to as “multi-colinear” (or more commonly multicollinear, for which nobody
can give a sensible explanation of the spelling). As explained by Rodgers et al (1984)1,
linear independence is the most general term, and both uncorrelated predictors and orthog-
onal predictors are linearly independent. When forming a regression model, if you do not
have linearly-independent predictors, you do not have identifiability, but even if you have
linear independence, your predictors may still be correlated and non-orthogonal. Regression
models work best when predictors are orthogonal and uncorrelated.

Although these are all concepts related to independence, none of these are the same as
“stochastic independence”, which is usually what is meant when one says two (random)
variables are independent. Stochastic independence is related to the distribution of random
variables (if the joint density is equal to the product of the marginal distributions). Each of
the concepts in this chapter relates specifically to predictor variables, which may be data,
and may arise by sampling from a random variable, but might be selected or designed as
well. I’ll try to avoid using the term “independence” because of its many connotations to
avoid the possibility of confusion.

1J. L. Rodgers, W. A. Nicewander, & L. Toothaker (1984). Linearly independent, orthogonal, and uncor-
related variables. The American Statistician, 38, 133-134.

299

Chapter 12 Applied Statistics in R

12.1 Orthogonality of Predictors

The term orthogonal is a geometric generalization of the notion of perpendicularity. In two-
dimensional space, two vectors with a 90◦ angle between them are orthogonal. Consider a
pair of vectors that each start at (0, 0), where a⃗ ends at (1, 0) and b⃗ ends at (0, 1). Figure 12.1

shows these in red. Notice that if you multiply each element of a⃗ and b⃗ by one another and
add up the result, the sum is 0: 1 × 0 + 0 × 1 = 0 + 0 = 0. This kind of multiplication is
known as the “dot product” or “inner product” of a pair of vectors, and can be done in R
using the %*% operator.

a <- c(1,0)

2 b <- c(0,1)

a %*% b

4 [,1]

[1,] 0

6

plot(0,0,type="n")

8 segments (0,0,1,0)

segments (0,0,0,1)

Also, notice that vectors c⃗ and d⃗ are also perpendicular, and also that their dot product
is 0.

1 c <- c(-1,1)

d <- c(-1,-1)

3 c %*% d

[,1]

5 [1,] 0

7

plot(0,0,type="n")

9 segments (0,0,-1,1)

segments (0,0,-1,-1)

300

Chapter 12 Applied Statistics in R

Figure 12.1: Two pairs of orthogonal vec-
tors: a⃗ and b⃗, and c⃗ and d⃗.

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

x

y

a

b
c

d

Figure 12.2: Orthogonal predictors plot-
ted x versus y

●

●

●

●

●

●

−4 −2 0 2 4

−
4

−
2

0
2

Orthogonal predictors x and y

x

y

●

●

●

●

●

●

301

Chapter 12 Applied Statistics in R

By definition, the dot product of two orthogonal vectors is always 0, regardless of the
number of dimensions. It is not obvious that the following vectors are orthogonal, but they
are.

x <- c(1,3,3,4,-4,3)

2 y <- c(3,1,3,-5,1,3)

x %*% y

4 [,1]

[1,] 0

6

plot(x,y)

Because they have six dimensions, we cannot visualize this like we looked at the previous
vectors. We can plot them against one another, but this gives us no indication that they are
independent, as shown in the figure. Note that this graph is different from the previous one,
because I’m plotting each point of each dimension on the same axis instead of different axes.
We can only really tell these are orthogonal because the dot product is 0. If you multiply
each pair and add them up, you will find that they cancel out and their sum is 0.

As we will see next, orthogonality makes for a more interpretable linear model, so it is
good to have in a set of predictors. Here, x and y are the predictor or design variables of
a data set that are used in a linear model (or other analysis). If x and y are conditions
under which you are testing an experiment, you can always find a value for a pair of x and
y that you could add to your design to make the resulting design orthogonal, and then add
these values to your study (any two values whose product is equal to the negative of the dot
product of the current set). The problem is we often do not have control over the x and y
conditions, and even if we do, we may not be able to feasibly or physically collect that data.
Alternatively, we can sometimes make our predictors orthogonal by changing the numbers
we use to describe the levels—usually by centering (subtracting the mean). This is usually
easier, but not guaranteed to work.

This is because two predictors that are orthogonal can be correlated. As described by
Rodgers et al. (1984), two vectors are uncorrelated if their dot product is 0 once the mean
of each vector is subtracted from the vector. For example, the following vectors orthx1 and
orthx2 are orthogonal but correlated:

1 orthx1 <- c(1,-5,3,-1)

orthx2 <- c(5,1,1,3)

3

> cor(orthx1 ,orthx2)

5 [1] 0.2548236

7 orthx1 %*% orthx2

[,1]

9 [1,] 0

But since vectors that are uncorrelated are orthogonal if you subtract their means, you
can always transform uncorrelated predictors to orthogonal predictors by decentering so their
means are 0. For example, the following are uncorrelated but non-orthogonal vectors:

1 uncorx1 <- c(0,0,1,1)

uncorx2 <- c(1,0,1,0)

3 > cor(uncorx1 ,uncorx2)

[1] 0

5 > (uncorx1)%*%(uncorx2)

302

Chapter 12 Applied Statistics in R

[,1]

7 [1,] 1

But simply subtract the mean from each and you have orthogonal and uncorrelated
vectors:

uncorx1b <- uncorx1 - mean(uncorx1)

2 uncorx2b <- uncorx2 - mean(uncorx2)

cor(uncorx1b ,uncorx2b)

4 [1] 0

uncorx1b%*% uncorx2b

6 [,1]

[1,] 0

We will see why this matters in the next section. When possible, if your predictors are
orthogonal, this means that the parameter estimates in a least-squares regression model will
not depend on one another. Just remember that to obtain orthogonality, non-correlation or
linear independence is not enough.

Exercise 12.1

For the following x and y design vectors, (1) find an additional observation (x,y) that
will make them orthogonal; and (2) center the original values and determine whether
they are orthogonal. For the new variables, test whether they are uncorrelated.

1 x <- c(0,1,0,1,0,1,0,1)

y <- c(1,1,2,2,3,3,4,4)

Consider the new x and y design variables in each case. Think about what x and y
might represent. Which approach would probably be easier to implement?

12.1.1 Orthogonal Predictors in Regression

Why should orthogonality matter when you are doing a regression? Largely, the issue is not
dependent on the outcome/predicted variable–it is only a matter of the predictors. If we
have a pair of predictors that are related, they need to battle it out for whatever aspect of
the outcome they can account for, and so you may find that neither is significant although
together both are, or (more likely) that either is significant on its own but together neither
one is.

So, let’s create x1 and x2 to be both orthogonal and uncorrelated. See what happens to
the coefficients if we fit each predictor on its own. We begin by creating two predictors that
are uncorrelated, and then centering them:

set.seed (100)

2 x1.raw <- rep(1:10, each =10)

x2.raw <- rep (1:10 ,10)

4 x1.raw %*% x2.raw

x1.raw %*% x2.raw

6 [,1]

[1,] 3025

8 > cor(x1.raw ,x2.raw)

303

Chapter 12 Applied Statistics in R

[1] 0

10

x1 <- x1.raw -mean(x1.raw)

12 x2 <- x2.raw -mean(x2.raw)

x1 %*% x2

14 [,1]

[1,] 0

16 cor(x1 ,x2)

[1] 0

18

y <- x1 + x2 + rnorm (100)

Now, if we look at the coefficients of three models, we see that the estimates are the same
regardless of whether x1, x2, or both are used as predictors:

lm(y~x1)$coef
2 (Intercept) x1

0.002912563 0.972432797

4 lm(y~x2)$coef
(Intercept) x2

6 0.002912563 1.006314012

lm(y~x1+x2)$coef
8 (Intercept) x1 x2

0.002912563 0.972432797 1.006314012

Your intuition might tell you regression should always give you the same coefficients no
matter what else is in the model, but that is wrong. It will not even be true if our predictors
are just a little bit correlated. Here, when the predictors are orthogonal, the intercept
remains unchanged because the predictors have been centered, and are both uncorrelated
and orthogonal. In some sense, the intercept is more interpretable now, because it is the
actual value of the mean of the data if no predictors are given. Subtracting means from your
predictors essentially centers your predictors around 0, making the intercept equal to the
mean at the center of the predictors. This is not what happens if we use the uncorrelated
(but non-orthogonal) raw predictors:

1 lm(y~x1.raw)$coef
(Intercept) x1.raw

3 -5.3454678 0.9724328

lm(y~x2.raw)$coef
5 (Intercept) x2.raw

-5.531815 1.006314

7 lm(y~x1.raw+x2.raw)$coef
(Intercept) x1.raw x2.raw

9 -10.8801949 0.9724328 1.0063140

Now, although the β values are the same, the intercepts change. So, the big advantage of
having orthogonal predictors in a regression is that it won’t matter if you add or remove any
of them–your estimates won’t change. In general, this can only be done if you have the ability
to design your experiment-specifying each of the types and levels of conditions. If we had a
more complex model (e.g., with interactions), more than the intercept might change. Thus,
when possible, using orthogonal predictors in regression make for stable predictors. This can
usually only be achieved through designing an experiment–you are unlikely to get this by
sampling all variables at random from a population. But even if you have some dependence

304

Chapter 12 Applied Statistics in R

between predictors, you may be able to achieve more stable predictors by centering the
variables, and so that can be a good practice regardless, and it will often make for more
interpretable models, as it fits a model around the center of the data. Now, instead of
having to interpret the slope with respect to the 0 point of each variable, you interpret the
intercept as the value you get in the ‘middle’ of each dimension of predictors.

12.2 Non-orthogonality in regression

Although it won’t produce stable coefficients if you change predictors, regression works with
non-orthogonal predictor variables. Depending on what you want to do with the model,
having orthogonal predictors may not matter much. But a pair of two variables that are not
orthogonal–even a little bit–lead to different estimates of the coefficients. Let’s consider a
new, ‘noisy’ version of x1 called x1b:

x1b <- x1 + rnorm (100)*.5

2 lm(y~x1b+x2)$coef
(Intercept) x1b x2

4 -0.002309976 0.937548645 0.991396878

6 x1b %*% x2

[,1]

8 [1,] 13.1264

cor(x1b ,x2)

10 [1] 0.01557746

Here x1b is based on x1 which was orthogonal to x2. But now, it is slightly correlated and
non-orthogonal to x2. In the resulting linear regression, not only did the x1/x1b coefficient
change, but the x2 and intercept terms changed as well. This is because the new variable
x1b was not completely orthogonal to x2, and so its presence changed the β weight for x2.

This is even a bigger problem when you have more strongly correlated predictors. We
can look at this by creating a hidden variable x1 which other predictors depend on.

set.seed (999)

2 x1 <- runif (50)*10

x2 <- x1 + rnorm (50)*1

4 x3 <- x1 + rnorm (50)*1

You can see that the predictor variables are highly correlated, and are not orthogonal:

cor(x2 ,x3)

2 [1] 0.8882033

x2 %*% x3

4 [,1]

[1,] 1481.824

We can make another outcome value based on x2 and x3, with no noise, and estimate
the three beta values (100, .8, and 1.5) using a linear model:

y <- 100 + .8*x2 +1.5*x3

2 model1 <- lm(y~x2+x3)

model1

4 Call:

305

Chapter 12 Applied Statistics in R

lm(formula = y ~ x2 + x3)

6

Coefficients:

8 (Intercept) x2 x3

100.0 0.8 1.5

Here, even though x2 and x3 are non-orthogonal, the estimates are exactly the same
as the coefficients we used to create y. This is because they are linearly independent. So
without noise, there seems to be no harm. Yet if we look at the smaller models, we get
different estimates:

1 lm(y~x2)$coef
(Intercept) x2

3 99.665997 2.324701

lm(y~x3)$coef
5 (Intercept) x3

100.9275 2.1209

Here, because x1 and x2 are related to a common predictor, they seem to do fine at
recovering the slopes. But (1) they are not orthogonal, so the coefficients change when one
is dropped, and (2) we don’t know will happen when we add noise. Notice tat when x2 and
x3 are together in the model, the sum of their slopes is 2.3. Alone, x2 is about 2.3 and x3
is 2.1. Because they are very similar predictors, either one does OK, but together they split
the predictive effect of their shared variance.

Exercise 12.2

Create a new independent predictor x4. Verify that it is not correlated with x3 or x3
(i.e., correlation below .05). Then, make a new y that is a linear combination of x2,
x3, and x4. Explore how and whether your parameter estimate for x4 changes when
you add or remove x2 and x3 from the model.

Let’s create a simulation to see how biased estimates can be when we have correlated
predictors and the outcome is not noiseless. This will repeat the above 1000 times, each time
for a new set of y values based on the x values we already created. Here, we will use x2 and
x3 as a design. On each trial, we will create a new set of y values at random, and estimate
the coefficients of x2 and x3.

n <- 1000

2 simcoef <- matrix(0,nrow=n,ncol =3)

for(i in 1:n)

4 {

y <- 100 + .8*x2 +1.5*x3 + rnorm (50)*1

6 model <- lm(y~x2+x3)

simcoef[i,]<-model$coef
8 }

Now, look at the results:

306

Chapter 12 Applied Statistics in R

Figure 12.3: Values of beta estimates across 1000 simulations where the predictors were
highly correlated

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

● ●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●●

●
●
●

●

●
●

● ●

●

●

●
●

●

●

●●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●
●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●
● ●●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●● ●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●● ●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●●
●

●

●
●

●
●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●●

●

● ●

●

●

●

●

0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1

1
.3

1
.5

1
.7

simcoef[, 2]

s
im

c
o
e
f[
,
3
]

> colMeans(simcoef)

2 [1] 100.0208010 0.7912309 1.5000207

> pairs(simcoef)

4 cor(simcoef[,2], simcoef [,3])

[1] -0.8870764

6

plot(simcoef[,2], simcoef [,3])

The means of the values are estimated fairly well, but the first and second beta estimates
appear to be highly dependent, as seen in Figure 12.3. That is, when we estimate one value
high, the other tends to be low. Thus, having correlated and non-orthogonal predictors will
tend to produce beta coefficients that are dependent on one another, and these will perhaps
change our interpretation of the result.

To compare, we will do another simulation, but make sure the predictors are not depen-
dent:

1 set.seed (500)

n <- 1000

3 simcoef2 <- matrix(0,nrow=n,ncol =3)

for(i in 1:n)

5 {

x2 <- runif (50)

7 x3 <- runif (50)

y <- 100 + .8*x2 +1.5*x3 + rnorm (50)*1

9 model <- lm(y~x2+x3)

simcoef2[i,]<-model$coef
11 }

13 colMeans(simcoef2)

307

Chapter 12 Applied Statistics in R

[1] 99.9921734 0.8076693 1.5015694

Again, the estimates are OK, but what about the correlation between estimates across
the many simulated fits:

> cor(simcoef2)

2 [,1] [,2] [,3]

[1,] 1.0000000 -0.68840104 -0.63369767

4 [2,] -0.6884010 1.00000000 0.01616287

[3,] -0.6336977 0.01616287 1.00000000

Now, the estimates of the slopes of x2 and x3 are uncorrelated over runs, as seen in Figure
12.4, and the correlation between parameter 2 and 3 is low–.016. Note, however that the
correlations with the intercept are high. This is because the predictors were uncorrelated
but non orthogonal. If we subtracted the means from x2 and x3 each time, we would have
uncorrelated predictors all around.

2 set.seed (500)

n <- 1000

4 simcoef3 <- matrix(0,nrow=n,ncol =3)

for(i in 1:n)

6 {

x2 <- runif (50); x2 <- x2 - mean(x2)

8 x3 <- runif (50); x3 <- x3 - mean(x3)

y <- 100 + .8*x2 +1.5*x3 + rnorm (50)*1

10 model <- lm(y~x2+x3)

simcoef3[i,]<-model$coef
12 }

14 cor(simcoef3)

[,1] [,2] [,3]

16 [1,] 1.000000000 -0.05563259 0.008318631

[2,] -0.055632591 1.00000000 0.016162868

18 [3,] 0.008318631 0.01616287 1.000000000

12.2.1 Summary of Orthogonality

When you are using regression you usually don’t have the ability to create the design. When
you do have the ability, if you are able to create a design with orthogonal predictors, you will
have a more robust model, because it won’t matter which predictors are in the model; you
will have the same coefficients. This makes inference regarding removing variables easier,
because you can add or remove variables in any order and the estimates do not change.

If you have uncorrelated predictors, then it is easy to make them orthogonal by centering
them (subtracting their mean). Even when the predictors have a very low correlation,
centering may help, as it may give more stable estimates. But if you have predictor variables
with higher correlations, you may have to take other courses of action. Detecting and dealing
with this situation is discussed at the end of this chapter.

308

Chapter 12 Applied Statistics in R

Figure 12.4: Values of beta estimates across 1000 simulations where the predictors were
uncorrelated

●

●

●

●

●
●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●
●

●

● ●

●

●

●

●

●
●●

●

●

●●

●
●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

● ●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●
●

●

● ●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●● ●

●

●

●

●

●
● ●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●●
●

●

● ●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●
● ●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ● ●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
● ●

●

●

●●

●

●

●

●

●
●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●
●

●
●

●

●
●

●

● ●

●

●●

● ●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●
●

●

●

●

●

●

●
●

●
●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●●

●

●

●

●

●
●

●

●●
●

●

●●

●●
●

●

●
●

●●
●

●

●

●

●

●
● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●●

●

●

−1.0 0.0 1.0 2.0

0
1

2
3

simcoef2[, 2:3][,1]

s
im

c
o
e
f2

[,
 2

:3
][
,2

]

12.3 Identifiability

Identifiability also concerns the set of predictor variables in your model, but it is at the
opposite extreme to orthogonality and non-correlation. It refers to the case where you have
so much correlation among your predictors that you cannot distinguish them. This could
happen for pairs of variables, or for entire sets of predictors.

Non-identifiability means that your beta values could hypothetically take on an infinite
set of values–you cannot identify a unique value to give them. For example, if two variables
are identical (or one is a linear transform of another), there are actually many possible ways
you could frame the model for exactly the same results. If one variable had a beta-weight of
2, and you were able to add another copy of it to a linear model, then any combination of the
two coefficients that add up to 2 (1 and 1, 1.5 and .5, 0, and 2, etc.) would produce the same
results. The estimators in a regression model can’t handle when predictors are identical, so
it will usually fail to estimate the second predictor. This is known as the predictors being
non-identifiable.

Consider the following orthogonal variables x1 and x2, on which y depends. If we make
a model with these two, and compare it to another model with two copies of x1 (called x1a),
the coefficient for x1a is returned as NA.

set.seed (100)

2 x1 <- rep(1:10, each =10)

x2 <- rep (1:10 ,10)

4 x1a <- x1

y <- x1 + x2 + rnorm (100)

6

lm12 <- lm(y~x1+x2)

8 lm12b <- lm(y~x1+x1a+x2)

10 > lm12

309

Chapter 12 Applied Statistics in R

12 Call:

lm(formula = y ~ x1 + x2)

14

Coefficients:

16 (Intercept) x1 x2

0.1198 0.9724 1.0063

18

> lm12b

20

Call:

22 lm(formula = y ~ x1 + x1a + x2)

24 Coefficients:

(Intercept) x1 x1a x2

26 0.1198 0.9724 NA 1.0063

In theory, we could make a linear model with both predictors, but they are redundant. The
parameter estimation fails, and so the model drops predictors that make the predictors non-
redundant. It might seem like a reasonable thing to do would be just to give each predictor
a coefficient half as large. This won’t work because there doesn’t need to be two copies of
x1 for this to work. Any system of predictors that are non-identifiable will create a similar
situation. For example, a common strategy when creating a survey is to ask a set of similar
questions (e.g., 10), and then compute the mean or sum across those questions. If we add
all 11 predictors to the model, they will be non-identifiable, because we can always get the
11th predictor by a combination of the first 10.

What this means is that any predictor that can be formed by a linear combination of
other predictors will fail, and so it can be impossible to split a coefficent in two. In the
survey example, lm will probably drop the last variable, which in this case is the 11th. But
if you have them in a different order, it may drop another variable, but include the mean.
This may mean that you have dropped one of the predictors you care about.

In the following example, if we make x12 be a weighted sum of x1 and x2, we see that it
fails to estimate it:

1 x12 <- x1* 3 + x2

lm(y~x1+x2+x12)

3

Call:

5 lm(formula = y ~ x1 + x2 + x12)

7 Coefficients:

(Intercept) x1 x2 x12

9 0.1198 0.9724 1.0063 NA

11

lm(y~x12 + x1+x2)

13

Call:

15 lm(formula = y ~ x12 + x1 + x2)

17 Coefficients:

(Intercept) x12 x1 x2

19 99.0423 0.5820 0.1024 NA

310

Chapter 12 Applied Statistics in R

Here, x12 is not the same as either x1 or x2, but because it is formed as a combination
of these, it also produces a non-orthogonal set of predictors. If we frame the model in a
different order, it drops x2, which may not be what we want. This is sometimes hard to
diagnose, but is probably the source of most NA results in a linear regression models.

12.3.1 Example: Dependent Predictors

Just as before, if we make x2 dependent on x1, we will expect NA estimates:

1 x1 <- 1:10

x2 <- x1*2

3 x3 <- runif (10)

5 y <- 50 + 100*x1 + 33*x2 + 17*x3

lm(y~x1+x2+x3)

7

Call:

9 lm(formula = y ~ x1 + x2 + x3)

11 Coefficients:

(Intercept) x1 x2 x3

13 50 166 NA 17

In this model, y has no noise in it, and so we should be able to reconstruct the values
exactly. But the parameter for x2 shows up as NA. It should be clear that, through algebra,
since x2 = x1 ∗ 2, we could re-write the formula

y = 50 + 100× x1 + 33 ∗ (x1× 2) + 17× x3),
which is equivalent to y = 50 + 166× x1 + 17× x3, which is what the model produced.

But it is also equivalent to: y = 50 + 50× x2 + 33× x2 + 17× x3.
In fact, there are an infinite number of equations that are equivalent, and so lm cannot

determine what the right answer is. The lm procedure in R will typically fail gracefully,
and produce a single results and give duplicative predictor values an NA. Other regression
software may take other approaches, including failing to give an answer.

12.3.2 More predictors than observations

A singular model can also be produced when you have more predictors than outcome values.
If you have ten values you are trying to predict, with twelve predictors, you can always
find a combination that will exactly predict the outcome (as long as the predictors are not
identical), unless the predictor variables system is not linearly independent (and then we’d
get NA values from the predictors anyway). For example:

1 y <- runif (10)

x <- matrix(runif (100) ,10,10)

3 model <- lm(y~x)

> summary(model)

5

Call:

7 lm(formula = y ~ x)

9 Residuals:

ALL 10 residuals are 0: no residual degrees of freedom!

11

Coefficients: (1 not defined because of singularities)

13 Estimate Std. Error t value Pr(>|t|)

311

Chapter 12 Applied Statistics in R

(Intercept) 0.05853 NA NA NA

15 x1 -0.07416 NA NA NA

x2 0.10816 NA NA NA

17 x3 -0.50205 NA NA NA

x4 -0.72696 NA NA NA

19 x5 0.16897 NA NA NA

x6 0.13069 NA NA NA

21 x7 -0.19430 NA NA NA

x8 -0.01854 NA NA NA

23 x9 1.30529 NA NA NA

x10 NA NA NA NA

25

Residual standard error: NaN on 0 degrees of freedom

27 Multiple R-squared: 1, Adjusted R-squared: NaN

F-statistic: NaN on 9 and 0 DF, p-value: NA

Here, we are able to exactly predict ten completely random values with an intercept
and ten completely random predictors. Notice that the model coefficients still are fitted
acceptably (with the last one given an NA), but all of the other stats are given NAs as well.
This is because there is no ‘noise’, no residual standard error, and so no way to judge how
far off you are from your estimates (because you are exactly fitting!)

>model$res
2 1 2 3 4 5 6 7 8 9 10

0 0 0 0 0 0 0 0 0 0

4 >cor(y,model$fit)
[1] 1

To get a better intuition for this, lets try to predict y based on an increasingly larger set
of random predictors:

1 fitx <- function(n=1)

{

3 model <- lm(y~x[,1:n])

plot(y,model$fit ,ylim=c(0,1),xlim=c(0,1))
5 abline (0,1)

}

Then, using the manipulate library, we can set using the GUI the number of predictors
we want to use:

library(manipulate)

2 manipulate(fitx(x), x=slider (1,10))

Example output is shown in Figure 12.5
This situation is not uncommon, especially when using survey methods. It is easy to

ask a 100-question survey and only get 50 respondents. What this means is that it will be
impossible to predict a particular outcome variable based on the survey responses, because
they will be able to fit it perfectly, and so the prediction usually makes little sense.

This is especially problematic because we want to use our statistics to make inference
about people or situations we didn’t see. But if our model fits the 50 people in our survey
exactly, we can probably guess that it will tend to miss many of the other people, because
the model is overfitting, or just fitting random fluctuations of the data.

312

Chapter 12 Applied Statistics in R

Figure 12.5: Predicting a random set of values with an increasingly larger set of random
predictors. When the number of predictors grow as large as the size of the data, we can
exactly fit the results

●● ●
●● ● ●

●
●

●

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.4

0
.8

1 Predictors

y

m
o
d
e
l$

fi
t

●

●

●●

●
●

●
●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.4

0
.8

5 Predictors

y

m
o
d
e
l$

fi
t

●

●

●
●●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.4

0
.8

8 Predictors

y

m
o
d
e
l$

fi
t

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.4

0
.8

9 Predictors

y

m
o
d
e
l$

fi
t

313

Chapter 12 Applied Statistics in R

12.3.3 How to handle non-identifiability

Having a model that is not identifiable may be acceptable, depending on the circumstances.
First, remember that even if a model is not identifiable, it may not be completely saturated
(having more predictors than data), and so you may not be explaining all the random noise.
When a model’s parameters return NA, it typically means the predictors are not identifiable.
In that case you can:

• Try to determine if a predictor is a function of one or more other predictors and remove
the redundancy.

• If you are saturated, remove variables (including the intercept) until you get a non-
saturated model

• Place other constraints on predictors; like using only one of two highly correlated
variables.

• Use a data-reduction technique such as PCA or factor analysis. Then, you can use just
the main uncorrelated underlying factors as predictors in your model.

• If you are not saturated, the non-identifiable model may still be reasonable as a bookend
comparison, especially if you are using a model comparison/variable selection scheme.
After all, even though you have redundancy, it provides an upper limit on how good
the model is.

12.4 Detecting and Managing Multi-Colinearity

Unless you have the ability to design an experiment so that it has orthogonality, it will often
have predictor variables that are correlated and/or non-orthogonal. When this is especially
strong, this is called often referred to by the term “multicollinearity” or “multi-colinearity”.
In geometry, points on the same line are colinear, and so two or more sets of points that
are associated are referred to as multi-colinear. This usually means that predictors are both
correlated and non-orthogonal, and may mean that they are not identifiable as well.

If your variables are non-identifiable, the solution may be simple–recode your predictors,
or remove variables if necessary. But this won’t take care of predictors that are just highly
correlated, and we saw in this chapter that correlated and non-orthogonal predictors will
impact your coefficient estimates (and thus, your selection of variables).

You can often tell by looking at the predictors that there are correlations. But how
much correlation is too much? A result of correlated predictors is that if you remove on one
predictor, the correlated one may get more significant than previously. But more systematic
methods have been developed. The mctest library applies some of the most common tests
for multi-colinearity. Note that you provide it the predictors first, then the outcome variable

2 set.seed (999)

x1 <- runif (100)*10

4 x2 <- x1 + rnorm (100)

x3 <- x1 + rnorm (100)

6 z <- rnorm (100)

y <- x1 + rnorm (100)*.2 + z

8

plot(x2 ,x3)

10 mctest(cbind(x2,x3,z),y)

314

Chapter 12 Applied Statistics in R

12 Call:

omcdiag(x = x, y = y, Inter = TRUE , detr = detr , red = red , conf = conf ,

14 theil = theil , cn = cn)

16

Overall Multicollinearity Diagnostics

18

MC Results detection

20 Determinant |X’X|: 0.1993 0

Farrar Chi -Square: 153.7527 1

22 Red Indicator: 0.5177 1

Sum of Lambda Inverse: 11.0162 0

24 Theil’s Method: -0.0886 0

Condition Number: 9.9299 0

26

1 --> COLLINEARITY is detected by the test

28 0 --> COLLINEARITY is not detected by the test

30 >

This suggests that co-linearity is present according to two measures. More detail is provided
with the type=”i” argument

mctest(cbind(x2,x3,z),y,type="i" ,method="VIF")

2

Call:

4 imcdiag(x = x, y = y, method = method , corr = FALSE , vif = vif ,

tol = tol , conf = conf , cvif = cvif , leamer = leamer , all = all)

6

8 All Individual Multicollinearity Diagnostics Result

10 VIF TOL Wi Fi Leamer CVIF Klein

x2 5.0096 0.1996 194.4666 392.9428 0.4468 -1.4149 0

12 x3 5.0036 0.1999 194.1763 392.3563 0.4471 -1.4132 0

z 1.0030 0.9971 0.1431 0.2892 0.9985 -0.2833 0

14

1 --> COLLINEARITY is detected by the test

16 0 --> COLLINEARITY is not detected by the test

18 * all coefficients have significant t-ratios

20 R-square of y on all x: 0.846

22 * use method argument to check which regressors may be the reason of

collinearity

===================================

In this case, colinearity suggested by a couple measures, but not the popular ”VIF”
measure. IF x2 and x3 had been more strongly correlated, this would have also been true:

1 mctest(cbind(x2,x3,z),y)

3 Call:

omcdiag(x = x, y = y, Inter = TRUE , detr = detr , red = red , conf = conf ,

5 theil = theil , cn = cn)

7

Overall Multicollinearity Diagnostics

315

Chapter 12 Applied Statistics in R

9

MC Results detection

11 Determinant |X’X|: 0.0080 1

Farrar Chi -Square: 460.6759 1

13 Red Indicator: 0.5759 1

Sum of Lambda Inverse: 251.6083 1

15 Theil’s Method: 0.0011 0

Condition Number: 53.3344 1

17

1 --> COLLINEARITY is detected by the test

19 0 --> COLLINEARITY is not detected by the test

21 > mctest(cbind(x2,x3,z),y,type="i",method="VIF")

23 Call:

imcdiag(x = x, y = y, method = method , corr = FALSE , vif = vif ,

25 tol = tol , conf = conf , cvif = cvif , leamer = leamer , all = all)

27

VIF Multicollinearity Diagnostics

29

VIF detection

31 x2 125.2860 1

x3 125.3193 1

33 z 1.0030 0

35 Multicollinearity may be due to x2 x3 regressors

37 1 --> COLLINEARITY is detected by the test

0 --> COLLINEARITY is not detected by the test

Now, we can see that we have strong colinearity, and x2 and x3 are responsible for it.

12.4.1 Dealing with Correlated and non-orthogonal predictors

There are many approaches to dealing with correlated and non-orthogonal predictors. First,
you may choose to do nothing. If you are just trying to predict outcomes and you don’t care
about interpreting the predictor variables, then the additional correlated predictor may not
harm you much. You may center the variables. This will only help for a subset of problems
(i.e., if you have uncorrelated but not orthogonal variables). You might also add observations
in conditions that make your design orthogonal. Unfortunately, this is not always feasible.
If you have a pair of variables that are correlated, it may make sense to just replace them
with their average (or some weighted average). If necessary, you can replace them with their
average and their difference, so you have one predictor accounting for the common variability,
and a second accounting for their differential variability. If the difference predictor is not
significant, then this may allow you to argue that the two predictors are not accounting for
anything independent, and so the average value is appropriate. Of course, if you are just
using parameter selection, you will tend to get rid of one of the variables that helps the least,
and if they are strongly correlated, it may not impact much. Finally, there are variations
on regression, like ridge regression, the lasso technique, partial least squares, and principal
components regression that will attempt to handle this correlation directly as part of the
model.

316

Chapter 12 Applied Statistics in R

12.5 Uses and limitations of the linear model in human
behavioral Data

A linear regression model lets you create a model that explains the data, and then interpret
parameters to help test hypotheses. Some uses for the model:

Epidemiology. For example, you can model risk for a disease based on a set of predictors.
Predictors that are reliably different from zero can be identified and policy recommendations
or guidelines made based on these predictors. Furthermore, comparison between predictors
can be useful, allowing one to determine which factors, if changed, would provide the best
chance of impacting the outcome. However, models such as this can be problematic in a
number of ways. First, they will tend to use as predictors variables that are easier to measure,
and ones that cannot be manipulated, but are instead observed in the sample. They are
likely to have started with multiple correlated predictors where one set gets removed if it
does not improve the model. This process can tend to hide interactions. If most people who
smoke also drink, then smoking and drinking will be redundant predictors and so one will be
removed. A risk produced by only one, or by a combination of smoking and drinking may
get attributed to just one of them alone, and perhaps the wrong one.

Inferring Mental Architecture. Many famous findings in psychology relate to slopes
and intercepts of functions of data. For example, the memory-scanning time identified by
Sternberg, memory transfer times identified by Sperling, the relationship between memory
span and the length of words identified by Baddeley, the parameters of Fitts’s law, and so
on. These are typically found based on comparing different transformations of the predictor
and/or outcome variable. Sternberg’s quadratic function and consistent coefficient of the
quadratic term led him no conclude that memory access is serial and self-terminating. Here
both the form of the model and the coefficients are useful. However, this type of inference
is always heavily dependent on the assumptions of the linear model and the transformations
that ensue. Many times, non-linear models making other assumptions produce equivalent
results.

Hypothesis Testing. Using a regression model can provide much more powerful hypoth-
esis testing than simply comparing means of groups. It allows you to examine whether slopes
of functions change across conditions. A typical example might look at whether a learning
slope increases in response to some manipulation.

Factoring out covariates. The so-called “ANCOVA” is simply a factorial ANOVA that
includes one or more continuous predictors that are factored out as covariates. This is just
a standard regression model that includes categorical and non-categorical predictors, but
the categorical effects are arranged as in an ANOVA, and typically the reliability of the
covariates are not reported.

Predicting and extrapolating. Similar to epidemiological examples, one can use regres-
sion to predict the result of an unknown variable for some new cases, and even ones outside
the region where data was measured. Extrapolation can always be dangerous. Predicting
can be useful as a way to produce an ’adjusted’ score. For example, you may make a regres-
sion that predicts memory span by education level and age. Researchers know that those
with more education have higher memory spans, and that memory span declines across the
lifespan by about .1 units per decade. Thus, if you want to select a set of participants

317

Chapter 12 Applied Statistics in R

who are especially good (or bad) for their age/education, you can create an adjusted score
which takes their actual score and adds amounts related to the slopes obtained for age and
education.

Other limitations. In practice, the main limitations in applying linear regression models
include having too little data with respect to the number of predictors, having non-linear
relationships between predictors and outcomes, having outcome variables (e.g., accuracy)
where linear predictors don’t make sense, and having sets of predictors that are correlated.
Many of these limitations can be worked around using specific methods will will cover in
future parts of this course.

12.6 Summary

This section covered various transformations of the predicted and predictor variables. These
types of transformations can provide the standard linear model with much flexibility when it
comes to fitting models that are either able to capture complex data trends, or are interesting
from a psychological perspective.

318

Chapter 13

Polynomials, non-parametric
regression, and Transformations

13.1 Polynomial Regression

Suppose we observed ten points. Looking at them, do you see a pattern, or some smooth
non-linear function that could explain these values?

1 set.seed (1004)

x <- 1:10

3 y <- runif (10)

5 plot(x,y)

One way to handle curvature in a relationship between variables is via what is known as
polynomial regression. Instead of assuming a line, maybe there is a parabola–a second-order
polynomial, that describes the data well. Or maybe higher orders of polynomials that have
more curves in them. If we continue to add more high-order polynomials, it is provable that
we will be able to fit any set of data. Because the higher-power transformations of a vector
are all different from all lower-order polynomials, this is similar to the example in the last
chapter in which we added random predictors until the prediction was perfect. Thus, if you
add enough higher-order terms, you will create a complex polynomial that will always fit
the data you have. But just like the models where we incorporate non-useful predictors, the
models will usually horribly mis-fit the spaces between the data you have observed.

So suppose you wanted to fit a 2nd-order polynomial to data. To do this, we could create
a new predictor that is simply x2

1 x2 <- x^2

3 lm1 <- lm(y~x)

lm2 <- lm(y~x+x2)

5

anova(lm1 ,lm2)

7 Analysis of Variance Table

9 Model 1: y ~ x

Model 2: y ~ x + x2

11 Res.Df RSS Df Sum of Sq F Pr(>F)

319

Chapter 13 Applied Statistics in R

Figure 13.1: Random data points with a linear and best-fit quadratic model fit.

●
●

●

●

●

●

●

●

●

●

2 4 6 8 10

0.
4

0.
6

0.
8

1.
0

Linear and quadratic models

x

y

●
●

●

●

●

●

●

●

●

●

1 8 0.60275

13 2 7 0.39303 1 0.20972 3.7352 0.09455 .

15 Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

17 > lm1$coefficients
(Intercept) x

19 0.535275275 0.001227978

> lm2$coefficients
21 (Intercept) x x2

0.09681889 0.22045617 -0.01992984

23

preddat <- data.frame(x=0:100/10,x2 =(0:100/10)^2)

25 points(preddat$x,predict(lm1 ,preddat),type="l")
points(preddat$x,predict(lm2 ,preddat),type="l")

Notice that the polynomial model actually improves the fit–maybe enough to want to
use it according to an anova. But notice that x and x2 neither uncorrelated nor orthogonal.

2 > cor(x,x2)

[1] 0.9745586

4 > x %*% x2

[,1]

6 [1,] 3025

>

And if we look at the coefficient x1 its value changes between the two models. We’d expect
that the coefficient will change as we add higher powers if they are not orthogonal. We can
improve things by centering them:

1 xb <- x-mean(x)

xb2 <- xb^2

320

Chapter 13 Applied Statistics in R

3 cor(xb ,xb2)

xb %*% xb2

5

lm(y~xb)$coef
7 (Intercept) xb

0.542029155 0.001227978

9

lm(y~xb+xb2)$coef
11 (Intercept) xb xb2

0.706450299 0.001227978 -0.019929836

The intercept still changes, but xb coefficient stays the same. The actual fit of the model
doesn’t change between these two ways of framing the model, but now it is easier to interpret,
because the lower-order term does not change when you add a higher-order term.

It is usually better to R will also let you do this within the lm function without creating
separate predictors, if you encapsulate the value in an I() function. The I() function will
compute the mathematical relationship before using as a predictor; if you don’t do this, it
may treat it as an interaction.

So, let’s try to predict ten random numbers with high-order polynomials.

2 ##Form the polynomial values for 0..10

r2 <- 0:100/10 #identify a range to predict with

4 par(mfrow=c(3,3),mar=c(2,3,2,1))

poly1 <- lm(y~x)

6 plot(x,y,pch=16,main="1st order polynomial fit")

points(r2,predict(poly1 ,list(x=r2)),type="l")

8 x2 <- x^2

poly2 <- lm(y ~ x + I(x^2))

10 plot(x,y,pch=16,main="2nd order polynomial fit")

points(x,poly2$fit ,type="p")
12 points(r2,predict(poly2 ,list(x=r2)),type="l")

14 poly3 <- lm(y~x + I(x^2) + I(x^3))

plot(x,y,pch=16,main="3rd order polynomial fit")

16 points(x,poly3$fit ,type="p")
points(r2,predict(poly3 ,list(x=r2)),type="l")

18

20 poly4 <- lm(y~x + I(x^2) + I(x^3) + I(x^4))

plot(x,y,pch=16,main="4th order polynomial fit")

22 points(x,poly4$fit ,type="p")
points(r2,predict(poly4 ,list(x=r2)),type="l")

24

poly5 <- lm(y~x + I(x^2) + I(x^3) + I(x^4) + I(x^5))

26 plot(x,y,pch=16,main="5th order polynomial fit")

points(x,poly5$fit ,type="p")
28 points(r2,predict(poly5 ,list(x=r2)),type="l")

30 poly6 <- lm(y~x + I(x^2) + I(x^3) + I(x^4) + I(x^5) +I(x^6))

plot(x,y,pch=16,main="6th order polynomial fit")

32 points(x,poly6$fit ,type="p")
points(r2,predict(poly6 ,list(x=r2)),type="l")

34

36 poly7 <- lm(y~x + I(x^2) + I(x^3) + I(x^4) + I(x^5) +I(x^6) + I(x^7))

plot(x,y,pch=16,main="7th order polynomial fit")

38 points(x,poly7$fit ,type="p")
points(r2,predict(poly7 ,list(x=r2)),type="l")

321

Chapter 13 Applied Statistics in R

40

42 poly8 <- lm(y~x + I(x^2) + I(x^3) + I(x^4) + I(x^5) +I(x^6) + I(x^7) + I(x^8)

)

plot(x,y,pch=16,main="8th order polynomial fit")

44 points(x,poly8$fit ,type="p")
points(r2,predict(poly8 ,list(x=r2)),type="l")

46

48 poly9 <- lm(y~x + I(x^2) + I(x^3) + I(x^4) + I(x^5) +I(x^6) + I(x^7) + I(x^8)

+ I(x^9))

plot(x,y,pch=16,main="9th order polynomial fit")

50 points(x,poly9$fit ,type="p")
points(r2,predict(poly9 ,list(x=r2)),type="l")

Figure 13.2: Successive Polynomial fits to a set of ten random numbers.

●
●

●

●

●

●

●

●

●

●

2 4 6 8 10

0.
4

0.
6

0.
8

1.
0

1st order polynomial fit

x

y

●
●

●

●

●

●

●

●

●

●

2 4 6 8 10

0.
4

0.
6

0.
8

1.
0

2nd order polynomial fit

x

y

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

2 4 6 8 10

0.
4

0.
6

0.
8

1.
0

3rd order polynomial fit

x

y

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

2 4 6 8 10

0.
4

0.
6

0.
8

1.
0

4th order polynomial fit

x

y

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

2 4 6 8 10

0.
4

0.
6

0.
8

1.
0

5th order polynomial fit

x

y

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

2 4 6 8 10

0.
4

0.
6

0.
8

1.
0

6th order polynomial fit

x

y

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

2 4 6 8 10

0.
4

0.
6

0.
8

1.
0

7th order polynomial fit

y

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

2 4 6 8 10

0.
4

0.
6

0.
8

1.
0

8th order polynomial fit

y

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

2 4 6 8 10

0.
4

0.
6

0.
8

1.
0

9th order polynomial fit

y

●
●

●

●

●

●

●

●

●

●

Notice that as the polynomial gets larger, we end up fitting each point exactly–but the
model we specify gets somewhat complicated and unlikely to be able to predict anything.

A shortcut function lets you do polynomial regression with a single command, with the
additional advantage that the polynomials are orthogonal because they are centered at 0–so

322

Chapter 13 Applied Statistics in R

that adding higher-order predictors won’t impact the lower-order predictor estimates. The
potential disadvantage of this is that it makes it more difficult to interpret these predictors.
Notice how they produce exactly the same fit (look at the residuals and the overall statistics)
but the coefficients and their p-values differ. This suggests that you need to be careful when
selecting polynomial coefficients based on p-values alone.

poly5a <- lm(y~x + I(x^2) + I(x^3) + I(x^4) + I(x^5))

2 poly5b <- lm(y~poly(x,5))

4 > summary(poly5a)

6 Call:

lm(formula = y ~ x + I(x^2) + I(x^3) + I(x^4) + I(x^5))

8

Residuals:

10 1 2 3 4 5 6 7

0.0131388 -0.0532399 0.0712665 -0.0462165 0.1066487 -0.2630201 0.2933692

12 8 9 10

-0.1541042 0.0330406 -0.0008832

14

Coefficients:

16 Estimate Std. Error t value Pr(>|t|)

(Intercept) 5.774e-01 1.368e+00 0.422 0.695

18 x -1.748e-01 2.072e+00 -0.084 0.937

I(x^2) 1.747e-01 1.036e+00 0.169 0.874

20 I(x^3) -3.593e-02 2.258e-01 -0.159 0.881

I(x^4) 2.134e-03 2.218e-02 0.096 0.928

22 I(x^5) -1.674e-05 8.040e-04 -0.021 0.984

24 Residual standard error: 0.2245 on 4 degrees of freedom

Multiple R-squared: 0.8414 , Adjusted R-squared: 0.6432

26 F-statistic: 4.244 on 5 and 4 DF, p-value: 0.09312

28 > summary(poly5b)

30 Call:

lm(formula = y ~ poly(x, 5))

32

Residuals:

34 1 2 3 4 5 6 7

0.0131388 -0.0532399 0.0712665 -0.0462165 0.1066487 -0.2630201 0.2933692

36 8 9 10

-0.1541042 0.0330406 -0.0008832

38

Coefficients:

40 Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.511098 0.071007 7.198 0.00197 **

42 poly(x, 5)1 -0.786367 0.224545 -3.502 0.02485 *

poly(x, 5)2 -0.557678 0.224545 -2.484 0.06795 .

44 poly(x, 5)3 0.307271 0.224545 1.368 0.24301

poly(x, 5)4 0.214836 0.224545 0.957 0.39287

46 poly(x, 5)5 -0.004676 0.224545 -0.021 0.98438

48 Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

50 Residual standard error: 0.2245 on 4 degrees of freedom

Multiple R-squared: 0.8414 , Adjusted R-squared: 0.6432

52 F-statistic: 4.244 on 5 and 4 DF, p-value: 0.09312

Notice that 5a and 5b produce identical fits, but the parameter estimates are different,

323

Chapter 13 Applied Statistics in R

because poly() creates orthogonal polynomial predictors.

Exercise 13.1

Make a polynomial model to fit the WWWusage data set. First, let’s fit a set of models
with 1 to 7th order polynomials:

13.1.1 Polynomial regression for scientific hypotheses

Linear regression on its own assumes that there is a linear relationship between an predictor
and the predicted. In social science domains, this is often not true. For example, learning
curves typically asymptote after practice, and so will violate the assumption of regression.
Some measures might behave in linear fashion–for example, if you measure how long it takes
someone to read five versus ten versus twenty letters, you might expect a line. However,
sometimes the process will suggest that there should be a specific type of polynomial rela-
tionship. For example, this happens for search tasks. If you are trying to organize a deck of
cards by rank and suit, but you can only search for cards haphazardly, each search will take
time proportional to the size of the deck. If you work through this, you will find that the
time to sort a deck is not proportional to the size of the deck–it is proportional to the size
of the deck squared. Many psychological processes involve such factors. For example, figure
13.3 shows reading times for random character strings of different lengths.

Figure 13.3: Reading times (in ms) of random letter strings of different lengths. Both a
linear and quadratic model are fitted to the data, and produce nearly the same fit.

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●●

●

●

●
●

●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●
● ●

●

●

●●
●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

0 5 10 15 20 25 30 35

0
50

00
10

00
0

15
00

0

Number of letters

R
ea

di
ng

 ti
m

e
(m

s)

The data in Figure 13.3 shows a nearly linear trend. We can verify this by fitting a
regression model, whose predicted values are plotted on the graph.

let <- read.csv("reading.csv",header=F)

2 colnames(let) <- c("sub","length","trial","stim","rt")

lm1 <- lm(rt~length ,data=let)

4 summary(lm1)

6 Call:

lm(formula = rt ~ length , data = let)

8

Residuals:

324

Chapter 13 Applied Statistics in R

10 Min 1Q Median 3Q Max

-1549.66 -433.22 -30.48 297.17 3119.34

12

Coefficients:

14 Estimate Std. Error t value Pr(>|t|)

(Intercept) 282.50 136.28 2.073 0.0409 *

16 length 382.56 11.33 33.767 <2e-16 ***

18 Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

20 Residual standard error: 742.1 on 94 degrees of freedom

Multiple R-squared: 0.9238 , Adjusted R-squared: 0.923

22 F-statistic: 1140 on 1 and 94 DF, p-value: < 2.2e-16

24

26 plot(let$length ,let$rt,ylim=c(0 ,15000),xlab="Number of letters",

ylab="Reading time (ms)")

28

abline(lm1$coeff ,col=’green’)

However, maybe we suspect there is a curvature, which would be true if our deck-search
story holds for reading-based search. We can create another predictor that is the square of
the number of letters. This will let the predicted model be quadratic, and essentially form
a parabola. We will start by adding a squared term directly to the data frame let:

1

> let$length2 <- let$length ^2
3 > lm2 <- lm(rt~length + length2 ,data=let)

> summary(lm2)

5

Call:

7 lm(formula = rt ~ length + length2 , data = let)

9 Residuals:

Min 1Q Median 3Q Max

11 -1673.4 -387.5 -66.1 394.1 2995.6

13 Coefficients:

Estimate Std. Error t value Pr(>|t|)

15 (Intercept) 64.461 261.916 0.246 0.806

length 419.687 40.379 10.394 9.27e-16 ***

17 length2 -1.002 1.306 -0.767 0.446

19 Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

21 Residual standard error: 799.2 on 69 degrees of freedom

Multiple R-squared: 0.9414 , Adjusted R-squared: 0.9398

23 F-statistic: 554.7 on 2 and 69 DF , p-value: < 2.2e-16

25 ##Add the predicted values to the graph

points (1:40,lm2$coef [1] + lm2$coef [2]*1:40+ lm2$coef [3]*(1:40)^2,
27 type="l",col=’red’)

The squared term adds almost nothing to the graph, but the predictions appear to start
diverging slightly as the length gets large. Of course we have no data in those regions, and
so it is no reason to make one prediction over the other. However, because the polynomial

325

Chapter 13 Applied Statistics in R

model includes the linear model, we might prefer the linear-only model by virtue of Occam’s
Razor–an appeal to simplicity.

We can test which one is better via an ANOVA;

1 >

> summary(lm1)

3

Call:

5 lm(formula = rt ~ length , data = let)

7 Residuals:

Min 1Q Median 3Q Max

9 -1549.66 -433.22 -30.48 297.17 3119.34

11 Coefficients:

Estimate Std. Error t value Pr(>|t|)

13 (Intercept) 282.50 136.28 2.073 0.0409 *

length 382.56 11.33 33.767 <2e-16 ***

15 ---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

17

Residual standard error: 742.1 on 94 degrees of freedom

19 Multiple R-squared: 0.9238 , Adjusted R-squared: 0.923

F-statistic: 1140 on 1 and 94 DF, p-value: < 2.2e-16

21

> summary(lm2)

23

Call:

25 lm(formula = rt ~ length + length2 , data = let)

27 Residuals:

Min 1Q Median 3Q Max

29 -1726.7 -367.8 -45.0 296.5 2942.3

31 Coefficients:

Estimate Std. Error t value Pr(>|t|)

33 (Intercept) 646.128 202.050 3.198 0.00189 **

length 275.484 46.137 5.971 4.27e-08 ***

35 length2 4.887 2.044 2.390 0.01884 *

37 Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

39 Residual standard error: 724.1 on 93 degrees of freedom

Multiple R-squared: 0.9282 , Adjusted R-squared: 0.9267

41 F-statistic: 601.5 on 2 and 93 DF , p-value: < 2.2e-16

43 > ##length2 is significant!

> anova(lm2 ,lm1)

45 Analysis of Variance Table

47 Model 1: rt ~ length + length2

Model 2: rt ~ length

49 Res.Df RSS Df Sum of Sq F Pr(>F)

1 93 48764821

51 2 94 51761049 -1 -2996228 5.7141 0.01884 *

53 Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

> ##a significant difference; prefer the larger (polynomial) model.

55 >

Both the summary() functions and the ANOVA suggest that the model2 is a good

326

Chapter 13 Applied Statistics in R

improvement–because they were significantly different. Furthermore, the coefficient of length2
tells us how long the extra memory search takes–essentially an additional 5 ms per letter of
the list, for each word on the list. This adds 50 ms to the reading of a 10-item list, and 100
ms to the reading of a 20-item list.

13.1.2 Exercise:

Create a polynomial regression that approximates the data in the built-in data set WWWusage.
Fit, 1, 5, 10, 15, and 20-order polynomials, and compare the fitted model to the data.

13.2 Non-parametric regression approaches

Polynomial regression gives us a lot of flexibility, but there are other approaches that might
work that don’t require making a polynomial set of predictors. If you just want a smoothed
representation of data, you might consider using a moving average. A moving average
specifies a window, and replaces each value in your data with the average of values within
that window. You can specify windows of different sizes, as well as the ’shape’ of the window.
The window is really a weighting distribution, and is known in this context as a smoothing
kernel.

In R, you can quickly create a moving average using the ’filter’ function. Consider
presidential approval ratings:

1

3 plot(presidents ,type="o",main="Approval ratings of presidents")

##we could do this with polynomial regression , ut what if we just

5 ##used a moving average. That is, we replaced each value with a weighted

##sum of the values around it.

7 lines(filter(presidents ,c(1,1,1)/3),col="grey20",lwd=3)

lines(filter(presidents ,c(1,1,1,1,1)/5),col="red",lwd =3)

The first argument to filter is the data sequence you want to apply. The second argument
to filter is the ’smoothing kernel’. The simplest smoothing kernel is a moving average, equally
weighing everything in the window. Better methods might use a triangular or gaussian kernel,
so that the influence decreases the farther the sample gets out. In the example, the first
window has a size of 3, the second has a size of 5. The larger the window, the smoother the
function, but the more it compresses peaks and valleys.

we can make this into a function that specifies the window size:

ma <- function(x,n=5){filter(x,rep(1/n,n), sides =2) [1: length(x)]}

2 ##apply ma to WWWUsage:

plot(WWWusage ,pch=16,type="o")

4 points(ma(WWWusage ,n=5),type="o",col= "blue")

points(ma(WWWusage ,n=15),type="o",col="green")

How good is a moving average at recovering a function that had noise added to it?

327

Chapter 13 Applied Statistics in R

plot(WWWusage)

2 newdat <- WWWusage + rnorm (100)*20

points(newdat)

4 points(ma(newdat ,3),col="red",type="l",lwd =3)

points(ma(newdat ,5),col="red",type="l",lwd =3)

6 points(ma(newdat ,6),col="red",type="l",lwd =3)

points(ma(newdat ,10),col="red",type="l",lwd=3)

8

points(ma(newdat ,20),col="red",type="l",lwd=3)

We can specify any kernel whose values add up to 1.0. Common kernels include a guassian
and other similar distributions. We might try a triangular kernel

1 ma2 <- function(x,n=5){

tmp <- c(1:n, (n-1):1)

3 kernel <- tmp/sum(tmp)

filter(x,kernel , sides =2)}

5 plot(WWWusage)

points(newdat)

7 lines(ma(newdat ,5),col="red")

lines(ma2(newdat ,3),col="red")

9 lines(ma2(newdat ,5),col="red")

13.2.1 Moving average properties

A moving average is simple, and by specifying a smoothing kernel, it can be quit flexible.
but it has some limitations. These include:

• It assumes that samples are equidistant, and in a time series. What if they are not?

• What if you have two DVs that are not regular, or recorded in order of the first?

• what if you have multiple data sets you want to combine to create a merged smoothed
trend?

• It can fail near the ends.

• It can cause problems when you have missing data.

A hybrid between polynomial regression and moving average is called loess (or lowess)
regression. R has two different functions, one called loess and another called lowess. We
will use loess, as it is more similar to lm().

13.3 The loess regression

This hybrid approach essentially fits a polynomial regression locally to each point, trying to
create a mini-regression for just the points around each point–so it is sort of like a moving
average. It handles non-time-series data though, and it fitted much like you use lm(). The
loess method offers a robust alternative that has a somewhat different underlying mechanism,
but can be much more robust. It can be invoked like a regression model.

328

Chapter 13 Applied Statistics in R

1 lmodel <- loess(daty~datx)

plot(datx ,daty)

3 xs <- 0:30

points(xs,predict(lmodel ,xs),type="l",col="red",lwd =3)

We can control the window size using span.

lmodel2 <- loess(daty~datx ,span =.3)

Predictions are made with the same predict() function used for lm:

1 xs <- -10:50

points(xs,predict(lmodel2 ,xs),type="l",col="blue",lwd=3)

Notice that the model works regardless of whether we observed a particular data value:

predict(lmodel2 ,list(xs =3.3322))

2 xs

-0.7340314

Although we can’t do all the same hypothesis testing and estimation with loess, it can
be used both for summarizing trends and for interpolating and predicting missing data,
especially in time series.

Here is an example of the track of a mouse moving around the screen. The mouse location
is only recorded after each screen refresh–about once every 16 ms. But suppose we wanted
to know our best guess of where the mouse was for each recording of a eeg sensor, which
records every millisecond. We could use the loess model to interpolate:

1 dat <- read.csv("ptracker.csv")[200:500 ,]

3 time <- 117:168*100 ##Regularize in tenths of seconds

5 mx <- loess(posx~time ,span=.1,data=dat)

my <- loess(posy~time ,span=.1,data=dat)

7

9

par(mfrow=c(2,2))

11 plot(dat$time ,dat$posx ,main="X position")

points(time ,predict(mx ,data.frame(time=time)),type="l")

13

plot(dat$time ,dat$posy ,main="Y position")

15 points(time ,predict(my ,data.frame(time=time)),type="l")

17

plot(dat$posx ,dat$posy ,type="b",main="X and Y")

19

points(predict(mx ,data.frame(time=time)),

21 predict(my,data.frame(time=time)),

col="red",type="o",pch=1,cex =.3)

23

time <- 11700:168000 ##Regularize in 100s of seconds

25 points(predict(mx ,data.frame(time=time)),

329

Chapter 13 Applied Statistics in R

predict(my,data.frame(time=time)),

27 col="red",type="o",pch=1,cex =.3)

29 mx <- loess(posx~time ,span =.02, data=dat)

my <- loess(posy~time ,span =.02, data=dat)

31

plot(dat$posx ,dat$posy ,type="p")
33

points(predict(mx ,data.frame(time=time)),

35 predict(my,data.frame(time=time)),

col="red",type="o",pch=1,cex =.3)

Figure 13.4 shows the models described here. This could permit guessing values if we
had missing or touchy sensor data, or interpolating between our sensor readings. The best
part is that we don’t have to try anything tricky–just fit the model and predict the values
we want to use.

Figure 13.4: Using loess to fit mouse movements in 2D.

12000 14000 16000

−
15

−
5

0
5

10
15

X position

dat$time

da
t$

po
sx

12000 14000 16000

−
15

−
5

0
5

10

Y position

dat$time

da
t$

po
sy

−15 −5 0 5 10 15

−
15

−
5

0
5

10

X and Y

dat$posx

da
t$

po
sy

−15 −5 0 5 10 15

−
15

−
5

0
5

10

dat$posx

da
t$

po
sy

330

Chapter 13 Applied Statistics in R

13.4 Generalized Additive Models (GAMs) and Spline
regression

The options we have so far is to either use standard regression, to do some ad hoc transforms,
to do polynomial regression, or to do some sort of smoothing–either as a moving average or
via loess. What if we want to mix some of these? What if we want to compare models?
This can be a little difficult. Generalized Additive Models (GAMs) were designed to enable
a more systematic set of non-parametric curves to be incorporated, but mixed with normal
regression predictors, all in a model that is fit and evaluated in a systematic way. We will
only be using this for a few examples to demonstrate its power, but it will mostly work like
our previous models have.

1

library(gam)

3 library(ggplot2)

5 cw <- ChickWeight

g <- gam(weight~s(Time)+ Diet ,data=cw)

7 cw$fit <- g$fitted.values

9 summary(g)

Output:

1 >summary(g)

3 Call: gam(formula = weight ~ s(Time) + Diet , data = cw)

Deviance Residuals:

5 Min 1Q Median 3Q Max

-143.98247 -17.45120 -0.07828 15.24170 134.68420

7

(Dispersion Parameter for gaussian family taken to be 1261.057)

9

Null Deviance: 2914556 on 577 degrees of freedom

11 Residual Deviance: 718802.2 on 569.9998 degrees of freedom

AIC: 5776.987

13

Number of Local Scoring Iterations: NA

15

Anova for Parametric Effects

17 Df Sum Sq Mean Sq F value Pr(>F)

s(Time) 1 2042344 2042344 1619.549 < 2.2e-16 ***

19 Diet 3 129675 43225 34.277 < 2.2e-16 ***

Residuals 570 718802 1261

21 ---

Signif. codes: 0 ‘***‘ 0.001 ‘**‘ 0.01 ‘*‘ 0.05 ‘.‘ 0.1 ‘ ‘1

23

25 Anova for Nonparametric Effects

Npar Df Npar F Pr(F)

27 (Intercept)

s(Time) 3 6.2202 0.0003675 ***

29 Diet

31 Signif. codes: 0 ‘***‘ 0.001 ‘*‘ 0.01 ‘*‘ 0.05 ‘.‘ 0.1 ‘ ‘1

331

Chapter 13 Applied Statistics in R

Figure 13.5: GAM model 1, with a common diet parameter for each diet (all chicks within
a diet are identical)

50

100

150

200

0 5 10 15 20
Time

fit

Diet

1

2

3

4

Here, we predicted chick weight by a constant for diet and a smoothed spline for time.
This sort of assumes all chicks have the same growth path but diet may increase or decrease
that somewhat. Plotting the predicted values, we can see four lines that are curved but
parallel. The model output tests each component just like an ANOVA table, using an f-test
as well. It also shows that the curve predicting time essentially takes 3 degrees of freedom–
something like a cubic polynomial.

We could build other models that are more sophisticated. This time, let’s try a loess
curve instead of the spline curve (there is really not much difference between these two), but
include an multiplier interaction with chick, so each chick still follows the same growth curve
but with a multiplier on how fast the growth curve is followed.

1

g <- gam(weight~lo(Time)*Chick+ Diet ,data=cw)

3 cw$fit2 <- g$fitted.values
ggplot(cw,aes(x=Time ,y=fit2 ,group=Chick ,color=Diet)) +geom_point() + geom_line

()+ theme_bw()

5 summary(g)

7 > summary(g)

9 Call: gam(formula = weight ~ lo(Time) * Chick + Diet , data = cw)

Deviance Residuals:

11 Min 1Q Median 3Q Max

-36.1116 -5.7449 -0.3421 5.9533 36.6389

13

(Dispersion Parameter for gaussian family taken to be 130.6865)

15

Null Deviance: 2914556 on 577 degrees of freedom

332

Chapter 13 Applied Statistics in R

17 Residual Deviance: 62170.32 on 475.7212 degrees of freedom

AIC: 4550.769

19

Number of Local Scoring Iterations: NA

21

Anova for Parametric Effects

23 Df Sum Sq Mean Sq F value Pr(>F)

lo(Time) 1.00 2042344 2042344 15627.814 < 2.2e-16 ***

25 Chick 49.00 449254 9168 70.156 < 2.2e-16 ***

lo(Time):Chick 49.00 338562 6909 52.870 < 2.2e-16 ***

27 Residuals 475.72 62170 131

29 Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

31 Anova for Nonparametric Effects

Npar Df Npar F Pr(F)

33 (Intercept)

lo(Time) 2.3 53.735 < 2.2e-16 ***

35 Chick

Diet

37 lo(Time):Chick

39 Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

ggplot(cw,aes(x=Time ,y=fit ,group=Diet ,color=Diet ,group=Chick)) +geom_point() +

geom_line() +theme_bw()

2 plot(g)

Figure 13.6: GAM model 2, with a different scale parameter for each chick

0

100

200

300

0 5 10 15 20
Time

fit
2

Diet

1

2

3

4

333

Chapter 13 Applied Statistics in R

The lo() and ns() functions are actually supported by another library called splines,
and can be mixed into lm models directly instead of using gam. However, the output is not
nearly as interpretable.

g <- lm(weight~ns(Time ,5)+ Diet ,data=cw)

2 summary(g)

anova(g)

4

Here, anova(g) is OK but not as good as the gam, but summary(g) is hard to understand.

2

> anova(g)

4 Analysis of Variance Table

6 Response: weight

Df Sum Sq Mean Sq F value Pr(>F)

8 ns(Time , 5) 5 2066375 413275 327.276 < 2.2e-16 ***

Diet 3 129664 43221 34.227 < 2.2e-16 ***

10 Residuals 569 718516 1263

12 Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

14

> summary(g)

16

Call:

18 lm(formula = weight ~ ns(Time , 5) + Diet , data = cw)

20 Residuals:

Min 1Q Median 3Q Max

22 -143.469 -17.405 -0.297 15.554 135.197

24 Coefficients:

Estimate Std. Error t value Pr(>|t|)

26 (Intercept) 24.641 5.060 4.869 1.45e-06 ***

ns(Time , 5)1 56.396 8.306 6.790 2.83e-11 ***

28 ns(Time , 5)2 94.421 9.798 9.637 < 2e-16 ***

ns(Time , 5)3 141.708 7.886 17.969 < 2e-16 ***

30 ns(Time , 5)4 179.697 12.059 14.902 < 2e-16 ***

ns(Time , 5)5 168.083 5.675 29.616 < 2e-16 ***

32 Diet2 16.095 4.034 3.990 7.48e-05 ***

Diet3 36.428 4.034 9.030 < 2e-16 ***

34 Diet4 30.268 4.055 7.464 3.17e-13 ***

36 Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 35.54 on 569 degrees of freedom

38 Multiple R-squared: 0.7535 , Adjusted R-squared: 0.75

F-statistic: 217.4 on 8 and 569 DF , p-value: < 2.2e-16

40

13.5 Fitting regression interactions

Similar to polynomial regression, you might believe that the outcome variable is linearly
related to the product of two predictors. This is essentially an interaction, because the

334

Chapter 13 Applied Statistics in R

impact of one predictor depends on the impact of another predictor.

1

x <- -100:100

3 y <- runif (201)*201 -100

z <- 3*x -5*y + 400*x*y - 50

5

library(rgl)

7 plot3d(x,y,z)

Figure 13.7: 3-D scatterplot illustrating interaction between predictors

Figure 13.7 shows the relationship between x and y, in which there is a saddle point in
the center. Let’s add some noise and try to estimate the predictors. Each of the models
below estimate the same parameters.

1 z <- 3*x -5*y + x*y - 50 + rnorm (201)*2000

3 xy <- x * y

5 interaction <- lm (z~x+y + x:y)

interaction2 <- lm(z~x * y)

7 interaction3 <- lm(z~x + y + xy)

9 summary(interaction2)

11 Call:

335

Chapter 13 Applied Statistics in R

lm(formula = z ~ x * y)

13

Residuals:

15 Min 1Q Median 3Q Max

-4854.1 -1291.9 106.4 1171.0 3630.4

17

Coefficients:

19 Estimate Std. Error t value Pr(>|t|)

(Intercept) -186.12240 129.77901 -1.434 0.15312

21 x 6.13313 2.24701 2.729 0.00692 **

y -6.08756 2.10473 -2.892 0.00425 **

23 x:y 0.98706 0.03593 27.472 < 2e-16 ***

25 Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Notice how the estimates of the main effects are somewhat distorted (the true numbers
were 3 and 5); but we were fairly accurate on the interaction.

13.6 Transformations of the Outcome or Predicted Vari-
able

Sometimes, a transformation on the input or output variable is effective. Often, when using
t-tests, we think about transformations to allow error variance to be symmetric/normal.
So, we may transform response time (RT) to log(RT), because it will take the long-tailed
distribution and make it more symmetric, and so it will no longer violate assumptions of
normality too much.

But when using regression, which assumes linear functions, a transformation may allow
us to fit a non-linear function. In contrast to polynomial regression, which transforms the
predictor, can also think about transforming the predicted variable. This can often be
justified in terms of an underlying process.

For example, if we think back to the chick weight data set, a chick’s weight gain on each
day has to depend somewhat on its current weight. This is an exponential process. Growth,
when it starts, is usually well described as an exponential process. Later, as physics, energy,
space, or predators limit the growth it usually asymptotes, but initially, the amount you
grow will often depend proportionally on your size. to model an exponential process, this
is just a linear relationship with the log of the outcome. This is the so-called exponential
growth model, whose parameters can be fit by taking the log of the dependent variable (see
model lm2). Model lm3 is a power function model, which is implicated in many psychological
learning functions.

data(ChickWeight)

2 lm1 <- lm(weight~Time:Diet ,data=ChickWeight)

lm2 <- lm(log(weight)~Time:Diet ,data=ChickWeight)

4 lm3 <- lm(log(weight)~log(Time +1):Diet ,data=ChickWeight)

Comparing these three models, the best fit is the exponential growth model. You can
recover the growth rate parameters by exponentiating:

> exp(lm2$coef)
2 (Intercept) Time:Diet1 Time:Diet2 Time:Diet3 Time:Diet4

44.824265 1.068984 1.079703 1.093056 1.090992

336

Chapter 13 Applied Statistics in R

In other words, Diet 1 leads to a 6.8% increase in weight each day, diet 2 a 7.9% increase,
and so on.

We might consider fitting a different exponential function to each chick’s growth rate:

1 lm22 <- lm(log(weight)~Time:Chick ,data=ChickWeight)

> lm22

3

Call:

5 lm(formula = log(weight) ~ Time:Chick , data = ChickWeight)

7 Coefficients:

(Intercept) Time:Chick18 Time:Chick16 Time:Chick15 Time:Chick13 Time:

Chick9

9 3.81442 -0.12954 0.01675 0.03698 0.03430

0.04649

Time:Chick20 Time:Chick10 Time:Chick8 Time:Chick17 Time:Chick19 Time:

Chick4

11 0.04643 0.05070 0.06240 0.05783 0.05391

0.06387

Time:Chick6 Time:Chick11 Time:Chick3 Time:Chick1 Time:Chick12 Time:

Chick2

13 0.07275 0.08175 0.07527 0.07230 0.07399

0.07754

Time:Chick5 Time:Chick14 Time:Chick7 Time:Chick24 Time:Chick30 Time:

Chick22

15 0.08150 0.09364 0.09283 0.02981 0.06647

0.06669

Time:Chick23 Time:Chick27 Time:Chick28 Time:Chick26 Time:Chick25 Time:

Chick29

17 0.07170 0.07171 0.08326 0.08364 0.08983

0.08888

Time:Chick21 Time:Chick33 Time:Chick37 Time:Chick36 Time:Chick31 Time:

Chick39

19 0.10715 0.07005 0.06628 0.08573 0.08206

0.08513

Time:Chick38 Time:Chick32 Time:Chick40 Time:Chick34 Time:Chick35 Time:

Chick44

21 0.08916 0.09638 0.09616 0.10094 0.11016

0.07826

Time:Chick45 Time:Chick43 Time:Chick41 Time:Chick47 Time:Chick49 Time:

Chick46

23 0.07692 0.08832 0.08171 0.08158 0.08698

0.08519

Time:Chick50 Time:Chick42 Time:Chick48

25 0.09176 0.09258 0.09635

27

This gives us an individual growth curve for each chick. We can plot these against the
actual data, as seen in Figure 13.8

diet <- t(table(ChickWeight$Diet ,ChickWeight$Chick) >0) %*% c(1:4)

2 plot(ChickWeight$Time ,(ChickWeight$weight),col="grey",
xlab="Days",ylab="Weight (g)")

4 for(i in 2: length(lm22$coef))
{

6 x <- 0:25

337

Chapter 13 Applied Statistics in R

Figure 13.8: Individually-fitted growth rates for chick growth data set.

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

● ●

●
●

●

●
●

●

●
●

●

●
● ●

● ●
●

●

●

●

●

●

● ●

● ●

●
●

●

●

●

●

●
●

●
● ● ●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●

●
● ● ●

● ● ●

● ●
●

●

●
●

●
●

●

●
● ●

●
●

●

●

●

●

●
●

● ● ●
●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●
●

● ● ● ● ●
●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●
● ● ● ● ●

● ● ● ●
●

● ●

●
●

●

●

●
●

●
●

●
●

●
●

● ●
●

●
●

● ●
●

●
●

●

●

●

●

●
●

● ●
●

● ●

●
●

●
● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

● ●

●

●

● ●

●
●

●

●

●

●

●
●

●

●
●

●

●
●

●

●
● ● ● ● ● ● ● ●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●
●

●
●

●

●

● ●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
● ● ● ●

●
●

●

●

●

●
●

●
● ●

●
●

●

●

●

●

●
●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

0 5 10 15 20

5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

3
5
0

Days

W
e
ig

h
t
(g

)

fit <- exp(lm22$coef [1] + lm22$coef[i]*x)
8 points(x,fit ,type=’l’,col=c("red","blue","darkgreen","orange")[diet[i-1]])

}

10

points(x, exp(lm2$coef [1] + lm2$coef [2]*x),type="l",col="red",lwd=8,lty=4)
12 points(x, exp(lm2$coef [1] + lm2$coef [3]*x),type="l",col="blue",lwd=8,lty=4)

points(x, exp(lm2$coef [1] + lm2$coef [4]*x),type="l",col="darkgreen",lwd=8,lty
=4)

14 points(x, exp(lm2$coef [1] + lm2$coef [5]*x),type="l",col="orange",lwd=8,lty =4)

The mean growth rates can be found using tapply on the coefficients (we are just trans-
forming each growth rate coefficient by reversing the log-transform, and then finding the
mean by diet):

tapply(exp(lm22$coef [2: length(lm22$coef)]),list(diet),mean)
2 1 2 3 4

1.055595 1.079074 1.092302 1.089788

Are these any different from the earlier estimates? Why?
Logarithmic transforms are often done for response time data, which tend to be skewed

to the right. if we look at the letter-length values and compute time-per-letter across trials:

1 let <- read.csv("reading.csv",header=F)

hist(letrt/letlength ,breaks =100)
3 hist(log(letrt/letlength),breaks =100)

Notice that here, the transform does a good job of approximating a normal distribution.
Now, your data will conform better to the assumptions of your inferential statistics.

338

Chapter 13 Applied Statistics in R

A logarithm transform is useful whenever you have a long tail or a process that is pro-
portional, like growth, and the values are all positive.

This might include:

• money/sales across companies

• employees across divisions/companies/jurisdictions

• population

• search/response/completion times

If there are meaningful proportional differences at all scales, a log transform might help.
Otherwise, if you have large-scale values mixed in with small-scale ones, the large-scale values
will also tend to swamp the model. For example, what is the relationship between county
population and number of police/sheriffs/enforcement in a county? The 1000+ counties in
america with under 5000 people in them might either not matter at all compared to the 6
counties with 3,000,000+; or the top counties may completely drive any relationship and the
bottom 1000 may not matter.

1 census <- read.csv("census2013.csv")

labels <- census$GEO.display.label
3 states <-sapply(labels , function(x){strsplit(as.character(x),", ")[[1]][2]})

5

sum(census$respop72011 <5000)

7 hist(census$respop72011 ,breaks =100)
hist(log(census$respop72011),breaks =100)

9

untrans <- aggregate(census$respop72011 ,list(state=states),mean)
11 logged <- aggregate(census$respop72011 ,list(state=states),function(x){exp(mean

(log(x)))})

untrans$logged <- logged$x
13

barplot(t(as.matrix(untrans [,-1])),names=untrans$state ,beside=T,horiz=T,las=1)

Look at places like NY, NV, and California, etc. Here, the log-transformed population
size may better represent the typical county size, rather than being influenced by a few very
populous counties.

13.6.1 Additional Transformation

There are only a few other transformations that are commonly used, although there are
many that might be used in different narrow domains

Inverse transform . The inverse transform may be more appropriate to think about
fitting 1/y instead of y.

Log-odd . If you are dealing with probability, the log-odds transform is often used. You
can transform a probability p into log-odds log(p/(1 − p)) with a function like this (the
logistic is the inverse, allowing us to transform back to the observed data values).

logodds <- function(p){log(p/(1-p))}

2 logistic <- function(x){1/(1+exp(-x))}

339

Chapter 13 Applied Statistics in R

This transform forms the basis for logistic regression. This is probably most useful in the
mid-range of probabilities.

arcsine tranform. An arcsine transform is often used when dealing with accuracy or prob-
ability data near 1.0 (or near 0, if you subtract from 1.) arcsine ¡- function(p) asin(sqrt(p))

Some examples:

2 cond <- sample (1:15 ,1000 , replace=T)

success <- runif (1000) < 1-.4^(cond/3)

4 cond [1:15] <- 1:15 ##make sure we have no perfect accuracies

success [1:15] <- 0

6

pc <- aggregate(success ,list(cond=cond),mean)

8 plot(pc)

10 lm1 <- lm(pc$x~pc$cond)
lm2 <- lm(logodds(pc$x)~pc$cond)

12 lm3 <- lm(asin(pc$x)~pc$cond)

14 plot(pc$cond ,pc$x,xlab="Condition",ylab="Observed value",ylim=c(0 ,1.1)) ##

pretty bad

abline(lm1$coef)
16

##prediction of log -odds model

18 points(pc$cond , logistic(predict(lm2)),type="l",lwd=2,lty=3,col="cadetblue3")

##pretty good

points(pc$cond , sin(predict(lm3)),type="l",lwd=2,lty=4,col="orange")

20 legend (8,.4,c("Linear","Log -odds","Arcsine"),lty=c(1,3,4),col=c("black","

cadetblue3","orange"),

lwd =3)

The disadvantage to using simple transformations such as this is that in order to do
inferential statistics, you still assume the error distributions are normally distributed, which
may not be true. Methods known as generalized linear regression (glm) provide much more
flexibility, and enable proper testing of models that use transformations of the predicted
variable. These include logistic regression, which provides a more appropriate error model
for the data.

Tukey’s Ladder of Powers Tukey (1977) Framed a set of transforms related through a
power function, indexed by a coefficient λ. The size and sign of lambda controls how much
the transform unskews the results.

λ > 0 = xλ (13.1)

λ = 0 = log(x) (13.2)

λ < 0 = −1/xλ (13.3)

For example, a power of 2 squares the results, which might be good if you have a com-
pressed range against an upper bound. A power of 1 is no transform indicates a is log(x)
transform, and so on. You can try different values of lambda and make qq-plots and his-
tograms to find the best transform, but within the rcompanion library, they have imple-
mented a function that does this for you. Furthermore, it tests the resulting data against a
test for non-normality (Shapiro’s W) and picks the transform value that is best according
to that statistic.

340

Chapter 13 Applied Statistics in R

Figure 13.9: Non-linear data with best-fitting model having no transform, a log-odds trans-
form, and an arcsine transform. The transformed data fit the curvature of the data better
than the linear model.

●

●

●
●

●

●

●
●

● ● ●

●

●

●

●

2 4 6 8 10 12 14

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Condition

O
bs

er
ve

d
va

lu
e

Linear
Log−odds
Arcsine

1 library(rcompanion)

z2 <- transformTukey(z,plotit=T)

3

lambda W Shapiro.p.value

5 395 -0.15 0.9114 5.038e-06

7 if (lambda > 0){TRANS = x ^ lambda}

if (lambda == 0){TRANS = log(x)}

9 if (lambda < 0){TRANS = -1 * x ^ lambda}

Here, z2 is transformed value, and we see that the best transform was λ = −.15. We can
see that we could transform our data using this, or just use z2 directly, as they are the same
thing:

plot(-z^(-.15),z2)

2 model3 <- lm(z2~x)

> summary(model3)

4

Call:

6 lm(formula = z2 ~ x)

8 Residuals:

Min 1Q Median 3Q Max

10 -0.57619 -0.07383 0.01895 0.09803 0.60475

12 Coefficients:

Estimate Std. Error t value Pr(>|t|)

14 (Intercept) -1.417429 0.031525 -44.962 < 2e-16 ***

341

Chapter 13 Applied Statistics in R

x -0.010664 0.002795 -3.816 0.000238 ***

16 ---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

18

Residual standard error: 0.1567 on 98 degrees of freedom

20 Multiple R-squared: 0.1294 , Adjusted R-squared: 0.1205

F-statistic: 14.56 on 1 and 98 DF , p-value: 0.0002376

We might look back at the census data:

census2 <- transformTukey(census$respop72011)
2

lambda W Shapiro.p.value

4 399 -0.05 0.9956 5.571e-08

6 if (lambda > 0){TRANS = x ^ lambda}

if (lambda == 0){TRANS = log(x)}

8 if (lambda < 0){TRANS = -1 * x ^ lambda}

Here, a transform close to 0 (log) is ideal–and we previously used log as a good transform..

Box-Cox Transform Another general parametric transform is the Box-Cox transform,
the result of the only collaboration of two famous statisticians 1. It takes the form:

(xλ − 1)/λ (13.4)

This is similar to the Tukey transform, but is scaled by λ, which will automatically incor-
porate the -1 value into it. Furthermore, as lambda approaches 0, this transform approaches
log(x), and so the transformations are perhaps less ad hoc that Tukey’s method. There are
a number of libraries that contain similar Box-Cox transform functions, including the MASS

library function:

1 bc<-boxcox(z~x,plotit=T)

bc2 <- boxcox(census$respop72011~census$GEO.id2 ,
3 plotit=T)

This plots the goodness of fit for different transforms values. We can see that the best point
is identifies the same values of lambda as the Tukey transform did–which is nice because they
are essentially the same transform. Once a reasonable transform is identified, you simply
need to use the transform function on your data with the best λ value.

1Box, G. E. P. and Cox, D. R. (1964). An analysis of transformations, Journal of the Royal Statistical
Society, Series B, 26, 211-252.

342

Chapter 13 Applied Statistics in R

Figure 13.10: Goodness of fit plots for Box-Cox transforms for the z/x and census data.

−2 −1 0 1 2

−
70

0
−

60
0

−
50

0
−

40
0

−
30

0
−

20
0

λ

lo
g−

Li
ke

lih
oo

d

 95%

−2 −1 0 1 2

−
35

00
0

−
25

00
0

−
15

00
0

λ

lo
g−

Li
ke

lih
oo

d

 95%

13.7 Solution to exercises

Exercise 13.1 Solution

Make a polynomial model to fit the WWWusage data set. First, let’s fit a set of models
with 1 to 7th order polynomials:

x<- 1:100

2 g1 <- lm(WWWusage~poly(x,1))

g2 <- lm(WWWusage~poly(x,2))

4 g3 <- lm(WWWusage~poly(x,3))

g4 <- lm(WWWusage~poly(x,4))

6 g5 <- lm(WWWusage~poly(x,5))

g6 <- lm(WWWusage~poly(x,6))

8 g7 <- lm(WWWusage~poly(x,7))

Now, let’s plot the data, and each model:

plot(x,WWWusage)

2 points(g1$fit ,type="l",col="red")
points(g2$fit ,type="l",col="red")

4 points(g3$fit ,type="l",col="red")
points(g4$fit ,type="l",col="red")

6 points(g5$fit ,type="l",col="red")
points(g6$fit ,type="l",col="red")

8 points(g7$fit ,type="l",col="red")

343

Chapter 13 Applied Statistics in R

Figure 13.11: Successive polynomial fits to WWWusage data

●
●●●●●●●

●●●

●
●

●

●

●

●
●●●●●

●

●●

●

●
●●

●
●

●
●●●

●●
●

●
●●

●

●

●
●●●●●●

●●●●
●

●

●

●

●

●

●

●●
●●

●

●
●●

●●●
●●

●●●
●

●

●

●

●

●
●

●

●
●

●●
●

●

●
●●

●

●
●●

●●

0 20 40 60 80 100

10
0

15
0

20
0

x

W
W

W
us

ag
e

344

Chapter 14

Determining how good your
model is: Diagnostics and
Outliers

Chapter 7 of Faraways PRA is a good additional source for this material. We will use the
car library in this chapter.

When using regression-type models, we should always take care to verify, to whatever
extent we can, that the assumptions made by the model are not violated. Many times, the
assumptions cannot be tested, but when there are violations, we can sometimes do something
about it.

The consequences of violating these assumptions include:

• The model’s parameters will be incorrect

• Your inferences about the population’s parameter values will be incorrect

• Your ability to detect reliable differences between groups will suffer

• Your ability to make predictions about new situations will be harmed.

To make sure you have a robust and accurate model, you should check to see whether
the model’s assumptions are violated. Some of the important assumptions made by a linear
regression model include:

• Errors is distributed normally. This can be violated severely if errors are asymmetric,
or less seriously if errors have longer or shorter tails than normal distributions.

• Variance is independent of x and y values. The model assumes that error has the same
variance in for all levels of the predictor, and for all combinations of factors

• There is a linear relationship between IV and DV in the region of the data

• Independence of predictors, unless a interaction term is included in the model

• Unrestricted range of values. The linear model does not know if your data are limited
in range.

345

Chapter 14 Applied Statistics in R

14.1 Assessing the overall goodness of fit of the model

The first thing to look at in the model is how much of the variance it accounts for.

2 set.seed (302)

x <- rnorm (1000)

4 y <- 33 + x + rnorm (1000)

modela <- lm(y~x)

6 summary(modela)

anova(modela)

8

> summary(modela)

10

Call:

12 lm(formula = y ~ x)

14 Residuals:

Min 1Q Median 3Q Max

16 -3.1614 -0.7238 0.0220 0.6774 3.8889

18 Coefficients:

Estimate Std. Error t value Pr(>|t|)

20 (Intercept) 32.96103 0.03252 1013.45 <2e-16 ***

x 0.98448 0.03358 29.32 <2e-16 ***

22 ---

Signif. codes: 0 ‘***‘ 0.001 ‘**‘ 0.01 ‘*‘ 0.05 ‘.‘ 0.1 ‘ ‘ 1

24

Residual standard error: 1.028 on 998 degrees of freedom

26 Multiple R-squared: 0.4628 , Adjusted R-squared: 0.4623

F-statistic: 859.8 on 1 and 998 DF , p-value: < 2.2e-16

28

> anova(modela)

30 Analysis of Variance Table

32 Response: y

Df Sum Sq Mean Sq F value Pr(>F)

34 x 1 909.01 909.01 859.76 < 2.2e-16 ***

Residuals 998 1055.17 1.06

36 ---

Signif. codes: 0 ‘***‘ 0.001 ‘**‘ 0.01 ‘*‘ 0.05 ‘.‘ 0.1 ‘ ‘ 1

38

cor(x,y)^2

40 [1] 0.4627926

42 (909/(1055+909))

[1] 0.462831

Notice that the summary provides an R2 value of .46, which we interpret as proportion
of variance. We could calculate that by hand using cor(x, y)2 and get the same value. In
the anova table, it tells us the sum square error attributable to both x and the residuals,
and SSE is just a measure of variance accounted for–we can calculate the same value by
dividing 909 by 909+1055, which helps us understand the link between R2 and SSE. It is
not an accident that these are the same–correlation is just a scaled measure of variance, and
by dividing variance explained by total variance, we are just scaling it, and the formulas will
turn out to be identical.

Let’s look at some more models with more variability:

346

Chapter 14 Applied Statistics in R

Figure 14.1: Simple model with low or high noise accounts for different amounts of variability.

−3 −2 −1 0 1 2 3

10
20

30
40

50

R2= 0.463

x

y

−3 −2 −1 0 1 2 3

10
20

30
40

50

R2= 0.027

x

y2

−3 −2 −1 0 1 2 3

0
20

40
60

80

R2= 0.042

x
y3

2 y2 <- 33 + x + rnorm (1000)*5

modelb <-lm(y2~x)

4

set.seed (100)

6 y3 <- y

noisy <- sample (1000 ,15)

8 y3[noisy] <- y3[noisy] + rnorm (15)* 35

modelc <- lm(y3~x)

10

summary(modelb)$r.squared
12 [1] 0.02660593

14 summary(modelc)$r.squared
[1] 0.04171009

2 par(mfrow=c(1,3))

plot(x,y,col="gold",pch=16,ylim=c(10 ,50),

4 main=paste("R2=",round(summary(modela)$r.squared ,3)))
points(x,y)

6 abline(modela$coef)

8 plot(x,y2,col="gold",pch=16,ylim=c(10 ,50),

main=paste("R2=",round(summary(modelb)$r.squared ,3)))
10 abline(modelb$coef)

points(x,y2)

12

plot(x,y3,col="gold",pch=16,

14 main=paste("R2=",round(summary(modelc)$r.squared ,3)))
points(x,y3)

16 abline(modelc$coef)

In the first model, we have accounted for 46% of the variance in the first model, but just
2.7% in the second model. The slope relationship between x and y is basically the same
in both cases, but for y2 the noise is larger. And the R2 values go way down, despite the

347

Chapter 14 Applied Statistics in R

fact that our estimate is still highly reliable. Whether a model with a R2 value this small is
acceptable depends on the context. For example, if we look at the third model, it has about
the same R2 as the second model, but looks like the first model with a few extreme values.
Notice that the y scale is larger, so a few large outliers reduces R2 exactly the same way a
lot of systematic noise does.

How might context matter? For something like trying to predict life expectancy given
a lifestyle factor (e.g., number of cigarettes smoked per day), you might expect a low R2

given there are so many factors that determine how long somebody lives. For a carefully-
designed lab experiment, where many things can be controlled, a low R2 may indicate the
effect has relatively little importance or new experiments should be conducted. In any case,
comparing the second and third models, they have the same measure of goodness, but for
different reasons. It might make sense, if we believe the dozen or so extreme points occur
for another reason, to ignore them, or maybe model them specifically. These are often called
‘outliers’, and they can cause trouble for our models because they violate the assumptions of
the model, and more importantly we might think they arise from another process we don’t
really care about. There are many statistical approaches to help us identify these points,
which we will discuss in the rest of this chapter.

14.2 Testing assumptions of models

A regression model has four basic assumptions: linear impact of predictors; independent
values; uniform variance (homoscedasticity) and normal error1. Each should be evaluated
to the extent you can. Many times we have non-linear relationships, and the transforms
and polynomial regression methods we used in the previous chapter deal with this. Non-
independence is more difficult. We have already talked about multicolinearity, and there
are some models that can be used to address that directly. But there are other aspects
of independence, like a repeated measures experiment where a person acts as their own
control. We will need to use mixed-effect models we will deal with later to handle that. In
these cases, you might have many observations from a small number of people, the model is
essentially constrained by the number of people, not the number of observations, as multiple
observations within each person will be correlated, and so you need to deal with this in some
way–perhaps by estimated separate parameters for each person. Finally. we usually want to
test whether our residuals are normal. If not, this will violate some of the assumptions of our
tests, and may give us incorrect inferences. The standard approach is to do histograms and
qq-plots. We can also use the Shapiro test, which will turn out significant if the distribution
differs from normality substantially. Here is an example of using the shapiro test

1 set.seed (111)

x <- rnorm (20)

3 y <- x + rnorm (20)

g1 <- lm(y~x)

5

7 hist(g1$resid)
qqnorm(g1$resid)

9 shapiro.test(g1$resid)

11

Shapiro -Wilk normality test

13

1See Ernst & Albers, 2017, who demonstrated that many users of regression fail to perform tests of these
or evaluate their models in terms of these assumptions https://peerj.com/articles/3323/

348

https://peerj.com/articles/3323/

Chapter 14 Applied Statistics in R

Figure 14.2: Histogram and qq-plot of the residuals of a lm with normal error. This conforms
to a normal distribution, so the W is close to 1, as is the p-value.

Histogram of g1$resid

g1$resid

F
re

qu
en

cy

−3 −2 −1 0 1 2 3

0
2

4
6

8

−2 −1 0 1 2

−
3

−
2

−
1

0
1

2
3

Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

data: g1$resid
15 W = 0.98268 , p-value = 0.9639

This sort of testing should always be part of your initial look at the data, and you can
use this to help choose the right transforms of your input or output variables.

14.3 Detecting and Handling Influential Observations
and Outliers

Linear regression and ANOVA models are fairly robust, even to non-normal variance. But if
you have a relatively few number of observations, individual points can have a large influence
on the model. It is good to know this, especially in correlational designs, because if your
correlation depends on a single observation, it cannot be very robust.

Lets start with a simple model:

1 set.seed (111)

x <- rnorm (20)

3 y <- x + rnorm (20)

plot(x,y)

5 cor(x,y)

7 [1] 0.5127194

The correlation here is about .5–pretty good. But looking at it, if we excluded the one
point at the upper right (number 13), the correlation surely would be much worse:

1 cor.test(x[-13],y[-13])

349

Chapter 14 Applied Statistics in R

Figure 14.3: A small data set with what looks like correlated predictors. But if we remove
the value that is highest on both dimensions, will it still be correlated?

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

−2 −1 0 1 2

−
3

−
2

−
1

0
1

2
3

R= 0.51

x

y

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

3 Pearson ’s product -moment correlation

5 data: x[-13] and y[-13]

t = 1.1994 , df = 17, p-value = 0.2468

7 alternative hypothesis: true correlation is not equal to 0

95 percent confidence interval:

9 -0.2002990 0.6509457

sample estimates:

11 cor

0.2793224

It looks like observation 13 is a big deal–without it, correlation will drop down to .279,
and it is no longer a reliable correlation. What should we do? If you were hoping to find
no correlation, it would be very easy to throw it out and justify it. After all, the correlation
depends on that single point. If you were hoping for a correlation, it would be very easy to
ignore the fact that the correlation is sensitive to the inclusion of that single point. Plus,
point 13 is the highest observation for x as well as y. Maybe this is the only person in your
sample that is an expert in the domain, and so this comparison is actually critical. This
dilemma shows how difficult it is to deal with this issue, because we can see what we want
to see–and that has little to do with the statistics.

Remember that the process that created this particular data set contained a correlation,
and because both variables were normally distributed, the extreme values of the distribution
will necessarily contain relatively few points. In reality, this data set provides fairly poor
evidence for a correlation because it is not very robust, despite the fact that the correlation
is significant. A reviewer, editor, or reader is likely to question this as well, and publishing
data such as this would invite future critical responses. This is an example of an influential

350

Chapter 14 Applied Statistics in R

Figure 14.4: Plotting fit fitted value by residuals to identify suspicious data.

−2 −1 0 1

−
3

−
2

−
1

0
1

2
3

Fitted values

R
es

id
ua

ls ●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Residuals vs Fitted

8

11

13

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−2 −1 0 1

−
3

−
2

−
1

0
1

2
3

Fit versus residuals of model

g1$fit

g1
$r

es
id

observation, and there are a number of methods developed to examine them.

14.3.1 Examining Residuals and standardized residuals

Regression and ANOVA assume that the error has equal variance across all levels of the IV.
Thus, looking at the residuals can help you see if those assumptions are violated. The first
plot provided by the plot() method of a lm or aov model will let you see which values have
large residuals in comparison to the predicted values:

g1 <- lm(y~x)

2 plot(g1 ,which =1)

But this is essentially identical to:

plot(g1$fit ,g1$resid)

Residuals for evaluating variance of estimates

Notice that this does not do well at detecting point 13–it isn’t even the largest residual.
This is partly because the point in influential, and so it bends the best-fit line toward itself.
But it could be useful for understanding when the variance actually depends on the value.
Really what we are looking for in this figure is whether the residuals are greater in one part
of the fit than in others, as this could suggest doing a transform or changing the model in
some way, as in the next example

1 x2 <- runif (200)*10

y2 <- 33 + x2 + rnorm (200)*(x2)

3

5 par(mfrow=c(1,2))

plot(x2 ,y2,col="gold",pch =16)

7 points(x2,y2)

351

Chapter 14 Applied Statistics in R

9 g2 <- lm(y2~x2)

plot(g2 ,which =1)

Figure 14.5: Example data set with non-constant variance

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

● ●
●●

● ●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 2 4 6 8 10

30
40

50
60

x2

y2

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

● ●
●●

● ●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

34 36 38 40 42

−
20

−
10

0
10

20

Fitted values

R
es

id
ua

ls

●

●
●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●●

● ●

●

●
●

●

●

●

●

●●

●
●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●●

●

●

●●
●

●

●

●

●
●

●
●

●
● ●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
● ●

●

●

●

●

●

●

●

● ●

●

●

● ●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●
●

Residuals vs Fitted

81
43

123

The next example (model g2) example is troubling because variance depends on the
absolute level of the data, and the fitted-by-residuals graph shows this. This violates the
basic assumptions of the regression model, which assumes variance is uniform. Perhaps a
transformation, or a more advanced generalized regression model that captures this type of
variance would be better. It would be important for inference, because it means that your
precision for lower fitted values should be much better than for higher fitted values. This can
be especially important for categorical (ANOVA) models, because distinct variance values
for different levels of a factor may compromise your tests.

One test for non-constant variance (ncvTest in car)uses the χ2 (Chi-squared) distri-
bution as a null hypothesis. The distribution is the same as we have used previously for
examining cross-tabs counts, but we are using it in a very different context and you can
think of this use as unrelated to the test of categorical relationship. If you have non-constant
variance, there are steps you can take if necessary, including non-parametric tests, and using
weighted least squares to give those values less weight.

1 library(car)

ncvTest(g2)

3 Non -constant Variance Score Test

Variance formula: ~ fitted.values

5 Chisquare = 66.08247 , Df = 1, p = 4.3245e-16

Standardized residuals

Sometimes it can be useful to standardize these residuals, so that your values have a variance
of 1.0. These then become like z-scores, and you can use standard insights about the normal
distribution to judge whether something is an outlier.

352

Chapter 14 Applied Statistics in R

Figure 14.6: Figure depicting standardized residuals. The left panel shows the fitted value
by residuals standardized by hand. The center shows plots by rstandard, which is identical
(right panel).

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−2 −1 0 1

−
2

−
1

0
1

2

g1$fit

g1
$r

es
id

/s
d(

g1
$r

es
id

)

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−2 −1 0 1

−
2

−
1

0
1

2

g1$fit

rs
ta

nd
ar

d(
g1

)

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−2 −1 0 1 2

−
2

−
1

0
1

2

g1$resid/sd(g1$resid)

rs
ta

nd
ar

d(
g1

)

1 (g1$resid/sd(g1$resid))
plot(g1$fit ,g1$resid/sd(g1$resid))

3

plot(g1$fit ,rstandard(g1))
5

abline (-2,0)

7 abline (-1,0)

abline (0,0)

9 abline (1,0)

abline (2,0)

11

plot(g1$resid/sd(g1$resid),rstandard(g1))

The ‘standardized residuals’ are almost, but not exactly, what we get from simply dividing
the residuals by their s.d.:

cor(g1$resid ,rstandard(g1))
2 [1] 0.9983141

Residuals can also be useful in identifying outliers. But if you look at the plot, you’ll
notice that some of the largest residuals for this data set are in the middle of the data set,
and probably couldn’t impact your model fit very much. Others, like point 13, are not the
largest residuals, but because it is so far out at the edge of the data, it could have a larger
influence. This notion is called ’leverage’.

14.3.2 Leverage

One measure you can look at to assess the importance of specific data points is called
‘leverage’.

353

Chapter 14 Applied Statistics in R

Figure 14.7: Figure depicting the leverage of each point. In the left panel, the size of the
outer circle is proportional to its influence or leverage in the model. In the right panel,
leverage is plotted as a bar graph.

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

−2 −1 0 1 2

−
3

−
2

−
1

0
1

2
3

Levarage of data

x

y

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

1 3 5 7 9 12 15 18

0.
00

0.
10

0.
20

0.
30

Details of computing leverage are covered in other more detailed texts. It relies on the
so-called hat matrix, which is central to computing the best estimates of the linear regression
model. It results from a set of operations for scaling and transforming the predictor variables
(without considering the DV), and it can indicate which data points will have a large influence
on the parameter estimates.

2 g1 <- lm(y~x)

leverage <- hatvalues(g1)

4 plot(x,y,pch=16,main="Leverage of data")

points(x,y,cex =1.2+ leverage*5)

Notice that leverage is essentially MSE when you have a single predictor variable:

1 cor((x-mean(x))^2,leverage)

[1] 1.0

You can use leverage to assess which points may have a large influence, by looking at
those whose means are large–in this case some are maybe twice as big as the average.

barplot(leverage)

2 abline(mean(leverage) ,0,lwd=2)

We can use a criterion of 2 * mean to judge observations with strong leverage.

abline (2*mean(leverage) ,0)

354

Chapter 14 Applied Statistics in R

Figure 14.8: Leverage for two predictors. Leverage does not depend on the outcome; only
the input variables.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−2 −1 0 1 2

0.
2

0.
4

0.
6

0.
8

x

x2

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

When you have more than one predictor, leverage is related to its overall periphery:

1 x2 <- runif (20)

model2 <- lm(y~x+x2)

3 lev2 <- hatvalues(model2) ##Does not depend on y!

plot(x,x2,pch =16)

5 points(x,x2,cex =1.2+ lev2*5)

Points that are high in leverage are likely to have a large influence on the beta weights,
although you can’t know that until you use them to fit y. In other words, the point draws
the best-fit line toward it, so it might not have large residuals, but it is still influential. Of
course, if that point is a critical observation, its leverage might be justified. One method for
combining residuals with leverage is the so-called ‘studentized residual’

14.3.3 Studentized Residuals

Studentized residuals are standardized residuals that also scale by a function of the leverage.
They are scaled so they conform to the Student’s t distribution, which is why they are called
“Studentized” with n-p degrees of freedom. These are sometimes as ‘internally’ studentized.

355

Chapter 14 Applied Statistics in R

Figure 14.9: Studentized residuals combine leverage and residuals. Left panel shows leverage
versus residuals; right panel shows studentized residuals.

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

−2 −1 0 1 2

−
3

−
2

−
1

0
1

2
3

x

y

●
●●

●

●
●

●

●

●
● ●●

● ●●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−2 −1 0 1

−
2

−
1

0
1

2

g1$fit

rs
tu

de
nt

(g
1)

1 rstudent(g1)

3 par(mfrow=c(1,2))

plot(x,y,pch =16)

5 points(x,y,cex=abs(rstudent(g1))+2)

abline(lm(y~x)$coef)
7 plot(g1$fit ,rstudent(g1))

abline (0,0)

9 leverage <- hat(model.matrix(g))

Now, the large outliers near the middle end up having larger studentized residuals than
the values at the extreme values of x that are fit well by the model. You could compare the
residuals to a t-distribution and use that as a way of automatically removing points (maybe
any value that is more than 3 or 4 t-values from 0). In this case, we’d be most likely to
remove two points near the middle, which probably wouldn’t impact our fit much but would
reduce the MSE.

14.4 Measures of Influence

Some of R has a number of measures to assess the influence of individual observations. See:

1 > ?influence.measures

3 ig <- influence(g1)

5

ig

7 ig

$hat
9 1 2 3 4 5 6 7 8

0.07160086 0.05003288 0.05011033 0.28648170 0.05208194 0.06519767 0.13146519

0.07683949

11 9 10 11 12 13 14 15 16

356

Chapter 14 Applied Statistics in R

0.07203051 0.05122500 0.05201870 0.05017418 0.35124947 0.08482338 0.13254122

0.14162732

13 17 18 19 20

0.05446849 0.05000183 0.09393275 0.08209710

15

$coefficients
17 (Intercept) x

1 0.0482770175 0.0281181854

19 2 0.0336327981 0.0009529260

3 0.0256030097 0.0013178119

21 4 -0.0009758523 0.0167408986

5 0.0359294129 0.0075724511

23 6 0.0610587109 0.0308543225

7 -0.0482305841 0.1384937253

25 8 0.1126541425 -0.1295989963

9 0.0161650445 -0.0162275677

27 10 -0.0511365571 0.0095213488

11 -0.1599487948 -0.0332326825

29 12 -0.0341579823 0.0023037460

13 0.2934401160 0.4082637723

31 14 -0.0909598002 -0.0637254227

15 -0.1608837265 -0.1530641004

33 16 0.0354721703 -0.1151017647

17 0.0116680838 0.0034820260

35 18 0.0323779869 -0.0002193539

19 -0.0150689971 0.0250243022

37 20 -0.0677637407 -0.0460339332

39 $sigma
1 2 3 4 5 6 7 8 9

10

41 1.430941 1.433495 1.437207 1.441835 1.433537 1.422807 1.373514 1.238560

1.438475 1.418932

11 12 13 14 15 16 17 18 19

20

43 1.260884 1.432603 1.319337 1.406728 1.359090 1.400878 1.441272 1.433925

1.437876 1.422128

45 $wt.res
1 2 3 4 5 6 7

8

47 0.71173379 0.63259708 0.47754529 -0.09842745 0.63038325 0.93751559

-1.68873856 2.92632727

9 10 11 12 13 14 15

16

49 0.40654255 -1.03424797 -2.80970187 -0.66436228 1.93368866 -1.25231425

-1.85190143 1.30790596

17 18 19 20

51 0.19735974 0.61665474 -0.43347032 -0.94508977

53

plot(x,y)

55 for(i in 1:20)

abline(ig$coef[i,])

The variable ig will contain the hat matrix (leverage), coefficients of models obtained by
removing each point ($coefficients), residual standard deviation (RSE) ($sigma) obtained
by removing each point, and $wt.res, which is essentially the square root of sigma (but with
the positive or negative value.)

Here, we plot the coefficients a model describing the change in the model when each point

357

Chapter 14 Applied Statistics in R

Figure 14.10: This shows the points, along with lines showing the amount the standard model
changes when each point is removed. Point 13 produces a large change when present/absent,
suggesting it is influential.

−2 −1 0 1 2

−
3

−
2

−
1

0
1

2
3

x

y

is removed–the $coefficients value. We can see that the line associated with one point
(13) is fairly high. It also contains sigma–the similar value for dropping each case from the
regression, and a weighted residuals value as well.

14.4.1 Jackknife Methods

What if we were to see the range of correlations we get by consecutively leaving one point
out:

cors <- matrix(rep(0,20*3),ncol =3)

2 for(i in 1:20)

{

4 keep <- rep(T,20)

keep[i] <- F

6 cortmp <- cor.test(x[keep],y[keep])

cors[i,] <- c(cortmp$estimate ,cortmp$statistic ,cortmp$p.value)
8 }

10 plot(cors [,3])

abline (.05 ,0)

358

Chapter 14 Applied Statistics in R

Figure 14.11: Illustration of the Jackknife procedure.

●
● ●

●

● ●

●

●

● ●

●

●

●

●
●

●

● ●
●

●

5 10 15 20

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

Index

C
or

re
la

tio
n

w
he

n
re

m
ov

ed

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

−2 −1 0 1 2

−
3

−
2

−
1

0
1

2
3

x

y

●

The basic process of removing each data point and determining how it impacts the overall
model is often called the “jackknife” procedure; possibly named after how a jackknife might
have multiple blades which you can pull out and use one at a time.

The correlation in our sample data set changed when sample 13 was removed, but how
would our regression?

1 plot(x,y)

3 g1 <- lm(y~x)

g2 <- lm(y[-13]~x[-13])

5

points(x[13],y[13],pch=16,col="red")

7

abline(0,1,lty=3,lwd=3) ##The ’true ’ line

9 abline(g1$coef) ##The full data set

abline(g2$coef ,col="red",lty =2) ##Removing the ’outlier ’’

The smaller data set gets us further from the true model–in this case. Overall, the fit for
the majority of the data points is fairly unchanged. But is 13 an outlier?

It is simple to do a jackknife procedure and evaluate how goodness of fit or residuals or
beta values or other statistics change. For example, look at how the standardized residual
of each point changes when that point is left out:

set.seed (111)

2 x <- rnorm (20)

y <- x + rnorm (20)

4

6 resid <- rep(0,20)

for(i in 1:20)

359

Chapter 14 Applied Statistics in R

8 {

keep <- rep(T,20)

10 keep[i] <- F

xtmp <- x[keep]

12 model <- lm(y[keep]~xtmp)

resid[i] <-(y[i]-predict(model ,list(xtmp=x[i])))/sd(model$resid)
14 }

16 plot(resid/sd(resid))

But the predicted change is not the only thing you could look at. You could also look at
beta weights:

model1 <- lm(y~x)

2 int <- rep (0 ,20)

beta <- rep (0 ,20)

4 for(i in 1:20)

{

6 keep <- rep(T,20)

keep[i] <- F

8 xtmp <- x[keep]

model <- lm(y[keep]~xtmp)

10 int[i] <- model1$coef[1]-model$coef [1]
beta[i] < model1$coef[1]-model$coef [2]

12 }

Let’s plot the different measures:

plot(int)

2 plot(beta)

plot(x,y)

4 for(i in 1:20) abline(int[i],beta[i])

6 fits <- dfbetas(model1)

for(i in 1:20) abline(fits[i,],col="red")

Th dffits scales the residual much like studentized residuals, but also by estimates of
sigma. The Cook’s statistics does similar alchemy. A number of these are available, and
many of them tell you similar things.

1

plot(hatvalues(model1),type="o",col="red",ylim=c(-1,2))

3 points(cooks.distance(model1),type="o",col="darkgreen")

points(dffits(model1),type="o",col="orange")

The built-in function influence.measures conducts a bunch of tests like this to identify
possible outliers. The dfb.1 and dfb.x correspond roughly to the change in intercept and
slope we just did.

2 influence.measures(model1)

4 Influence measures of

lm(formula = y ~ x) :

360

Chapter 14 Applied Statistics in R

Figure 14.12: Illustration using a Jackknife procedure on four statistics.

●
● ●

●

● ●

●

●

● ●

●

●

●

●
●

●

● ●
●

●

5 10 15 20

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

Index

C
or

re
la

tio
n

w
he

n
re

m
ov

ed

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

−2 −1 0 1 2

−
3

−
2

−
1

0
1

2
3

x

y

●

Figure 14.13: Comparison of three influence measures: hat values (leverage); cooks distance,
and the dffits diagnostic fit value

.

● ● ●

●

● ●
●

● ● ● ● ●

●

●
● ●

● ●
● ●

5 10 15 20

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

2.
0

Index

ha
tv

al
ue

s(
m

od
el

1)

● ● ● ● ● ●

●
●

● ●

●

●

●

●

●
●

● ● ● ●

●
● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

361

Chapter 14 Applied Statistics in R

6

dfb.1_ dfb.x dffit cov.r cook.d hat inf

8 1 0.14034 0.078740 0.1434 1.171 0.010712 0.0716

2 0.09760 0.002664 0.1039 1.152 0.005648 0.0500

10 3 0.07410 0.003674 0.0783 1.164 0.003224 0.0501

4 -0.00282 0.046526 -0.0512 1.570 0.001388 0.2865 *

12 5 0.10426 0.021167 0.1059 1.155 0.005863 0.0521

6 0.17851 0.086896 0.1800 1.136 0.016693 0.0652

14 7 -0.14607 0.404044 -0.5133 1.062 0.126519 0.1315

8 0.37835 -0.419291 0.7094 0.661 0.196549 0.0768 *

16 9 0.04675 -0.045205 0.0817 1.196 0.003519 0.0720

10 -0.14991 0.026889 -0.1739 1.107 0.015495 0.0512

18 11 -0.52768 -0.105614 -0.5361 0.691 0.116326 0.0520

12 -0.09918 0.006444 -0.1094 1.150 0.006249 0.0502

20 13 0.92519 1.239984 1.3389 1.211 0.794381 0.3512 *

14 -0.26897 -0.181524 -0.2833 1.109 0.040432 0.0848

22 15 -0.49241 -0.451291 -0.5719 1.020 0.153775 0.1325

16 0.10533 -0.329240 0.4093 1.163 0.083704 0.1416

24 17 0.03368 0.009681 0.0338 1.183 0.000604 0.0545

18 0.09393 -0.000613 0.1012 1.154 0.005363 0.0500

26 19 -0.04359 0.069738 -0.1020 1.223 0.005473 0.0939

20 -0.19821 -0.129709 -0.2074 1.155 0.022155 0.0821

14.5 Impact on inferential statistics

Many types of data you may measure as a social scientist will frequently or logically produce
data whose error is not normally distributed, and/or distributions where the variance depends
on the level. These include:

• Response time. It is typically highly skewed, and RT cannot be negative, which violates
normality. Variance is typically proportional to the mean, and not independent. Often,
a log transform will improve all of these problems

• Probability Correct. Probability is bounded between 0/1, and can usually be modeled
as conforming to a binomial distribution. Variance of a binomial is

√
(p ∗ (1 − p)),

getting smaller near 0 and 1

• Distance-based precision or accuracy. Measures of how far off an estimate is will be
bounded at the bottom by zero, will likely be skewed and have variance proportional
to the mean.

• Multiple choice responses. Like P(corr), but with more contraints, and additionally a
guessing parameter might be needed.cause it is bounded.

It is difficult to find any common measure in psychology that does not violate the nor-
mality assumption in one way or another.

1 dat <- read.csv("tmt.csv")

dat$age <- as.factor(dat$age)
3 par(mfrow=c(1,2))

plot(dat$time~(dat$age)+dat$type)

These completion times look highly skewed. What if we do an lm:

362

Chapter 14 Applied Statistics in R

lm1 <- lm(time~age+type ,data=dat)

2 qqnorm(lm1$resid)

As expected, some residuals look problematic.

par(mfrow=c(1,2))

2 plot(lm1)

hist(lm1$resid)

But maybe a simple transformation would help: If we take a log transform after sub-
tracting the smallest number to make sure they are all positive and close to 0,

1 hist(log(lm1$resid -min(lm1$resid)),breaks =20)

3 par(mfrow=c(1,2))

5 plot(log(dat$time)~(dat$age))
points(dat$age ,log(dat$time))

7 plot(log(dat$time)~(dat$type))
points(dat$type ,log(dat$time),col="grey")

There are still ’outliers’ on the high side, but it looks better’

lm2 <- lm(log(time)~age+type ,data=dat)

2 qqnorm(lm2$resid)
#This is not perfect , but an improvement.

4

##This is a bit better; the fastest time was around 50

6 lm3 <- lm(log(time -50)~age+type ,data=dat)

qqnorm(lm3$resid)
8 hist(lm3$resid)

10 summary(lm1)

summary(lm2)

12 summary(lm3)

These transformations both improved the R2 and made the residuals more normal.

14.6 Downside of transformation to normalize variance

lm1.int <- lm(time~age*type ,data=dat)

2 lm3.int <- lm(log(time -50)~age*type ,data=dat)

anova(lm1.int)

4 anova(lm3.int)

6

agg1 <- tapply(dat$time ,list(dat$age ,dat$type),mean)
8 agg3 <- tapply(log(dat$time -50),list(dat$age ,dat$type),mean)

10 matplot(t(agg1),type="o",ylab="Response time (s)")

matplot(t(agg3),type="o",ylab="log(Response time)",yaxt="n",ylim=c(2.5 ,5))

12 axis(2,log(c(65 ,75 ,100 ,150 ,200 ,250) -50), c(65 ,75 ,100 ,150 ,200 ,250),las =1)

363

Chapter 14 Applied Statistics in R

When we take the transform to make the variance fit the model, the interaction disap-
pears. After all, interactions are only defined additively. Notice that a test for inequality is
fine after the transform.

library(car)

2 ncvTest(lm1.int)

ncvTest(lm3.int)

364

Chapter 15

Example: Houghton County
Snowfall

This example was taken from the midterm exam given to the 2012 class.
The available data set has snowfall each of 8 winter months (October through May) in

inches, each year since 1890. It contains each year in a row, and each month in a column.

15.1 Graphing the major trends

After reading in the data, we can use matplot to display it, but it is sort of confusing:

1 weather <- read.csv("weather.csv")

matplot(weather [,2:9], type="l")

Figure 15.1: Snowfall in each month over the past 120 years in Houghton

0 20 40 60 80 100 120

0
2

0
4

0
6

0
8

0
1

0
0

1
2

0

w
e

a
th

e
r[

,
2

:9
]

365

Chapter 15 Applied Statistics in R

I’d like to make a stacked line plot. To do this, I can apply the cumsum function to each
row of the data frame:

bymonth <- apply(weather [,2:9],1, cumsum)

2

> bymonth [,1:5]

4 [,1] [,2] [,3] [,4] [,5]

OCT 1.0 0.0 0.0 1.0 0.00

6 NOV 13.2 31.0 23.0 31.0 29.50

DEC 25.2 54.0 67.0 79.5 47.80

8 JAN 58.2 98.0 91.5 116.5 121.80

FEB 86.7 116.0 108.0 131.0 130.80

10 MAR 108.7 128.5 125.0 154.0 136.05

APR 111.2 129.5 138.0 164.0 136.05

12 MAY 111.2 129.5 139.0 165.0 137.55

Now, each column represents a different year, with the numbers in each row representing the
cumulative snowfall that year. I’ll start by plotting both this matrix and its transpose:

par(mfrow=c(1,2))

2 matplot(bymonth ,type="l",col="black",lty=1,main="Cumulative snowfall")

matplot(t(bymonth),type="l",col="black",lty=1)

Figure 15.2: Cumulative Snowfall in each month over the past 120 years in Houghton

1 2 3 4 5 6 7 8

0
5

0
1

5
0

2
5

0
3

5
0

Cumulative snowfall

b
y
m

o
n

th

0 20 40 60 80 100 120

0
5

0
1

5
0

2
5

0
3

5
0

t(
b
y
m

o
n

th
)

These are pretty interesting. The left panel shows one trajectory for each year, and the
right shows a contour of the snowfall over time. I’d like to improve the right one in a number
of ways. First, I’d like to color each month according to a different color in some palette.
Also, maybe I can fit a polynomial regression to approximate the trend over time.

To fill the plots, I need to use the polygon function. To do it right, I need to add the
bottom corners of the polygon to the beginning and end. Then iterate through each column
of the matrix, starting from May and moving back to October. I’ve made this into a function,
so that it might be easier to adapt to other data sets.

1

x <-1891:2011

366

Chapter 15 Applied Statistics in R

3 ymatrix <- t(bymonth)

ylab <-"Inches of snow per Winter"

5 xlab <-"Year"

main <-"Houghton County Annual Snowfall"

7

matplot(x,ymatrix ,lty=1,type="l",xlab=xlab ,ylab=ylab ,main=main ,col="black")

9

##Figure out some vertical lines.

11 xrange <- round(range(x) ,-1)

abline(v=seq(xrange [1], xrange [2] ,10),lty=2,col="grey")

13

The following command will make a blue gradient ,

15 ## using the gplots library. Hardcoding here to avoid

needing to load library

17 ##cols <- rev(rich.colors ((ncol(ymatrix)) ,"blues "))

cols <- c("#FFFFFFFF", "#CEEAFFFF", "#A1D0FFFF", "#79 B1FFFF", "#548 DFFFF",

19 "#3463 E1FF", "#1834 A9FF", "#00005 CFF")

21 for(i in ncol(ymatrix):1)

{

23 polygon(c(min(x),x,max(x)), c(0,ymatrix[,i],0),col=cols[i],lty=0)

}

25

#Make one last unfilled polygon around the whole thing.

27 polygon(c(min(x),x,max(x)), c(0,ymatrix[,ncol(ymatrix)],0),lty=1)

29 ##Let ’s fit a polynomial model to describe the trend

fit <- lm(ymatrix[,ncol(ymatrix)]~poly(x,degree =10))

31 points(x,fit$fit ,lty=1,lwd=3,type="l")

33 ## Add a legend.

legend(min(x) ,355,rev(c("Oct","Nov","Dec","Jan","Feb","Mar","Apr","May")),bty=

"o",pt.cex=1.9,

35 pch=15,col=rev(cols),y.intersp =.9,lty=0)

Add a second legend that just draws boxes around the points.

37 legend(min(x) ,355,rev(c("","","","","","","","")),bty="n",pt.cex=1.9,

pch=0,y.intersp =.9)

Also, we’d like to be able to look at this by month, to see the typical trends across the
calendar year. For a plot like this, I like to show as much of the raw data as possible, and
to provide summaries only as overlays, unless the raw data is too cluttered to make sense
of. Also, anticipating one of the later questions, I’m going to pick out the month of highest
snowfall in each year, and mark it with a colored circle. The result is shown in Figure 15.4

1 matplot(t(weather [,2:9]),type="o",pch=16,cex=.2,col="black",xaxt= "n",lty=3,

ylab="Monthly snowfall (in)",las=1)

3 axis(1,1:8,c("OCT","NOV","DEC","JAN","FEB","MAR","APR","MAY"))

for(i in seq (0 ,120 ,20))

5 abline(i,0,lty=2,lwd=.8,col="grey")

7 points(rowMeans(t(weather [,2:9])),type="l",col="blue",lwd=5)

9 ##anticipating later question

weather$max <- apply(weather [,2:9],1, which.max)

11 points(weather$max ,
weather [,2:9 [cbind (1:121 , weather$max)],

13 col="navy")

367

Chapter 15 Applied Statistics in R

Figure 15.3: Cumulative Snowfall in each month over the past 120 years in Houghton

1900 1920 1940 1960 1980 2000

0
5

0
1

0
0

2
0

0
3

0
0

Houghton County Annual Snowfall

Year

In
c
h

e
s
 o

f
s
n

o
w

 p
e

r
W

in
te

r

May
Apr
Mar
Feb
Jan
Dec
Nov
Oct

15.2 Climate Change?

There appears to be a shift in snowfall patterns over the past century, with an increase
happening around 1920. Let’s two time eras, one for the 30 years before 1920, and one for
the 91 years after 1920. I’d like to conduct statistical tests that tell me (at p=.05) whether
snowfall increased in each month of the year, or just some of the months. Also, I’d like to
show a plot of the means of the early and late era by month, and use some graphical means
to indicate which values differ reliably.

To start, I’ll make two filtering vectors to let me pick out the two regions. Then it
is a matter of conducting t-tests for each month. The t test function spits out a lot of
information, but we can access the important pieces using the $ symbol.

1 early <- rep(c(T,F),c(30 ,91))

late <- rep(c(F,T),c(30 ,91))

3 o<-t.test(weather$OCT[early],weather$OCT[late])
n<-t.test(weather$NOV[early],weather$NOV[late])

5 d<-t.test(weather$DEC[early],weather$DEC[late])
j<-t.test(weather$JAN[early],weather$JAN[late])

7 f<-t.test(weather$FEB[early],weather$FEB[late])
m<-t.test(weather$MAR[early],weather$MAR[late])

9 a<-t.test(weather$APR[early],weather$APR[late])
m2<-t.test(weather$APR[early],weather$APR[late])

11

round(rbind(

13 c(o$stat ,o$par ,o$p.val),
c(n$stat ,n$par ,n$p.val),

15 c(d$stat ,d$par ,d$p.val),
c(j$stat ,j$par ,j$p.val),

17 c(f$stat ,f$par ,f$p.val),
c(m$stat ,m$par ,m$p.val),

19 c(a$stat ,a$par ,a$p.val),
c(m2$stat ,m2$par ,m2$p.val)) ,2)

21 t df

[1,] -1.22 65.98 0.23

368

Chapter 15 Applied Statistics in R

Figure 15.4: Cumulative Snowfall in each month over the past 120 years in Houghton, plotted
by calendar month

●

● ●

●

●

●

●

●0

20

40

60

80

100

120

M
o
n
th

ly
 s

n
o
w

fa
ll

(i
n
)

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

● ●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

● ●

●●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

● ● ●●

●

●

●

●

●

●

●

OCT NOV DEC JAN FEB MAR APR MAY

●

●●
●

●

●

● ●●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

● ●

●
●●

●

●

●
●

●

●

●
●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

23 [2,] -1.08 60.30 0.29

[3,] -3.79 92.05 0.00

25 [4,] -6.99 92.98 0.00

[5,] -5.73 109.16 0.00

27 [6,] -3.12 97.58 0.00

[7,] -0.36 45.22 0.72

29 [8,] -0.36 45.22 0.72

Notice that the months early and late in the season do not differ reliably between eras, but
December through March do. Let’s plot these means. A simple interaction.plot or matplot
would work. To make it easier to control plot settings, I’ll use a simple plot and build up
to what I want. To indicate which ones differ reliably, I’ll put a gold rectangle around the
difference. The results are shown in Figure 15.5.

1 #To start with , use type "n" so nothing gets plotted.

plot(colMeans(weather[early ,2:9]) ,type="n",ylim=c(0,80),

3 ylab="Average monthly snowfall" ,xaxt="n",xlab="Month",

las=1,main="Average snowfall by month",cex=2.5,pch=16,col="darkblue")

5 #points(colMeans(weather[late ,2:9] ,na.rm=T),type="o",

pch=15,cex=2.5,col="darkblue")

7 axis(1,1:8,c("OCT","NOV","DEC","JAN","FEB","MAR","APR","MAY"))

for(i in c(0:8*10))

9 abline(i,0,col="grey",lty=2)

11 means <-rbind(colMeans(weather[early ,2:9]) ,

colMeans(weather[late ,2:9]))

13 reliable <- c(F,F,T,T,T,T,F,F)

##Add the reliability boxes

15 rect ((1:8)[reliable]-.12,

means[1,reliable]-5,

369

Chapter 15 Applied Statistics in R

17 (1:8)[reliable]+.12,

means[2,reliable]+5,

19 border="gold",lwd=3)

21 text (5.5,77,"Reliable differences")

segments (4.3,77,3:6, means[2,reliable]+6) #add the arrow lines

23 #Now , plot the points so they are on top

points(colMeans(weather[early ,2:9]) ,type="o",

25 ylim=c(0,80),col="lightblue",pch=16,cex =1.6)

points(colMeans(weather[late ,2:9] ,na.rm=T),

27 type="o",col="blue",pch=15,cex=1.6,)

29 legend (1,80,c("1920- present","1890 -1920"),

lwd=2,lty=1,col=c("blue","lightblue"),

31 pt.cex=1.5,pch=c(15 ,16))

Figure 15.5: Comparison of snowfall across months for two eras

0

20

40

60

80

Average snowfall by month

Month

A
ve

ra
g

e
 m

o
n

th
ly

 s
n

o
w

fa
ll

OCT NOV DEC JAN FEB MAR APR MAY

Reliable differences

●

●

●
●

●

●

●

●

●

1920−present

1890−1920

15.3 Did the snowiest month change?

It appears that in the ’old’ era, December tended to get more snow than January, but this
has switched. Conduct an appropriate statistical test determining whether each of these
are reliable. Are these differences reliable. That is, for each era, was January larger than
December? Describe the results as you would in a research report.

First, let’s test this for all years. A t.test is probably the easiest test to use, but because
we are comparing months of the same year, and because we know the overall weather trend
has changed over time, we want to use a paired t test.

1 ##This is the ’wrong ’ test

t.test(weather$DEC ,weather$JAN)
3 ##This is a better one to use:

t.test(weather$DEC ,weather$JAN ,paired=T)

370

Chapter 15 Applied Statistics in R

5

7 > t.test(weather$DEC[early],weather$JAN[early],paired=T)

9 Paired t-test

11 data: weather$DEC[early] and weather$JAN[early]
t = 0.4958 , df = 29, p-value = 0.6237

13 alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

15 -5.884926 9.651593

sample estimates:

17 mean of the differences

1.883333

19

> t.test(weather$DEC[late],weather$JAN[late],paired=T)
21

Paired t-test

23

data: weather$DEC[late] and weather$JAN[late]
25 t = -2.0184, df = 90, p-value = 0.04652

alternative hypothesis: true difference in means is not equal to 0

27 95 percent confidence interval:

-12.7880271 -0.1014235

29 sample estimates:

mean of the differences

31 -6.444725

We can see that there is no difference in the early era, but there is a difference in the late
era (p < .05). We must be careful not to infer that there was a change though. In this case,
since the difference went from +1.88 to -6.44 inches, we might be fairly confident; after all,
if this new difference is less than zero, it must also be less than 1.88. But, we don’t know
whether the old value was positive, and it could easily have been negative. So, we should do
a specific test for this, which we could do using a regression or anova model,

Because these data are sort of equivalent to a cross-tabulation table, we might use a chi-
squared test. For arbitrary DVs, this would not be appropriate, but we are sort of counting
units of snow that fell during different times, and so it will work in a pinch.

To do this, let’s compute a table with the total snowfall in December and January by
era:

tab <- aggregate(data.frame(DEC=weather$DEC ,JAN=weather$JAN),
2 list(late),sum)

> tab

4 Group.1 DEC JAN

1 FALSE 1051.00 994.50

6 2 TRUE 4492.01 5078.48

8 >chisq.test(tab)

10 Pearson ’s Chi -squared test

12 data: tab

X-squared = 13.5619 , df = 2, p-value = 0.001135

14

Warning message:

16 In chisq.test(tab) : Chi -squared approximation may be incorrect

371

Chapter 15 Applied Statistics in R

Table 15.1: Number of times each month had the highest snowfall of the season
Month 1920-2011 1890-1920
OCT 0 0
NOV 4 2
DEC 28 17
JAN 50 10
FEB 5 1
MAR 4 0
APR 0 0
MAY 0 0

This test shows that distribution of the snowfall did indeed change by era.

15.4 Highest snowfall month

Since there seems to be this switch between December and January, maybe the time of
winter in which the peak snowfall arrives has also switched. I’d like to calculate which
month received the highest snowfall in each winter, and tabulate that over the two eras. The
following commands will work:

weather$max <- apply(weather [,2:9],1, which.max)

2 highmonth <- table(weather$max ,early)

In this case, there were no 1 values, indicating October never was the highest month of
snow, so the table highmonth has now 1 row. The data look like It looks like the distribution
of peak snowfall has shifted later. We can test this with a chi squared test.

chisq.test(highmonth)

2

Pearson ’s Chi -squared test

4

data: highmonth

6 X-squared = 7.9598 , df = 4, p-value = 0.09306

15.5 Prediction: March Snowfall

Can we predict snowfall in March based on current year’s snowfall? To do this, let’s create a
regression model that attempts to predict March snowfall based on a combination of linear
predictors of OCT,NOV,DEC,JAN, and FEB (the months that precede March). Because of
these differences between early and late eras, we know we probably shouldn’t use the oldest
data, so let’s make one model for the entire data set, and a second model for just the modern
era.

The full model is easy to specify:

g1 <- lm(weather$MAR~weather$OCT+weather$NOV +

2 weather$DEC+weather$JAN+weather$FEB)
> summary(g1)

4

372

Chapter 15 Applied Statistics in R

Call:

6 lm(formula = weather$MAR ~ weather$OCT + weather$NOV + weather$DEC +

weather$JAN + weather$FEB)
8

Residuals:

10 Min 1Q Median 3Q Max

-22.891 -7.676 -1.931 7.393 47.022

12

Coefficients:

14 Estimate Std. Error t value Pr(>|t|)

(Intercept) 7.05681 3.80608 1.854 0.066289 .

16 weather$OCT -0.08314 0.35321 -0.235 0.814321

weather$NOV 0.01502 0.09254 0.162 0.871305

18 weather$DEC 0.03976 0.05110 0.778 0.438098

weather$JAN 0.04914 0.05685 0.864 0.389151

20 weather$FEB 0.26096 0.07672 3.401 0.000923 ***

22 Signif. codes: 0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1

24 Residual standard error: 12.81 on 115 degrees of freedom

Multiple R-squared: 0.1419 , Adjusted R-squared: 0.1045

26 F-statistic: 3.802 on 5 and 115 DF , p-value: 0.003183

The overall model is interesting, but not very encouraging. The reliability of the parameters
seems to improve as we get closer to March, and February is the only one that is reliable. It
looks like on average we get 7 inches + one inch for every four inches that falls in February,
plus some additional amount that the other months are accounting for. It would be good to
get rid of some of these other predictors to give us more stable estimates. Let’s do that for
a model that uses only the late-era data. Here is a set of nested regression models, and each
one removes the least reliable predictor of the larger model. We can compare them all with
an ANOVA table.

g3a <- lm(MAR~OCT+NOV+DEC+JAN+FEB ,data=weather[late ,])

2 g3b <- lm(MAR~OCT+DEC+JAN+FEB ,data=weather[late ,])

g3c <- lm(MAR~OCT+JAN+FEB ,data=weather[late ,])

4 g3d <- lm(MAR~JAN+FEB ,data=weather[late ,])

g3e <- lm(MAR~FEB ,data=weather[late ,])

6

> anova(g3a ,g3b ,g3c ,g3d ,g3e)

8 Analysis of Variance Table

10 Model 1: MAR ~ OCT + NOV + DEC + JAN + FEB

Model 2: MAR ~ OCT + DEC + JAN + FEB

12 Model 3: MAR ~ OCT + JAN + FEB

Model 4: MAR ~ JAN + FEB

14 Model 5: MAR ~ FEB

Res.Df RSS Df Sum of Sq F Pr(>F)

16 1 85 17222

2 86 17222 -1 -0.146 0.0007 0.9787

18 3 87 17286 -1 -64.283 0.3173 0.5747

4 88 17301 -1 -14.960 0.0738 0.7865

20 5 89 17496 -1 -194.655 0.9608 0.3298

22 > anova(g3a ,g3e)

> anova(g3a ,g3e)

24 Analysis of Variance Table

26 Model 1: MAR ~ OCT + NOV + DEC + JAN + FEB

Model 2: MAR ~ FEB

373

Chapter 15 Applied Statistics in R

28 Res.Df RSS Df Sum of Sq F Pr(>F)

1 85 17222

30 2 89 17496 -4 -274.04 0.3381 0.8515

Each model provides a fit no worse than the model one parameter bigger. as a check, I
also compared the smallest model with the biggest, which showed that there is no reliable
difference between these two models. The best model, g3e, looks like:

1 > summary(g3e)

3 Call:

lm(formula = MAR ~ FEB , data = weather[late ,])

5

Residuals:

7 Min 1Q Median 3Q Max

-23.145 -9.099 -2.084 7.853 47.698

9

Coefficients:

11 Estimate Std. Error t value Pr(>|t|)

(Intercept) 12.00139 3.12103 3.845 0.000226 ***

13 FEB 0.26752 0.08614 3.106 0.002547 **

15 Signif. codes: 0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1

17 Residual standard error: 14.02 on 89 degrees of freedom

Multiple R-squared: 0.09777 , Adjusted R-squared: 0.08763

19 F-statistic: 9.645 on 1 and 89 DF , p-value: 0.002547

So, our best estimate is 12 + .26 times February’s snowfall, which ended up being 25.5 inches.
Our best guess should thus be 18.8 inches. But we can’t be very confident–the R2 value is
.087, which means we are predicting less than 10% of the variance with the model. Can we
place confidence regions around our prediction? The predict function will report two kinds
of confidence regions for us: prediction and confidence:

1 > predict.lm(g3e , data.frame(FEB =25.5) ,interval="prediction")

fit lwr upr

3 1 18.82322 -9.210079 46.85652

> predict.lm(g3e , data.frame(FEB =25.5) ,interval="confidence")

5 fit lwr upr

1 18.82322 15.70038 21.94606

What do these tell us? These disagree substantially, and neither seems very appropriate.
This is an area of research where there is no consensus. We know from Figure ?? that the
range of snowfall in March is between around 0 and 60, and if we look at the 95% range of
March snowfall in the recent era, we get:

quantile(weather$MAR[late],c(.025 ,.5 ,.975))
2 2.5% 50% 97.5%

2.85 17.70 54.90

4

This maps more closely on the prediction interval, except the prediction interval goes awry
because its lower bound is negative, because it is assuming the error should be symmetric and

374

Chapter 15 Applied Statistics in R

not bounded. On the upper bound, it is a bit larger than our model, and so the prediction
interval brings the upper bound in a little bit. The confidence interval is probably much too
small. How does it relate to our residuals for the data set?

1 > quantile(g3e$resid ,c(.05 ,.95))
2.5% 97.5%

3 -19.62415 34.62150

This shows that within the data set we are predicting, 95% of the time our best prediction
was no more than 19.6 inches too high and 34 inches too low. The prediction interval seems
about right.

15.6 Predictions based on el nino and sunspots records

The only thing we can do to improve the model is to add more predictors. Monthly records
of the the South Pacific El Nino/La Nina oscillation activity go back to the 1880s, and I’ve
included them in the weather.csv data set. Also, monthly records of sunspot counts go back
hundreds of years. Maybe knowing about these predictors will be helpful?

The sunspots data are separated in another file which has each month on a separae line.
The following transforms them into a matrix like the rest of our data.

1 sunspots <- read.table("sunspots.csv",sep=",",header=T)

3 ##Our weather data set goes from OCT 1890 to present

start <-which(sunspots$Year.Month ==189010)
5 sunsub <- sunspots[start :3158 ,]

sunmat <- matrix(sunsub$Sunspots [1:(12*121)],byrow=T,ncol =12)
7 colnames(sunmat) <- colnames(weather)[12:23]

rownames(sunmat) <- rownames(weather)

Now, we can just add the sunspot data together with the master data.

masterdat <- data.frame(weather ,sunmat)

2 >masterdat [1:5,]

Year OCT NOV DEC JAN FEB MAR APR MAY TOTAL Elnino Oct Nov Dec

Jan

4 1 1890 -91 1 12.2 12.0 33.0 28.5 22.00 2.5 0.0 111.20 1890 -1891 3.6 2.6

0.6 15.6

2 1891 -92 0 31.0 23.0 44.0 18.0 12.50 1.0 0.0 129.50 1891 -1892 0.6 -4.7

-4.5 2.7

6 3 1892 -93 0 23.0 44.0 24.5 16.5 17.00 13.0 1.0 139.00 1892 -1893 8.5 -0.7

3.7 11.3

4 1893 -94 1 30.0 48.5 37.0 14.5 23.00 10.0 1.0 165.00 1893 -1894 7.9 2.6

1.6 17.5

8 5 1894 -95 0 29.5 18.3 74.0 9.0 5.25 0.0 1.5 137.55 1894 -1895 1.8 7.2

0.1 5.6

Feb Mar Apr May Jun Jul Aug Sep max Oct.1 Nov.1 Dec.1 Jan.1 Feb.1

Mar.1

10 1 -3.6 -9.5 4.5 -0.3 -1.5 -6.3 -8.9 -10.6 4 11.2 9.6 7.8 13.5 22.2

10.4

2 -10.2 11.1 6.9 10.0 19.6 7.4 5.9 6.3 4 51.5 41.9 32.5 69.1 75.6

49.9

12 3 7.7 -1.4 1.2 -3.5 10.7 14.0 7.8 5.7 3 70.5 65.4 78.6 75.0 73.0

65.7

4 10.0 5.6 -3.0 -5.1 -1.5 -2.3 -5.7 -1.6 3 80.0 75.1 93.8 83.2 84.6

52.3

375

Chapter 15 Applied Statistics in R

14 5 3.0 -0.3 -7.1 -8.2 -4.7 -0.4 -6.3 -4.0 4 75.5 56.6 60.0 63.3 67.2

61.0

Apr.1 May.1 Jun.1 Jul.1 Aug.1 Sep.1

16 1 20.5 41.1 48.3 58.8 33.0 53.8

2 69.6 79.6 76.3 76.5 101.4 62.8

18 3 88.1 84.7 89.9 88.6 129.2 77.9

4 81.6 101.2 98.9 106.0 70.3 65.9

20 5 76.9 67.5 71.5 47.8 68.9 57.7

We now have three sets of monthly predictions–the column headers could be improved,
but they will work in a pinch. Let’s look at the annual totals of each and see if there is a
relationship?

snowfall <- rowSums(masterdat [,2:9])

2 elnino <- rowMeans(masterdat [,12:23])

sunspots <- rowSums(masterdat [,24:35])

4 > cor(cbind(snowfall ,elnino ,sunspots))

snowfall elnino sunspots

6 snowfall 1.0000000 0.11226902 0.29689342

elnino 0.1122690 1.00000000 0.01364441

8 sunspots 0.2968934 0.01364441 1.00000000

Figure 15.6: Comparison of snowfall, sunspots, and el nino activity across years.

0 20 40 60 80 100 120

0
1

0
0

2
0

0
3

0
0

V
a

lu
e

Actually, snowfall seems modestly related to both, and the correlation with sunspot
activity during a given year is big enough to get excited about. Plus, sunspot activity is not
related to el nino in this data set, so the predictors are close to orthogonal.

I’d like to be able to use the entire data set, rather than just the late era. Assuming
the shift in snowfall does not stem from sunspots or el nino, but some other aspect (overall
climate change, measurement change, or changes in record-keeping). So what if we fit a
polynomial to the overall trend over the years to factor out that effect? Let’s add a predictor
year that is just the integers 1 to 121, and use powers of this them in a model. To get a feel
for which power to use, let’s fit a model of March snowfall using just a polynomial regression
on years:

376

Chapter 15 Applied Statistics in R

2 masterdat$year <- 1:121

4 poly4 <- lm(MAR~year + I(year ^2) + I(year ^3) + I(year ^4),data=masterdat)

poly5 <- lm(MAR~year + I(year ^2) + I(year ^3) + I(year ^4)+I(year ^5),data=

masterdat)

6 poly6 <- lm(MAR~year + I(year ^2) + I(year ^3) + I(year ^4)+I(year ^5)+I(year ^6),

data=masterdat)

##You can choose orthognoal polynomials like this:

8 poly6 <- lm(MAR~poly(year ,6),data=masterdat)

We can overplot each of these polynomials. There looks to be little benefit of going higher
than a 4th order polynomial fit.

plot(masterdat$MAR)
2 points(poly4$fit ,type="l",col="red")

points(poly5$fit ,type="l",col="green")
4 points(poly6$fit ,type="l",col="blue")

Figure 15.7: Polynomial regression to fit the 120-year snowfall trend.

●

●

●

●

●
●

●●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

0 20 40 60 80 100 120

0
2

0
4

0
6

0

Year since 1890

M
a

rc
h

 s
n

o
w

fa
ll

Now, let’s do a larger model where we all the predictors and the polynomial regression
together.

377

Chapter 15 Applied Statistics in R

g1 <- lm(MAR~OCT+NOV+DEC+JAN+FEB+Oct+Nov+Dec+Jan+Feb+ Oct.1+ Nov.1+Dec .1+Jan .1+

Feb .1+

2 year + I(year ^2) + I(year ^3) + I(year ^4),data=masterdat)

>summary(g1)

4

Call:

6 lm(formula = MAR ~ OCT + NOV + DEC + JAN + FEB + Oct + Nov +

Dec + Jan + Feb + Oct.1 + Nov.1 + Dec.1 + Jan.1 + Feb.1 +

8 year + I(year ^2) + I(year ^3) + I(year ^4), data = masterdat)

10 Residuals:

Min 1Q Median 3Q Max

12 -21.752 -7.241 -0.491 6.142 36.670

14 Coefficients:

Estimate Std. Error t value Pr(>|t|)

16 (Intercept) 1.782e+01 7.320e+00 2.434 0.0167 *

OCT -9.392e-02 3.671e-01 -0.256 0.7986

18 NOV -7.738e-02 9.791e-02 -0.790 0.4312

DEC 3.977e-02 5.489e-02 0.725 0.4704

20 JAN -6.662e-02 6.975e-02 -0.955 0.3418

FEB 2.084e-01 8.049e-02 2.590 0.0110 *

22 Oct 2.333e-01 1.812e-01 1.288 0.2008

Nov -2.039e-01 1.689e-01 -1.207 0.2301

24 Dec -8.518e-02 1.976e-01 -0.431 0.6673

Jan -1.556e-01 1.605e-01 -0.969 0.3348

26 Feb 3.682e-01 1.634e-01 2.253 0.0264 *

Oct.1 4.733e-03 7.946e-02 0.060 0.9526

28 Nov.1 6.001e-02 9.077e-02 0.661 0.5100

Dec.1 -1.293e-01 8.525e-02 -1.516 0.1326

30 Jan.1 1.275e-01 8.670e-02 1.470 0.1446

Feb.1 -1.294e-01 6.153e-02 -2.104 0.0379 *

32 year -1.116e-01 7.048e-01 -0.158 0.8745

I(year ^2) -5.304e-03 2.311e-02 -0.230 0.8189

34 I(year ^3) 2.065e-04 2.826e-04 0.731 0.4666

I(year ^4) -1.305e-06 1.150e-06 -1.135 0.2591

36 ---

Signif. codes: 0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1

38

Residual standard error: 12.01 on 101 degrees of freedom

40 Multiple R-squared: 0.337, Adjusted R-squared: 0.2122

F-statistic: 2.701 on 19 and 101 DF, p-value: 0.0007264

The good news is our R-squared value has risen to .337, which is somewhat respectable.
The bad news is we have 19 predictors, and only a handful are reliable. It will be a nightmare
trying to pick the best one.

We can use a stepwise regression method implemented in the R step function. If we give
it a model, it will automatically remove predictors until some criterion is met.

gsmall <- step(g1,direction="both")

2

> gsmall

4

Call:

6 lm(formula = MAR ~ FEB + Feb + Feb.1 + I(year ^2) + I(year ^3) +

I(year ^4), data = masterdat)

8

Coefficients:

10 (Intercept) FEB Feb Feb.1

378

Chapter 15 Applied Statistics in R

1.414e+01 1.937e-01 2.178e-01 -7.861e-02

12 I(year ^2) I(year ^3) I(year ^4)

-7.430e-03 2.150e-04 -1.291e-06

OK, now model shows three reliable predictors along with the polynomials. By default,
step uses the Akaike Information Criterion (AIC) as a means to help select the smallest most
descriptive model. Uses goodness of fit, but penalizes models that have more predictors.
Recent research has tended to prefer a related criterion, called the Schwarz or Bayesian
Information Criterion (BIC). This tends to be a bit more conservative and produce smaller
models. You can use BIC by setting the k argument to be equal to log(N).

Also, you can control how the model does the search through the space. In actuality
there are more than half a million (219 = 524, 288) possible sub-models. It would be possible
to check each of these models and pick the best one. My computer can run 1000 of them in
about 7 seconds, and so doing the complete search should take about an hour. By default,
the step function uses a downward-only search, removing one predictor on each step until
remove another makes the AIC/BIC worse. We can set it to be a bit more robust by testing
at each step whether adding or subtracting predictors would be better. This is the ”both”
argument, and allow us to later add back predictors that we earlier removed. In this case,
it does not matter, and we get the same prediction regardless. However, the BIC eliminates
one additional predictor: February sunspots.

1 gsmall.bic <- step(g1,direction="both",k=log (121))

3 > summary(gsmall)

Call:

5 lm(formula = MAR ~ FEB + Feb + Feb.1 + I(year ^2) +

I(year ^3) + I(year ^4), data = masterdat)

7

Residuals:

9 Min 1Q Median 3Q Max

-26.164 -7.535 -0.592 6.389 38.428

11

Coefficients:

13 Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.414e+01 3.115e+00 4.541 1.4e-05 ***

15 FEB 1.937e-01 7.428e-02 2.608 0.01033 *

Feb 2.178e-01 1.059e-01 2.057 0.04199 *

17 Feb.1 -7.861e-02 2.432e-02 -3.232 0.00161 **

I(year ^2) -7.430e-03 5.184e-03 -1.433 0.15450

19 I(year ^3) 2.150e-04 1.027e-04 2.093 0.03853 *

I(year ^4) -1.290e-06 5.270e-07 -2.449 0.01585 *

21 ---

Signif. codes: 0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1

23

Residual standard error: 11.75 on 114 degrees of freedom

25 Multiple R-squared: 0.2834 , Adjusted R-squared: 0.2457

F-statistic: 7.514 on 6 and 114 DF , p-value: 8.442e-07

27

> summary(gsmall.bic)

29

Call:

31 lm(formula = MAR ~ FEB + Feb.1 + I(year ^3) + I(year ^4),

data = masterdat)

33

Residuals:

35 Min 1Q Median 3Q Max

-25.347 -8.011 -1.217 7.318 39.745

379

Chapter 15 Applied Statistics in R

37

Coefficients:

39 Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.130e+01 2.473e+00 4.568 1.23e-05 ***

41 FEB 2.094e-01 7.417e-02 2.823 0.00561 **

Feb.1 -7.896e-02 2.469e-02 -3.198 0.00178 **

43 I(year ^3) 6.562e-05 1.957e-05 3.354 0.00108 **

I(year ^4) -5.342e-07 1.692e-07 -3.158 0.00203 **

45 ---

Signif. codes: 0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1

47

Residual standard error: 11.94 on 116 degrees of freedom

49 Multiple R-squared: 0.2476 , Adjusted R-squared: 0.2216

F-statistic: 9.542 on 4 and 116 DF , p-value: 1.05e-06

In this case, I’d probably prefer the AIC model, for one reason: the predictors it used
were all February activity. There are reasons to suspect that if sunspot and el nino activity
was related to snowfall, it would most likely be the activity that happened in February. But
the BIC model gets rid of one of my polynomial predictors, which are likely to cause me
problems when I extrapolate anyway.

So, let’s make a new prediction based on these models.

##Lets predict this year!

2 year2012 <- data.frame(FEB=25.5, Feb=2.5,Feb .1=33.1 , year =121)

> predict(gsmall ,year2012)

4 1

12.42054

6

> predict(gsmall.bic ,year2012)

8 1

15.7602

Both of these predictions are lower than the snowfall-only model. The reason why they
are lower is probably partly because of the dropoff in March snowfall in recent years, which
is causing the polynomial to slope down at that point. Only time will tell how long this
trend will bear out.

380

Chapter 16

Categorical Predictors in lm,
the One-Way ANOVA, and
post-hoc tests

16.1 Categorical Predictors and their Underlying Con-
trasts

A good reference for understanding contrasts is Davis, 20101.
We saw several times already how you can use a factor as a predictor in a regression

model. When you look at the summary() of the model, it codes the first level of the factor
as 0, and codes the others with respect to that. As a reminder, here is a simulated data set
with hourly pay recorded from a survey for of 15 professionals, with three job categories,
and we can use specialty to predict salary in an lm model.

1 specialty <- as.factor(c("Advertising","Advertising","Advertising",

"Advertising","Advertising",

3 "Business","Business","Business","Business","Business",

"Certification","Certification","Certification",

5 "Certification","Certification"))

7 salary <- c(30 ,35 ,32 ,40 ,34 ,70 ,56 ,45 ,65 ,28 ,19 ,23 ,28 ,18 ,32)

> aggregate(salary ,list(specialty),mean)

9 Group.1 x

1 Advertising 34.2

11 2 Business 52.8

3 Certification 24.0

13

15 lm(salary~specialty)

17 Call:

lm(formula = salary ~ specialty)

19

Coefficients:

21 (Intercept) specialtyBusiness specialtyCertification

34.2 18.6 -10.2

1Davis, M. (2010). Contrast coding in multiple regression: Strengths, Weaknesses, and Utility of Popular
Coding Structures. Journal of Data Science, 8, 61-73. http://www.jds-online.com/files/JDS-563.pdf

381

http://www.jds-online.com/files/JDS-563.pdf

Chapter 16 Applied Statistics in R

As we’ve seen before, the first level of the predictor doesn’t appear in the table. This is
because in order put the categorical predictor into the regression, it must be coded according
to multiple hidden binary predictor variables called contrasts. Contrasts are sets of vectors
that uniquely identify categories in a way that makes sense. You could do this by hand, use
the default contrasts, or specify contrasts that you like. Contrasts are linked to the factor,
not the regression itself.

To see the contrasts associated with a factor, you can use the contrasts function:

contrasts(specialty)

2 Business Certification

Advertising 0 0

4 Business 1 0

Certification 0 1

Notice that the three-level categorical variable has been recoded into two variables (the
columns). These are labeled according to the variable they pick out, and the first level
(Advertising) is 0 on these two variables. Contrasts are just a we to code categorical values
into a set of (sometimes orthogonal, but otherwise independent) numerical predictors. If
you have two levels of a category, you can code it with a single numerical variable, but if
you have three levels, you need additional variables for each level, which accounts for n− 1
degrees of freedom.

The default contrasts are called “treatment” or “dummy” coding. We can produce this
type of contrast using the contr.treatment function.

> contr.treatment (3)

2 2 3

1 0 0

4 2 1 0

3 0 1

6

> contr.treatment(levels(specialty))

8 Business Certification

Advertising 0 0

10 Business 1 0

Certification 0 1

If we give contr.treatment a number, it will create treatment contrasts for a variable with
that many levels. If we give it a list of levels, it will create them and label them by those
levels, just like the default factor function will do. One thing should be clear–we need (and
use) two binary-coded variables to represent three levels. This may seem a little strange,
but if we had just two levels, we could easily represent them as a single binary variable.
Furthermore, we need to do this because we have typically committed to estimating an
intercept, which pins down our contrasts to some level, so we have just N − 1 degrees of
freedom left.

Consider the following, if we force a 0 intercept:

lm(salary~0+ specialty)

2

Call:

4 lm(formula = salary ~ 0 + specialty)

382

Chapter 16 Applied Statistics in R

6 Coefficients:

specialtyAdvertising specialtyBusiness specialtyCertification

8 34.2 52.8 24.0

Now, the model will estimate each level with its actual mean. With a single predictor,
the contrast coding used will always produce the same estimates if you force a 0-intercept.

Notice that the two columns of the contrast are orthogonal–the sum of the products is 0.
This won’t always be true of all contrasts we consider. There are many possible contrasts
you could choose; your choice may help you make default tests between relevant models.
Thus, you should both recognize what the default contrasts are so you can interpret models
with categorical predictors, and recognize that they can be changed, so that you can create
new models that are interpretable in the way you are interested in.

One contrast that is handy is the opposite to the default in R, but is common in the SAS
language, which can be produced via contr.SAS(). This contrast gives the last factor the
zero-level, and the first N-1 factors their own unique dimension. By setting the contrasts of
specialty to something different, we will get a different output to the model.

2 contr.SAS(levels(specialty))

Advertising Business

4 Advertising 1 0

Business 0 1

6 Certification 0 0

8

contrasts(specialty)<- contr.SAS(levels(specialty))

10

lm(salary~specialty)

12 Coefficients:

(Intercept) specialtyAdvertising specialtyBusiness

14 24.0 10.2 28.8

Notice that the intercept now corresponds to the mean of Certification, with the others
coded with respect to that. Like before, this is not a true intercept term–it is a baseline
that depends on how you have coded the internal representation of a factor. You simply
need to determine which factor level is not reported to understand which value the intercept
corresponds to.

16.1.1 Helmert coding

Another coding that is sometimes used is called ‘Helmert’ coding. In published research,
people use the term Helmert coding to refer to a number of similar coding schemes, including
those called reverse helmert codes, and so you may need to be careful about choosing and
referring to the one you are using, especially depending on the library or analysis software
you are using. R provides one such coding scheme in contr.helmert(), and the car library
has a similarcontr.Helmert(), which produces identical contrasts but labels contrasts to be
easier to read..

2 contr.helmert(levels(specialty))

[,1] [,2]

4 Advertising -1 -1

383

Chapter 16 Applied Statistics in R

Business 1 -1

6 Certification 0 2

8 >library(car)

> contr.Helmert(levels(specialty))

10 [H.1] [H.2]

Advertising -1 -1

12 Business 1 -1

Certification 0 2

Again, the three levels are coded in two dimensions. The first dimensions ignores the
third level, and subtracts the first from the second. Consequently, this first level of the
coding determines whether the first level of the factor differs from the second. The second
dimension compares the first two levels to two times the third. This essentially determines
whether the third differs from the average of the first two. As you add more levels, this
pattern continues, each time asking whether the next level differs from the average of the
previous levels. This might be useful in identifying where or when an effect starts, or (if
reversed) when an effect stops changing. It is a way of sneaking an ordinal representation
into a categorical coding, and so you need to arrange your levels so that they are in the order
you care about.

Notice that the dot product of each column with any other column is 0, so they are
orthogonal. Furthermore, they are each uncorrelated with one another, which means is
great for estimating parameters (because they will not depend on one another). Finally,
each column sums to 0, so each contrast corresponds to a test against the null hypothesis
that the contrast equals 0–which would happen if all values are the same.

> contr.helmert (5)

2 [,1] [,2] [,3] [,4]

1 -1 -1 -1 -1

4 2 1 -1 -1 -1

3 0 2 -1 -1

6 4 0 0 3 -1

5 0 0 0 4

8

10 > cor(contr.helmert (5))

[,1] [,2] [,3] [,4]

12 [1,] 1 0 0 0

[2,] 0 1 0 0

14 [3,] 0 0 1 0

[4,] 0 0 0 1

16

For helmert (and some other codings), the order of the factor makes a difference. By
default, factors are coded in alphabetical order, which may not be what you want.

1

values <- c(1,1.1,1,1.3,.9,1.2, 4,5,6,8,10,9)

3 months <- factor(c("Jan","Feb","Mar","Apr","May","Jun",

"July","Aug","Sep","Oct","Nov","Dec"))

5 months

7 [1] Jan Feb Mar Apr May Jun July Aug Sep Oct Nov Dec

Levels: Apr Aug Dec Feb Jan July Jun Mar May Nov Oct Sep

9

384

Chapter 16 Applied Statistics in R

contrasts(months) <- contr.helmert(levels(months))

11 lm(values~months)

13 Call:

lm(formula = values ~ months)

15

Coefficients:

17 (Intercept) months1 months2 months3 months4 months5

4.04167 1.85000 1.95000 -1.00000 -0.62000

0.08667

19 months6 months7 months8 months9 months10 months11

-0.22778 0.72778 0.41364 0.17803 -0.33810 -0.27857

At first, this all looks like it might be OK. We have an intercept, which is 4.04. Months1
codes the difference between month 1 and 2, but looking at the original values, we know that
there was just a .1 increase between January and February. What happened? Let’s look at
the contrast coding:

1 > contrasts(months)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11]

3 Apr -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

Aug 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

5 Dec 0 2 -1 -1 -1 -1 -1 -1 -1 -1 -1

Feb 0 0 3 -1 -1 -1 -1 -1 -1 -1 -1

7 Jan 0 0 0 4 -1 -1 -1 -1 -1 -1 -1

July 0 0 0 0 5 -1 -1 -1 -1 -1 -1

9 Jun 0 0 0 0 0 6 -1 -1 -1 -1 -1

Mar 0 0 0 0 0 0 7 -1 -1 -1 -1

11 May 0 0 0 0 0 0 0 8 -1 -1 -1

Nov 0 0 0 0 0 0 0 0 9 -1 -1

13 Oct 0 0 0 0 0 0 0 0 0 10 -1

Sep 0 0 0 0 0 0 0 0 0 0 11

We can see that the factor is in alphabetical order, so this compares April to August–
something we probably don’t care about. We need to take care to set the order when
defining the factor:

months .0 <- c("Jan","Feb","Mar","Apr","May","Jun",

2 "July","Aug","Sep","Oct","Nov","Dec")

months <- factor(months.0,levels=months .0)

4 contrasts(months) <- contr.helmert(levels(months))

lm(values~months)

6

Call:

8 lm(formula = values ~ months)

10 Coefficients:

(Intercept) months1 months2 months3 months4 months5

12 4.04167 0.05000 -0.01667 0.06667 -0.04000 0.02333

14 months6 months7 months8 months9 months10 months11

0.41667 0.43750 0.45139 0.56111 0.64091 0.45076

Now, months1 is 1/2 of the deviation between January and February, months2 is the
deviation between March and the mean of Jan/Feb, and so on. We can see that the coefficient
rises at months6, which indicates an increase in July.

385

Chapter 16 Applied Statistics in R

16.1.2 Successive difference coding

Successive difference coding in the MASS library is similar to helmert coding, but it allows
each level to be compared to the single previous level. The documentation is a bit confusing,
but if you look at the coding, you can see that the first sees if a change happens between 1
and 2; whereas the second looks at whether the change happens between 3 and 2.

1 library(MASS)

3

> contr.sdif (3)

5 2-1 3-2

1 -0.6666667 -0.3333333

7 2 0.3333333 -0.3333333

3 0.3333333 0.6666667

9

> contr.sdif (4)

11 2-1 3-2 4-3

1 -0.75 -0.5 -0.25

13 2 0.25 -0.5 -0.25

3 0.25 0.5 -0.25

15 4 0.25 0.5 0.75

Note that if we repeat the months example, we see that the lm coefficients are exactly
the between-month differences:

contrasts(months) <- contr.sdif(months)

2 lm(values~months)

4 Call:

lm(formula = values ~ months)

6

Coefficients:

8 (Intercept) monthsFeb -Jan monthsMar -Feb monthsApr -Mar monthsMay -Apr

4.042 0.100 -0.100 0.300 -0.400

10

monthsJun -May monthsJuly -Jun monthsAug -July monthsSep -Aug monthsOct -Sep

12 0.300 2.800 1.000 1.000 2.000

14 monthsNov -Oct monthsDec -Nov

2.000 -1.000

Looking at the salary-specialty case, we get pairs that are compared in alphabetical order,
which may or may not be interesting. However, the levels are fairly clearly labeled and also
easier to understand than helmert coding.

1

> contrasts(specialty)<-contr.sdif(levels(specialty))

3 > lm(salary~specialty)

5 Call:

lm(formula = salary ~ specialty)

7

Coefficients:

9 (Intercept) specialtyBusiness -Advertising

37.0 18.6

11 specialtyCertification -Business

-28.8

386

Chapter 16 Applied Statistics in R

16.1.3 Sum-to-zero or Deviation coding

The “sum to zero” contrasts are available via contr.sum(). Here, the contrasts compare
different pairs of elements. This is a version of ‘deviation’ coding. You may choose to reorder
the rows of this if it makes more sense for your study. Here, the first contrast compares level
1 to 3, and the second compares level 2 to 3.

> contr.sum(levels(specialty))

2 [,1] [,2]

Advertising 1 0

4 Business 0 1

Certification -1 -1

If we set this contrast to our predictor, we can see something interesting:

1

contrasts(specialty)<-contr.sum(levels(specialty))

3 > lm(salary~specialty)

5 Call:

lm(formula = salary ~ specialty)

7

Coefficients:

9 (Intercept) specialty1 specialty2

37.0 -2.8 15.8

11

> mean(salary)

13 [1] 37

> tapply(salary ,specialty ,mean)

15 Advertising Business Certification

34.2 52.8 24.0

17

37-2.8 ## == 34.2

19 [1] 34.2

37 +15.8 ## == 52.8

21 [1] 52.8

37 +2.8 -15.8 ##==24

23 [1] 24

Notice that this coding does something interesting–now, the intercept is the mean of all
values. Each remaining contrast ends up being the difference between the mean and the
particular level.

There are a handful of other similar coding schemes available, and at times they make
specific planned tests easy to do. These are sometimes referred to as “planned contrasts”,
and they permit automatic comparison of a model with and without the contrast using the
ANOVA F-test method. A planned contrast test can be carried out in other ways, but if
you have a good idea of the specific levels you want to compare, these make for nice ways of
testing them, because they fit into the basic scheme of ANOVA tests of nested models. That
is, remember that testing the significance of a predictor is equivalent to testing the model
with that predictor to one without it.

A few things to recognize about contrasts:

387

Chapter 16 Applied Statistics in R

• Some decision about contrasts has to be made, or is made for you, by the software you
use.

• In many cases, the contrast you choose doesn’t really matter.

• Orthogonal contrasts are nice because their estimates will not change in the absence
of one another. But not all contrasts of interest are orthogonal

• Contrasts whose values sum to 0 are nice because it makes the null hypothesis easy to
test.

• You should probably use planned contrasts only when you have a well-designed ex-
periment and well-understood paradigm. Typically, you will end up doing additional
tests that don’t correspond directly to these “planned” contrasts anyway, so you need
to protect yourself from having too high of a false alarm rate.

In many cases, the particular contrast doesn’t matter, because if you are performing an
“ANOVA” test, you are comparing a model with the entire set of predictors to one without.
In those cases, the actual coefficients are sometimes of secondary importance, and so any
coding will produce the same outcome:

contrasts(specialty)<-contr.sum(levels(specialty))

2 specialty2 <- specialty

contrasts(specialty2) <- contr.helmert(levels(specialty2))

4

6 anova(lm(salary~specialty))

Analysis of Variance Table

8

Response: salary

10 Df Sum Sq Mean Sq F value Pr(>F)

specialty 2 2132.4 1066.2 9.6227 0.003209 **

12 Residuals 12 1329.6 110.8

14 Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

16 anova(lm(salary~specialty2))

18 Analysis of Variance Table

20 Response: salary

Df Sum Sq Mean Sq F value Pr(>F)

22 specialty 2 2132.4 1066.2 9.6227 0.003209 **

Residuals 12 1329.6 110.8

24 ---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 . 0.1 ‘ ’ 1

Notice that both produced identical results, even though they used different codings. The
aov function provides one shortcut to feeding the linear model into an anova table function.

> aov(salary~specialty)

2 Call:

aov(formula = salary ~ specialty)

4

Terms:

6 specialty Residuals

Sum of Squares 2132.4 1329.6

8 Deg. of Freedom 2 12

388

Chapter 16 Applied Statistics in R

10 Residual standard error: 10.52616

Estimated effects may be unbalanced

12 > summary(aov(salary~specialty))

Df Sum Sq Mean Sq F value Pr(>F)

14 specialty 2 2132 1066.2 9.623 0.00321 **

Residuals 12 1330 110.8

16 ---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

16.1.4 Example regressions with different contrasts

The tooth growth data set looks at tooth growth as a function of different dosages of vitamin
c (.5, 1 and 2 mg).

1 lm.tooth1 <- lm(len~dose ,data=ToothGrowth)

summary(lm.tooth1)

3

summary(lm.tooth1)

5

Call:

7 lm(formula = len ~ dose , data = ToothGrowth)

9 Residuals:

Min 1Q Median 3Q Max

11 -8.4496 -2.7406 -0.7452 2.8344 10.1139

13 Coefficients:

Estimate Std. Error t value Pr(>|t|)

15 (Intercept) 7.4225 1.2601 5.89 2.06e-07 ***

dose 9.7636 0.9525 10.25 1.23e-14 ***

17 ---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

19

Residual standard error: 4.601 on 58 degrees of freedom

21 Multiple R-squared: 0.6443 , Adjusted R-squared: 0.6382

F-statistic: 105.1 on 1 and 58 DF , p-value: 1.233e-14

23

25

plot(aggregate(ToothGrowth$len ,list(ToothGrowth$dose),mean),ylim=c(0 ,30),
27 xlab="Dose",ylab=" Growth ")

29 means <- aggregate(ToothGrowth$len ,list(ToothGrowth$dose),mean)
>

31 > means

Group.1 x

33 1 0.5 10.605

2 1.0 19.735

35 3 2.0 26.100

>

This doesn’t seem completely linear. We might try to fit a polynomial regression, but
what if we instead treated these as categories. This is often an acceptable approach when we
do not know (or really care) about the particular functional form of a continuous predictor.
Instead of establishing the linear relationship of tooth growth as vitamin c increases, we just
ask whether 1 mg is better than 0.5, or if 2.0 is better than 1 ,or 0.5.

389

Chapter 16 Applied Statistics in R

Figure 16.1: Means of tooth growth data, and linear model describing the effect

●

●

●

0.5 1.0 1.5 2.0

0
5

10
15

20
25

30

Dose

G
ro

w
th

●

●

●

1 dosage <- as.factor(ToothGrowth$dose)
lm.tooth2 <- lm(ToothGrowth$len~dosage)

3 summary(lm.tooth2)

5 Call:

lm(formula = ToothGrowth$len ~ dosage)

7

Residuals:

9 Min 1Q Median 3Q Max

-7.6000 -3.2350 -0.6025 3.3250 10.8950

11

Coefficients:

13 Estimate Std. Error t value Pr(>|t|)

(Intercept) 10.6050 0.9486 11.180 5.39e-16 ***

15 dosage1 9.1300 1.3415 6.806 6.70e-09 ***

dosage2 15.4950 1.3415 11.551 < 2e-16 ***

17 ---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

19

Residual standard error: 4.242 on 57 degrees of freedom

21 Multiple R-squared: 0.7029 , Adjusted R-squared: 0.6924

F-statistic: 67.42 on 2 and 57 DF , p-value: 9.533e-16

Now, by default this uses the R contrast coding, so the model says that dosage 1 and
dosage 2 each differ from dose 0.5, whose mean is 10.6. Really, what happens in the regression
is that neither of the two contrasts include 0.5 level, and so when the regression finds the
least-squares estimate, all of level 0.5 (and nothing else) gets included in the intercept to
balance out the least-squares equation.

contrasts(dosage)

2 1 2

0.5 0 0

4 1 1 0

2 0 1

This default contrast is often a bit confusing. What if we wanted to know whether each
additional dosage makes a difference? We can use successive difference coding:

1 contrasts(dosage) <- contr.sdif(levels(dosage))

390

Chapter 16 Applied Statistics in R

contrasts(dosage)

3 > contrasts(dosage)

1-0.5 2-1

5 0.5 -0.6666667 -0.3333333

1 0.3333333 -0.3333333

7 2 0.3333333 0.6666667

> summary(lm(ToothGrowth$len~dosage))
9

Call:

11 lm(formula = ToothGrowth$len ~ dosage)

13 Residuals:

Min 1Q Median 3Q Max

15 -7.6000 -3.2350 -0.6025 3.3250 10.8950

17 Coefficients:

Estimate Std. Error t value Pr(>|t|)

19 (Intercept) 18.8133 0.5477 34.352 < 2e-16 ***

dosage1 -0.5 9.1300 1.3415 6.806 6.70e-09 ***

21 dosage2 -1 6.3650 1.3415 4.745 1.44e-05 ***

23 Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

25 Residual standard error: 4.242 on 57 degrees of freedom

Multiple R-squared: 0.7029 , Adjusted R-squared: 0.6924

27 F-statistic: 67.42 on 2 and 57 DF , p-value: 9.533e-16

Now, because each contrast is balanced to sum to 0, the intercept is the grand mean.
Once we have the grand mean, the estimates are constrained to relative differences between
groups, for which there are only two distinct values. Here, the first parameter is the difference
between dosage 1 and 0.5–the same as the first parameter of the first model. But the second
is the difference between level 2.0 and level 1.0 (26.1-19.735=6.365).

But maybe instead we wanted to look at when or whether the increase stopped. This
would involve helmert or reverse helmert coding. (Some sources suggest that the R helmert
coding is actually ‘reverse helmert’).

1 contrasts(dosage) <- contr.helmert(levels(dosage))

contrasts(dosage)

3 summary(lm(ToothGrowth$len~dosage))
> summary(lm(ToothGrowth$len~dosage))

5

Call:

7 lm(formula = ToothGrowth$len ~ dosage)

9 Residuals:

Min 1Q Median 3Q Max

11 -7.6000 -3.2350 -0.6025 3.3250 10.8950

13 Coefficients:

Estimate Std. Error t value Pr(>|t|)

15 (Intercept) 18.8133 0.5477 34.352 < 2e-16 ***

dosage1 4.5650 0.6707 6.806 6.70e-09 ***

17 dosage2 3.6433 0.3873 9.408 3.35e-13 ***

19 Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

21 Residual standard error: 4.242 on 57 degrees of freedom

Multiple R-squared: 0.7029 , Adjusted R-squared: 0.6924

23 F-statistic: 67.42 on 2 and 57 DF , p-value: 9.533e-16

391

Chapter 16 Applied Statistics in R

25

b0 = mean(means$x) #grand mean

27 b1 = (means$x[2] - mean(means$x[1]))/2 # (2 - 1)/2

b2 = (means$x[3] - mean(means$x[1:2]))/3 # (3 -(1:2))/3

29

c(b0,b1 ,b2)

31 [1] 18.813333 4.565000 3.643333

Here, b0 is the mean of group 1. b1 is related to group 2 - mean(b1); and b3 is mean
of group 3 - mean(b1,b2). This might be better for detecting when a growth starts–if the
values are flat until some point and then take off, the parameter where this first happens
will be the first significant one. We could play with the rows of this helmert coding or the
order of the factor to ask these alternate questions.

16.1.5 Regression and the One-way ANOVA

Note: This describes the application of the ANOVA method to simple designs, where all
observations are balanced so that you have an equal number of observations in each group,
and you have no other systematic dependencies, such as a within-subject manipulation or a
repeated-measures design. Those issues are dealt with in future chapters.

In the salary x specialty example, the regression shows us the coefficients for whatever
contrast we decided to use, and summary() provides other information. If we want to compare
this to the intercept-only model, it provides such a comparison by default in the F test. But
as we’ve seen before, we can also give this to the anova() function to report an ANOVA
table.

> contrasts(specialty) <- contr.treatment(levels(specialty))

2 > summary(lm(salary~specialty))

4 Call:

lm(formula = salary ~ specialty)

6

Residuals:

8 Min 1Q Median 3Q Max

-24.8 -4.6 -0.2 4.9 17.2

10

Coefficients:

12 Estimate Std. Error t value Pr(>|t|)

(Intercept) 34.200 4.707 7.265 9.94e-06 ***

14 specialtyBusiness 18.600 6.657 2.794 0.0162 *

specialtyCertification -10.200 6.657 -1.532 0.1514

16 ---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

18

Residual standard error: 10.53 on 12 degrees of freedom

20 Multiple R-squared: 0.6159 , Adjusted R-squared: 0.5519

F-statistic: 9.623 on 2 and 12 DF , p-value: 0.003209

If we put the lm model in an anova function, it will create the Analysis of Variance
table comparing the model to each neighboring sub-model. In this case, we only have the
neighboring intercept-only model, so the specialty line simple determines whether specialty
accounts for additional variance that the intercept does not:

392

Chapter 16 Applied Statistics in R

> anova(lm(salary~specialty))

2 Analysis of Variance Table

4 Response: salary

Df Sum Sq Mean Sq F value Pr(>F)

6 specialty 2 2132.4 1066.2 9.6227 0.003209 **

Residuals 12 1329.6 110.8

8 ---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Notice that the F test is the same in both cases. However, this second table is called the
“Analysis of Variance Table”, and is one of the primary outputs used in experimental data
analysis. Notice that it hides the complexity of contrasts and parameter estimates. In fact,
under normal conditions the coding won’t even matter and we will get the same values for
the “omnibus” ANOVA test. All the main ANOVA tells us is that the model with specialty
is significantly better than the model without specialty, and it does this by estimating the
chance of finding the results we found if specialty was not related. The low p-value indicates
that this result would have been very unlikely to have occurred by chance if there was no
real difference.

Because of tradition and training, many researchers don’t even recognize that the ANOVA
is just a regression with categorical predictors, or may recognize it as a curious fact. For
many experimentalists, the ANOVA is the first and last procedure used, and software has
been developed since the 1970s to support this. In fact, in some commercial software versions,
the ANOVA is standard and the linear model (on which it is based) is an add-on you pay
extra for! In R, aov() function will create this model by itself.

1 > aov(salary~specialty)

Call:

3 aov(formula = salary ~ specialty)

5 Terms:

specialty Residuals

7 Sum of Squares 2132.4 1329.6

Deg. of Freedom 2 12

9

Residual standard error: 10.52616

11 Estimated effects are balanced

13 > summary(aov(salary~specialty))

Df Sum Sq Mean Sq F value Pr(>F)

15 specialty 2 2132 1066.2 9.623 0.00321 **

Residuals 12 1330 110.8

17 ---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

The traditional ANOVA table includes sum of squares and degrees of freedom. These
indicate the amount of variance accounted for and so provide a measure of effect size. How-
ever, the make-up of the ANOVA table is mostly a historical anachronism, dating back to
days in which people had to create an ANOVA by hand. But, just like we saw with regres-
sion, the 9.623 value comes from finding the ratio of the two Mean Square values: 9.623 =
1066.2/110.8. Just like in regression, this F test is the comparison of the complete model to
one including the intercept only. The intercept-only model will have 1330+2132 sum squared
error, and the specialty model reduces the error to 1330.

393

Chapter 16 Applied Statistics in R

When you have a single predictor, this is called a one-way ANOVA, and it is identical to
the model you get from the F-test in the regression. Now, let’s look at what happens to the
F test for different contrasts:

> contrasts(specialty) <- contr.treatment(levels(specialty))

2 > s <- summary(lm(salary~specialty))

> s$fstatistic
4 value numdf dendf

9.622744 2.000000 12.000000

6 > contrasts(specialty) <- contr.SAS(levels(specialty))

> summary(lm(salary~specialty))$fstatistic
8 value numdf dendf

9.622744 2.000000 12.000000

10 > contrasts(specialty) <- contr.sdif(levels(specialty))

> summary(lm(salary~specialty))$fstatistic
12 value numdf dendf

9.622744 2.000000 12.000000

14 > contrasts(specialty) <- contr.helmert(levels(specialty))

> summary(lm(salary~specialty))$fstatistic
16 value numdf dendf

9.622744 2.000000 12.000000

18 > contrasts(specialty) <- contr.sum(levels(specialty))

> summary(lm(salary~specialty))$fstatistic
20 value numdf dendf

9.622744 2.000000 12.000000

22 >

> contrasts(specialty) <- contr.treatment(levels(specialty))

24 > summary(lm(salary~specialty))$fstatistic
value numdf dendf

26 9.622744 2.000000 12.000000

> contrasts(specialty) <- contr.SAS(levels(specialty))

28 > summary(lm(salary~specialty))$fstatistic
value numdf dendf

30 9.622744 2.000000 12.000000

> contrasts(specialty) <- contr.sdif(levels(specialty))

32 > summary(lm(salary~specialty))$fstatistic
value numdf dendf

34 9.622744 2.000000 12.000000

> contrasts(specialty) <- contr.helmert(levels(specialty))

36 > summary(lm(salary~specialty))$fstatistic
value numdf dendf

38 9.622744 2.000000 12.000000

> contrasts(specialty) <- contr.sum(levels(specialty))

40 > summary(lm(salary~specialty))$fstatistic
value numdf dendf

42 9.622744 2.000000 12.000000

44

##some random set of contrasts:

46 contrasts(specialty) <- cbind(c(1,1,2),c(3,-1,4))

summary(lm(salary~specialty))$fstatistic
48 value numdf dendf

9.622744 2.000000 12.000000

50

##another random set:

52 contrasts(specialty) <- cbind(c(1,1,2),c(0,0,0))

> summary(lm(salary~specialty))$fstatistic
54 value numdf dendf

7.508544 1.000000 13.000000

Notice that here, it doesn’t really matter what contrast we used–we get the same omnibus

394

Chapter 16 Applied Statistics in R

F test each time; except for the last case where we create a set of contrasts that actually
equate levels 1 and 2. If our contrasts really are planned, this test is sufficient evidence for
these differences. If a different test were planned, could make the contrasts align with our
hypotheses. If we have no specific hypothesis, or we want to test all possible comparisons,
then it gets trickier. In order to do that, we need to consider post-hoc tests. But before we
do so, let’s examine the assumptions of the ANOVA model.

16.2 Testing ANOVA Assumptions

Because ANOVA is a form of regression, many of the same assumptions apply–except for
the assumption of linear effects, which if we restrict ourselves to categorical predictors, are
irrelevant. The normality assumptions can be tested like in regression, and you should
always look at residuals with qqplots and histograms. But in addition to these, specific
tests of homogeneity of variance are available in ANOVA–they specifically test whether the
variance is the same in different categorical groupings.

There are probably dozens of such tests that are available in the literature. Some common
common tests available in R, including:

• bartlett.test(); a general test of homogeneity of variance

• var.test(); a special case for comparing two variances

• fligner.test(); a non-parametric test

• ansari.test() and mood.test(); two non-parametric tests for equality of variance in two
groups.

• leveneTest() in the car package, another test that commonly reported by users of
SPSS.

ANOVA pools variance across all residuals, so it essentially assumes that each group has
the same variance. This is a strange assumption if you think about it, because you are
hoping that there is a difference in the means, and to determine this you assume that there
is no difference in the variance. Most of these tests work similarly and will provide similar
conclusions.

16.2.1 Bartlett’s K-squared Test of Homogeneity of Variance

Bartlett’s K-Squared test 2 can be executed in two ways–one way puts a regression formula
into it, and the other specifies input and output variables. If you have a more complicated
set of predictors, you may need to recode a predictor variable that includes each combination
of groups. Authors suggest that the Bartlett test is best used on data you know is normally
distributed; it is sensitive to non-normality even when variances do not differ much.

2 bartlett.test(salary~specialty)

bartlett.test(salary ,specialty)

4

> bartlett.test(salary~specialty)

6

Bartlett test of homogeneity of variances

2Bartlett, M. S. (1937). Properties of sufficiency and statistical tests. Proceedings of the Royal Society
of London Series A 160, 268—282.

395

Chapter 16 Applied Statistics in R

8

data: salary by specialty

10 Bartlett ’s K-squared = 8.1217 , df = 2, p-value = 0.01723

Here, the Bartlett K2 test is significant, suggesting the variances differ.

16.2.2 Levene’s equality of variance Test

Levene’s test is commonly reported by SPSS, and is available in the car package. Authors
suggest that Levene’s test is less dependent on the data being normally-distributed. If we
run Levene’s test on the same data, we find that it is not significant (but just barely):

library(car)

2 leveneTest(salary ,specialty)

Levene ’s Test for Homogeneity of Variance (center = median)

4 Df F value Pr(>F)

group 2 3.3685 0.06901 .

6 12

16.2.3 Fligner test

A non-parametric test is called the Fligner test, or the Fligner-Killeen test. It uses a chi-
squared test for homogeneity of variance.

fligner.test(salary~specialty)

2

Fligner -Killeen test of homogeneity of variances

4

data: salary by specialty

6 Fligner -Killeen:med chi -squared = 5.2297 , df = 2,

p-value = 0.07318

Note here that the equal variance assumption is violated according to Bartlett, but OK
according to Levene and Fligner. What could lead to this difference? Maybe some of the
assumptions of one or both of these tests are not met–probably normality. This may be
confirmed by looking at the boxplots or violinplots:

Apparently, there is a difference in variance AND normality across groups. This violates
two of our assumptions of the ANOVA/regression, and so we should be careful about how
we proceed.

16.3 Dealing with unequal variance

If you have detected unequal variance, a few different things might work. You might try
a transform, or maybe you might decide to remove some influential outliers, or you might
try to add additional covariates to make a better model. Alternately, there are parametric
tests that don’t assume normality. One such test is available in the oneway.test(), which
implements what is known as Welch’s one-way ANOVA–a modified version of the Welch’s
t-test that handles unequal variance in pairwise comparisons.

396

Chapter 16 Applied Statistics in R

Figure 16.2: Boxplot of the salary by specialty data set. This reveals that not only do the
variances appear to differ, business appears skewed, which leads to trouble with some of the
tests.

●

Advertising Business Certification

20
30

40
50

60
70

20
30

40
50

60
70

Advertising Business Certification

●

●

●

1

> oneway.test(salary~specialty ,var.equal=F)

3

One -way analysis of means (not assuming equal variances)

5

data: salary and specialty

7 F = 8.3724 , num df = 2.0000 , denom df = 6.8695 , p-value = 0.01439

Notice that in this test, the residual degrees of freedom are adjusted–this is a trick that
is sometimes done to adjust for the fact that variance differs, allowing us to use the same F
distribution. Here, our interpretation is not that business leads to a higher salary than the
others, but simply that different business sector have different average salaries. The pairwise
comparisons would need to be handled in a regression or planned comparison.

16.4 Kruskal-Wallis H

Another alternative is to use a non-parametric test; the Kruskal-Wallis H is a common ap-
proach for a one-way ANOVA. Because we are not assuming anything about the distribution,
and looking at rank-order differences, this test can be robust to strange data with a lot of
outliers or skewed tails.

Note: There is a good tutorial of the Kruskal-Wallis test here: http://www.r-tutor.

com/elementary-statistics/non-parametric-methods/kruskal-wallis-test.

summary(kruskal.test(len~dose ,data=ToothGrowth))

2

Kruskal -Wallis rank sum test

4

data: len by dose

6 Kruskal -Wallis chi -squared = 40.6689 , df = 2, p-value = 1.475e-09

8 #############################

397

http://www.r-tutor.com/elementary-statistics/non-parametric-methods/kruskal-wallis-test
http://www.r-tutor.com/elementary-statistics/non-parametric-methods/kruskal-wallis-test

Chapter 16 Applied Statistics in R

##Salary data set:

10 kruskal.test(salary~specialty)

12 Kruskal -Wallis rank sum test

14 data: salary by specialty

Kruskal -Wallis chi -squared = 8.4151 , df = 2, p-value = 0.01488

Notice that again, dose is a significant predictor, as is specialty when predicting salary.

16.5 Bayesian One-way ANOVA

Finally, the BayesFactor package provides an analysis corresponding to one-way ANOVA:
anovaBF. This computes a Bayes Factor comparing the Null hypothesis to the alternative
that the categorical predictor is a better description of the data. However, because we are
making specific assumptions about normality, he bayesian anova does not help us avoid
the normality and equal variance assumptions. These could be handled by making specific
distributional assumptions in a Bayes model, but neither the aov or anovaBF will handle
that easily.

1

dat <- data.frame(salary ,specialty)

3 abf <- anovaBF(salary~specialty ,data=dat)

5 abf

Bayes factor analysis

7 --------------

[1] specialty : 13.21095 +- 0%

Here, specialty produces a Bayes Factor value of 13.2, which indicates strong support for
the alternative (that specialty influences salary).

16.6 Testing differences between levels of a predictor in
ANOVA and Multiple Comparisons

In both regression and ANOVA models, we test for whether an entire predictor set is useful
by comparing models with and without that predictor, or equivalently testing whether a β
value (parameter) is different from zero. But the basic logic of the one-way ANOVA usually
leads to an answer we are not interested in. It asks, for a factor having more than two levels,
whether including that factor is better than not including it. We are usually interested
in additional hypotheses–is one level of the predictor better than another specific level. If
we have very tight control over an experiment, we may be able to choose a contrast in a
regression equation that will map onto exactly the set of hypotheses we have. Oftentimes,
we may have a control condition that can be coded as the first level, and then comparisons
are directly coded in contrast to that control.

If we look at the tooth growth regression table, the 0.5 dosage is the baseline level.

1 contrasts(dosage) <- contr.treatment(levels(dosage))

summary(lm(ToothGrowth$len ~ dosage))

3

398

Chapter 16 Applied Statistics in R

Call:

5 lm(formula = ToothGrowth$len ~ dosage)

7 Residuals:

Min 1Q Median 3Q Max

9 -7.6000 -3.2350 -0.6025 3.3250 10.8950

11 Coefficients:

Estimate Std. Error t value Pr(>|t|)

13 (Intercept) 10.6050 0.9486 11.180 5.39e-16 ***

dosage1 9.1300 1.3415 6.806 6.70e-09 ***

15 dosage2 15.4950 1.3415 11.551 < 2e-16 ***

17 Residual standard error: 4.242 on 57 degrees of freedom

Multiple R-squared: 0.7029 , Adjusted R-squared: 0.6924

19 F-statistic: 67.42 on 2 and 57 DF , p-value: 9.533e-16

Notice how the standard error estimate for the different dose levels are the same? This is
no accident. In fact, these are all calculated based on the RSE. 4.242/sqrt(10)=1.34. In this
test, we know that both dosage1 and dosage2 are reliably different from 0. What if we also
want to know whether dosage1 and dosage2 differ? We can use the normal t-test machinery
to do that.

> ((15.495 -9.13)/ 1.34

2 4.75

1-pt(4.75 ,57)

4 [1] 7.079305e-06

We could have done all this before we learned ANOVA/regression models, just doing
pairwise t tests. Here is a function that will let us do so:

pairwise.t.test(ToothGrowth$len ,ToothGrowth$dose)
2

Pairwise comparisons using t tests with pooled SD

4

data: ToothGrowth$len and ToothGrowth$dose
6

0.5 1

8 1 1.3e-08 -

2 4.4e-16 1.4e-05

10

P value adjustment method: holm

This produces all possible pairs of t tests. Here, we see that each differ from the other.
But there is a problem–we need to protect ourselves somewhat from finding false alarms. If
we have 7 levels, there are 6+5+4+3+2+1=21 possible comparisons. We could use t-test
logic to compare any possible pairings, but in this case if we use a criteria like p=.05, we’d
expect at least one of these to differ significantly just by chance. The pairwise.t.test allows
us to adopt different ways of protecting ourselves from multiple comparisons. By default, it
uses ‘holm’ method, which is one reasonable approach, but there are others you may prefer.
The most conservative is the Bonferonni correction, which simply assumes all of the tests
are uncorrelated, and essentially adjusts the p-value needed to achieve an overall false alarm
rate we specify.

399

Chapter 16 Applied Statistics in R

pairwise.t.test(ToothGrowth$len ,ToothGrowth$dose ,p.adj="bonf")
2 Pairwise comparisons using t tests with pooled SD

4 data: ToothGrowth$len and ToothGrowth$dose

6 0.5 1

1 2.0e-08 -

8 2 4.4e-16 4.3e-05

10 P value adjustment method: bonferroni

The lesson here is that you can often use simple t tests based on the RSE to test differences
between parameters, or adjust independent t-tests using an adjustment technique such as
Holm or Bonferonni. However, some people object to this type of approach in some cases.
The Bonferroni correction is very conservative–it does each test at a 1/N value that would
otherwise be considered significant. So if you were doing ten tests using a .05 criterion, the
Bonferroni correction requires a .005 level of significance. This means that your effects need
to be much larger in order to detect them, which may be a waste of resources. In those cases,
a better approach might be to look at the significant effects and demonstrate they can be
replicated in a second experiment.

16.6.1 Multiple comparisons and post-hoc tests in ANOVA

Neither of these two approaches are ideal. In one case, we faked a t-test based on parameters
of the regression. This is good because it allows us to base our variability on true residual
variability–if we had added other predictors to the model, we would have reduced residual
variance and been able to detect smaller values. But we are left to correct for multiple testing
on our own, usually by just picking a smaller value or using the conservative bonferroni
correction. The other alternative allows us to choose a correction scheme, but won’t let us
use the regression or ANOVA model to estimate residual variance, which means we may
not detect true differences because variability we know about is being included in residual
variance.

The solution is a set of related tests typically referred to as ‘Post-Hoc’ tests. Post-hoc
tests are those that are not planned contrasts. A good post-hoc test will use the residual
error variance from the model to do the test, but will correct for multiple comparisons as
well. There are many such tests–he most common is probably Tukey’s Honest Significant
Different (HSD) test. It can be run on an aov() model directly, and will provide confidence
intervals and adjusted p values for all pairwise comparisons.

TukeyHSD(aov(salary~specialty))

2 Tukey multiple comparisons of means

95% family -wise confidence level

4

Fit: aov(formula = salary ~ specialty)

6 Fit: aov(formula = salary ~ specialty)

8 $specialty
diff lwr upr p adj

10 Business -Advertising 18.6 0.8391598 36.36084 0.0400226

Certification -Advertising -10.2 -27.9608402 7.56084 0.3112892

12 Certification -Business -28.8 -46.5608402 -11.03916 0.0026182

14

> TukeyHSD(aov(len~dose ,data=ToothGrowth)

400

Chapter 16 Applied Statistics in R

16

18 > TukeyHSD(aov(len~dosage ,data=ToothGrowth))

Tukey multiple comparisons of means

20 95% family -wise confidence level

22 Fit: aov(formula = len ~ dosage , data = ToothGrowth)

24 $dosage
diff lwr upr p adj

26 1-0.5 9.130 5.901805 12.358195 0.00e+00

2-0.5 15.495 12.266805 18.723195 0.00e+00

28 2-1 6.365 3.136805 9.593195 4.25e-05

Here, in the salary data set, certification and advertising do not differ significantly, but
the two other pairings do. For the tooth growth, each dosage level differs significantly from
each other level.

There are many other post-hoc tests you can use. Within the car package, there are
a number, and the TukeyLSD test provides a number of options, including a Bonferroni
correction.

16.6.2 Post-Hoc test with BayesFactor ANOVA

The Bayes factor ANOVA has a different way of doing post-hoc tests. You are able to do
this by sampling the posterior distribution of different values, and looking at how many of
the observed samples satisfied your constraint.

The Bayesian model works by attempting to create a distribution around plausible pa-
rameter estimates. It will do this by sampling cases repeatedly that can be mathematically
proven to conform to the posterior distribution we care about. If we use the posterior

function on a BayesFactor model, it will sample parameter estimates from this posterior
distribution. So, we can just look at the proportion of these estimates that satisfy each
particular contrast we are interested in. This proportion is a measure of how many of the
likely parameter estimates that would have lead to the outcome we observed would have
satisfied our test.

To sample, we use the posterior function:

1

specialty <- as.factor(c("Advertising","Advertising","Advertising",

3 "Advertising","Advertising",

"Business","Business","Business","Business","Business",

5 "Certification","Certification","Certification",

"Certification","Certification"))

7

salary <- c(30 ,35 ,32 ,40 ,34 ,70 ,56 ,45 ,65 ,28 ,19 ,23 ,28 ,18 ,32)

9 dat <- data.frame(salary ,specialty)

abf <- anovaBF(salary~specialty ,data=dat)

11 chains <- posterior(abf ,iterations =10000)

13 plot(chains [,2:4]])

15 summary(chains)

17

> summary(chains)

19

Iterations = 1:10000

401

Chapter 16 Applied Statistics in R

21 Thinning interval = 1

Number of chains = 1

23 Sample size per chain = 10000

25 1. Empirical mean and standard deviation for each variable ,

plus standard error of the mean:

27

Mean SD Naive SE Time -series SE

29 mu 37.022 3.155 0.03155 0.03203

specialty -Advertising -2.317 3.902 0.03902 0.03902

31 specialty -Business 12.532 4.747 0.04747 0.07340

specialty -Certification -10.215 4.492 0.04492 0.06629

33 sig2 148.276 74.147 0.74147 1.15385

g_specialty 2.961 11.528 0.11528 0.14136

35

2. Quantiles for each variable:

37

2.5% 25% 50% 75% 97.5%

39 mu 30.7537 35.0297 37.004 38.9967 43.386

specialty -Advertising -10.0926 -4.7806 -2.285 0.1859 5.257

41 specialty -Business 2.8084 9.4752 12.726 15.7212 21.566

specialty -Certification -18.8291 -13.2754 -10.317 -7.3131 -1.098

43 sig2 60.1829 98.0835 130.014 177.9454 344.247

g_specialty 0.1057 0.4803 1.071 2.4048 16.407

If we do plot(chains), this will automatically show us the distribution of posterior
values, as shown in Figure 16.3. The summary method shows similar things—it provides
the best estimates and standard deviations or standard errors that could be used to make
figures or table. Here, mu is the grand-mean, the three specialty levels are the deviations
from the grand-mean, sig2 is the error variance, and g specialty is a parameter controlling
the three specialties. So far, this looks reasonably similar to what we might have done with a
standard ANOVA, but the inferences are somewhat different. The Bayesian samples show us
how likely initial sets of parameters are to have produced the data we observed. The model
obtains these through monte carlo simulation–not just calculating statistics of data. These
posterior distributions are sampled, but if we sample enough we can be confident about the
possible values, and make similar inferences as we do in standard statistics, based on how
much the distributions overlap.

If we look at the columns of chains, these are associated with these variables. Each row
is a random sampling from the posterior distribution of these parameters.

1 chains [1:5,]

mu specialty -Adv specialty -Bus specialty -Cert

3 [1,] 36.83802 -2.7339783 13.183127 -10.449148

[2,] 39.82864 0.4432873 9.969553 -10.412841

5 [3,] 35.20709 -1.4354836 4.479783 -3.044299

[4,] 31.89395 -0.4472300 13.012616 -12.565386

7 [5,] 37.48467 -3.7155770 22.926612 -19.211035

sig2 g_specialty

9 [1,] 68.80031 4.5549329

[2,] 140.39422 1.7207386

11 [3,] 147.79995 0.2602432

[4,] 86.65993 2.8790289

13 [5,] 105.47087 5.7729450

We can use these samples to test hypotheses. For example, if we want to know whether
business makes more or less than the mean, it is just looking at how many of the samples

402

Chapter 16 Applied Statistics in R

Figure 16.3: Sampled posterior distributions for each parameter.This shows the likely values
that could have produced the data.

0 2000 4000 6000 8000 10000

−
20

0
10

Iterations

Trace of specialty−Advertising

−20 −10 0 10

0.
00

0.
04

0.
08

Density of specialty−Advertising

N = 10000 Bandwidth = 0.6316

0 2000 4000 6000 8000 10000

−
10

0
10

20
30

Iterations

Trace of specialty−Business

−10 0 10 20 30

0.
00

0.
04

0.
08

Density of specialty−Business

N = 10000 Bandwidth = 0.7782

0 2000 4000 6000 8000 10000

−
20

0
10

Iterations

Trace of specialty−Certification

−30 −20 −10 0 10

0.
00

0.
04

0.
08

Density of specialty−Certification

N = 10000 Bandwidth = 0.711

403

Chapter 16 Applied Statistics in R

Figure 16.4: Left panel shows overlapping histograms of the posterior estimates of the co-
efficients for each group (Advertising, Business, certification). The right panel shows the
posterior distribution of the difference.

Histogram of chains[, 2]

chains[, 2]

F
re

qu
en

cy

−40 −20 0 20 40

0
50

0
10

00
15

00
20

00

differences between 4 and 3

chains[, 4] − chains[, 3]

F
re

qu
en

cy

−40 −20 0 20

0
10

0
20

0
30

0
40

0
50

0

were greater than 0:

mean(chains [,3]>0)

2 [1] 0.9942

Here, more than 99% of plausible parameters for business were greater than the mean, which
is strong evidence for this hypothesis.

We could look at the posterior distribution of the groups on their own, as shown in left
panel of Figure 16.4

1 hist(chains[,2],xlim=c(-40,40))

hist(chains[,3],add=T,col="blue")

3 hist(chains[,4],add=T,col="red")

This is much like Figure 16.3, but overlays them on the same graph. But even though
this is a between-subject design, the individual samples in the model depend on one another.
So in essence, to test the difference between groups, we can do essentially a paired test of
the samples, to see how often they differed. The distribution of the difference between
certification and business is shown in the right panel of Figure 16.4, which shows almost no
overlap in sampled values.

1 # certification > business

mean(chains[,4]>chains [,3]) ##probability that > 5==1%

3 [1] 0.0046

certification > Advertising

5 > mean(chains[,4]>chains [,2]) ##probability that 4 > 2==11%

[1] 0.1184

7 #business > Advertising

> mean(chains[,3]>chains [,2]) ##probability that 3 > 2==97%

9 [1] 0.9759

404

Chapter 16 Applied Statistics in R

11

hist(chains[,4]-chains[,3],breaks =100, main="differences between 4 and 3")

13 abline(v=0,lwd =3)

Here, there is strong support that business is greater than both certification (99.5% of
cases) and advertising (97%), but the support for a difference between certification and
advertising is less strong (it was true for only 89% of plausible parameter estimates). This
is consistent with the Tukey test performed earlier.

405

Chapter 16 Applied Statistics in R

406

Chapter 17

Multi-Way (Factorial) ANOVA

Note: as with the One-way ANOVA, this describes the application of the ANOVA method to
simple designs, where all observations are balanced so that you have an equal number in each
group, and you have no other systematic dependencies, such as a within-subject manipulation
or a repeated-measures design.

The Tooth Growth data set actually had two predictors–it also included a categorical
predictor supp (OJ versus Vitamin C supplement) along with dose numerical predictor. We
can easily look at the two sets of effects using interaction.plot.

1 interaction.plot(ToothGrowth$dose ,ToothGrowth$supp ,ToothGrowth$len ,pch=15,
type="b",xlab="Dosage (mg)", ylab="Tooth length (mm)",

3 bty="n", las=1,xtick=T,leg.bg="white",leg.bty="n",

ylim=c(0,30), col=c("orange","red"),trace.label="Supplement")

Because ANOVA is just a regression, it should be obvious that the anova procedure
can accept multiple predictors. When we have a single predictor, it is called a “One-way”
ANOVA, and with two predictors a “two-way” ANOVA, and so-on. Furthermore, we refer
to the levels of each factor in the design. For the tooth growth data, we have a 2x3 ANOVA,
where 2 indicates the number of levels of supp, 3 indicates the number of levels of dosage, and
the number of numbers (2x3 has two numbers) indicates it is 2-way ANOVA. This ANOVA
will have (2-1) * (3-1) = 3 degrees of freedom in the Omnibus F test at the end. In some
conditions, we would refer to this as a “Factorial” ANOVA, and generally a “Full Factorial”
ANOVA if it contained all main effects and interactions.

If we fit this with a linear regression, the summary would look like this:

1 ToothGrowth$dosage <- as.factor(ToothGrowth$dose)
lm.tooth3 <- lm(len~supp+dosage ,data=ToothGrowth)

3 summary(lm.tooth3)

anova(lm.tooth3)

5

> summary(lm.tooth3)

7

Call:

9 lm(formula = len ~ supp + dosage , data = ToothGrowth)

11 Residuals:

Min 1Q Median 3Q Max

13 -7.085 -2.751 -0.800 2.446 9.650

407

Chapter 17 Applied Statistics in R

Figure 17.1: Tooth growth in Guinea pigs in response two doses of either Vitamin C (VC)
or Orange Juice (OJ). The right panel shows the model’s predictions.

0

5

10

15

20

25

30

Dosage (mg)

To
ot

h
le

ng
th

 (
m

m
)

0.5 1 2

 Supplement

VC
OJ

0

5

10

15

20

25

30

Dosage (mg)

To
ot

h
le

ng
th

 (
m

m
)

0.5 1 2

 Supplement

VC
OJ

●

●

●

●

●

●

15 Coefficients:

Estimate Std. Error t value Pr(>|t|)

17 (Intercept) 12.4550 0.9883 12.603 < 2e-16 ***

suppVC -3.7000 0.9883 -3.744 0.000429 ***

19 dosage1 9.1300 1.2104 7.543 4.38e-10 ***

dosage2 15.4950 1.2104 12.802 < 2e-16 ***

21 ---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

23

Residual standard error: 3.828 on 56 degrees of freedom

25 Multiple R-squared: 0.7623 , Adjusted R-squared: 0.7496

F-statistic: 59.88 on 3 and 56 DF , p-value: < 2.2e-16

27

##plot the model predictions:

29 modelfit <- tapply(lm.tooth3$fit ,list(dosage=ToothGrowth$dosage ,supp=
ToothGrowth$supp),mean)

matplot(modelfit ,type="o",pch=1,add=T,lty=1,col=’black’)

Here, supplement seems to make a difference, because it is significant. Note that the
ANOVA with two predictors assumes the factor effects are additive, and so it cannot account
for the way the effects converge at high doses. If we compare this to the model made with
just dosage:

2 Coefficients:

Estimate Std. Error t value Pr(>|t|)

4 (Intercept) 10.6050 0.9486 11.180 5.39e-16 ***

dosage1 9.1300 1.3415 6.806 6.70e-09 ***

408

Chapter 17 Applied Statistics in R

6 dosage2 15.4950 1.3415 11.551 < 2e-16 ***

8 Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

10 Residual standard error: 4.242 on 57 degrees of freedom

Multiple R-squared: 0.7029 , Adjusted R-squared: 0.6924

12 F-statistic: 67.42 on 2 and 57 DF , p-value: 9.533e-16

We see a few things:

• The intercept changed (not a big deal)

• The estimates for dosage1 and dosage2 did not change (because the predictors were
orthogonal)

• The standard error for our estimates got smaller, and thus the t-values larger and the
p-values smaller

• R2 is larger, RSE is smaller.

• F value changed, but we can’t make any generalizations about that.

By adding an additional predictor we reduced the RSE, just like you’d expect in a regres-
sion. This reduces our estimate of the variability of our parameters, because we are taking
residual variance and explaining it, thus reducing the residuals. So, by adding the additional
predictor, we may be able to have a more sensitive test of some effects that were already
in the model. This may or may not be justifiable if the secondary predictor is not itself
significant.

From the perspective of an ANOVA user, remember that for the one-way ANOVA we
compared the model with a categorical predictor to one with just the intercept. But now,
we have several possible models and submodels to compare, and the ANOVA table produced
with anova() will display some of these comparisons:

1 > anova(lm.tooth3)

Analysis of Variance Table

3

Response: len

5 Df Sum Sq Mean Sq F value Pr(>F)

supp 1 205.35 205.35 14.017 0.0004293 ***

7 dosage 2 2426.43 1213.22 82.811 < 2.2e-16 ***

Residuals 56 820.43 14.65

9 ---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Here, we have essentially two different F tests–one related to supp, and the second related
to dosage. Like the omnibus F test in the one-way ANOVA, these are supposed to compare
a model with that predictor to a model without that predictor. But which models exactly
are being compared? Let’s try to figure it out, using the aov() function

17.1 Interpreting the Analysis of Variance (ANOVA)
Table

The ANOVA table for a multi-way ANOVA contains several F-tests. Which tests are they?
They are supposed to tell us the effect of a variable within the larger model, but what does

409

Chapter 17 Applied Statistics in R

that actually mean?
To look into this, let’s build four models for this data set, on with both predictors, one

each for the two predictors, and one with only the intercept.

m.int <- aov(len~0,data=ToothGrowth)

2 m.supp <- aov(len~supp ,data=ToothGrowth)

m.dose <- aov(len~dosage ,data=ToothGrowth)

4 m.both <- aov(len~dosage+supp ,data=ToothGrowth)

6 > anova(m.both)

Analysis of Variance Table

8

Response: len

10 Df Sum Sq Mean Sq F value Pr(>F)

dosage 2 2426.43 1213.22 82.811 < 2.2e-16 ***

12 supp 1 205.35 205.35 14.017 0.0004293 ***

Residuals 56 820.43 14.65

We might expect each test to examine whether the individual predictor is better than the
intercept-only model–much like in the one-way ANOVA. This would be m.dose and m.supp:

summary(m.dose)

2 Df Sum Sq Mean Sq F value Pr(>F)

dosage 2 2426 1213 67.42 9.53e-16 ***

4 Residuals 57 1026 18

6 Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

8 > summary(m.supp)

Df Sum Sq Mean Sq F value Pr(>F)

10 supp 1 205 205.35 3.668 0.0604 .

Residuals 58 3247 55.98

Notice that the 2426 and 205 figures appear in both–the sum of squares associated with
both predictors don’t change because the predictors are orthogonal and balanced. But the
F ratio is different. The F ratio is the ratio between the mean square deviation (which is
identical in the two models), and the residuals (which change). In our more complex model,
the residuals go down because we are explaining them through another reliable predictor.
Consequently, the F statistics do change. It would seem to make sense then that we want
to look at the effect of a variable in the context of all other predictors; not in isolation. The
estimates and MSE won’t differ, but our F tests will. To look at this, let’s do specific anova()
tests comparing the full model to the model without each predictor. To get the effect of dose,
compare m.both to m.supp; to get the effect of supplement, compare m.both to m.dose:

anova(m.both ,m.supp)

2 Analysis of Variance Table

4 Model 1: len ~ dosage + supp

Model 2: len ~ supp

6 Res.Df RSS Df Sum of Sq F Pr(>F)

1 56 820.4

8 2 58 3246.9 -2 -2426.4 82.811 < 2.2e-16 ***

10 Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

12 > anova(m.both ,m.dose)

410

Chapter 17 Applied Statistics in R

Analysis of Variance Table

14

Model 1: len ~ dosage + supp

16 Model 2: len ~ dosage

Res.Df RSS Df Sum of Sq F Pr(>F)

18 1 56 820.43

2 57 1025.78 -1 -205.35 14.017 0.0004293 ***

20 ---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

22 >

Now, we can see that not only are the MSE and Sum of Squares the same, the F tests
are the same. So, by default, the ANOVA table for a multi-way ANOVA compares the full
model to the model without that particular predictor. By doing so, it asks whether the
variable has an impact in light of all the other predictors (not in isolation).

17.1.1 Post-hoc testing in multi-way ANOVA

Post-hoc tests will work essentially the same for multi-way ANOVA. Both the TukeyHSD()

and the HSD.test() functions in agricolae will compute these post-hoc tests.

2 TukeyHSD(m.both)

4 Tukey multiple comparisons of means

95% family -wise confidence level

6

Fit: aov(formula = len ~ dosage + supp , data = ToothGrowth)

8

$dosage
10 diff lwr upr p adj

1-0.5 9.130 6.215909 12.044091 0e+00

12 2-0.5 15.495 12.580909 18.409091 0e+00

2-1 6.365 3.450909 9.279091 7e-06

14

$supp
16 diff lwr upr p adj

VC-OJ -3.7 -5.679762 -1.720238 0.0004293

18

20

22 > library(agricolae)

> HSD.test(m.both ,"dosage", group=TRUE ,

24 main="Effect of dosage",console=T)

26 Study: Effect of dosage

28 HSD Test for len

30 Mean Square Error: 14.65045

32 dosage , means

34 len std r Min Max

0.5 10.605 4.499763 20 4.2 21.5

36 1 19.735 4.415436 20 13.6 27.3

2 26.100 3.774150 20 18.5 33.9

38

411

Chapter 17 Applied Statistics in R

alpha: 0.05 ; Df Error: 56

40 Critical Value of Studentized Range: 3.404809

42 Honestly Significant Difference: 2.914091

44 Means with the same letter are not significantly different.

46 Groups , Treatments and means

a 2 26.1

48 b 1 19.74

c 0.5 10.6

Here, the Tukey test is performed on each variable, or on the one we specify in the
argument. It probably does not control for the number of variables tested in a multi-way
ANOVA; just the number of comparisons within each variable.

17.1.2 Interpreting Bayes Factor Multi-way ANOVA

The Bayes factor ANOVA produces a Bayes Factor for each candidate sub-model, and we
can find the ratio of these factors in order to do the tests we care about.

2 abf2 <- anovaBF(len~dosage+supp ,data=ToothGrowth)

summary(abf2)

4 > summary(abf2)

Bayes factor analysis

6 --------------

[1] supp : 1.198757 0.01%

8 [2] dosage : 4.983636e+12 0%

[3] supp + dosage : 2.877134e+14 2.25%

10 [4] supp + dosage + supp:dosage : 7.570807e+14 1.39%

12 Against denominator:

Intercept only

14 ---

To test whether supp matters in the context of dosage, we find the ratio of model 3 versus
2; for supp we find the ratio of model 3 versus model 1.

> abf2 [3]/abf2 [2]

2 Bayes factor analysis

4 [1] supp + dosage : 57.73161 2.25%

6 Against denominator:

len ~ dosage

8 ---

Bayes factor type: BFlinearModel , JZS

10

> abf2 [3]/abf2 [1]

12 Bayes factor analysis

14 [1] supp + dosage : 2.400098e+14 2.25%

16 Against denominator:

len ~ supp

18 ---

412

Chapter 17 Applied Statistics in R

Bayes factor type: BFlinearModel , JZS

In both cases, the predictor improves substantially over the smaller model according to the
Bayes Factor test.

17.1.3 Exercise

Perform an ANOVA on the insect multi-way ANOVA OrchardSprays outcome variable ‘de-
crease’. Use rowpos, colpos, and treatment as categorical predictors. Use a Tukey test to
determine the relative effects of row, column, and treatment. Do a Bayesian ANOVA as
well.

data(OrchardSprays)

17.2 Non-orthogonal predictors

Previously, we had examined how sets of orthogonal predictor variables can enter into a
regression model without impacting the estimates provided by other predictors. This is
important for the ANOVA because we are comparing sets of nested models, and so if the
predictors are not orthogonal, removing them in different orders can matter. That is, multiple
sub-models might differ by a single factor, and so it might matter which pair of models we
compare.

As an example, suppose we had a DV of response time in a stimulus detection experiment,
predicted by color, set size, and stimulus size. The model might be:

1

color <- c("r","r","r","r","r","r","r","r","r",

3 "g","g","g","g","g","g","g","g","g",

"b","b","b","b","b","b","b","b","b")

5

setsize <- c(1,2,3,1,2,3,1,2,3, 1,2,3,1,2,3,1,2,3,1,2,3,1,2,3,1,2,3)

7 stimsize <- c(1,1,1,2,2,2,3,3,3,1,1,1,2,2,2,3,3,3,1,1,1,2,2,2,3,3,3)

set.seed (100)

9 rt <- rnorm (27)

11 table(color ,setsize ,stimsize)

> table(color ,setsize ,stimsize)

13 , , stimsize = 1

15 setsize

color 1 2 3

17 b 1 1 1

g 1 1 1

19 r 1 1 1

21 , , stimsize = 2

23 setsize

color 1 2 3

25 b 1 1 1

g 1 1 1

27 r 1 1 1

413

Chapter 17 Applied Statistics in R

29 , , stimsize = 3

31 setsize

color 1 2 3

33 b 1 1 1

g 1 1 1

35 r 1 1 1

37

39 lm(rt~color+setsize+stimsize)

41 Call:

lm(formula = rt ~ color + setsize + stimsize)

43

Coefficients:

45 (Intercept) colorg colorr setsize stimsize

0.24228 -0.02269 -0.06716 0.08401 -0.16156

The table shows there is an observation in each of the 3x3x3 cells of the design. Suppose we
want to know whether set size has an impact. We could compare:

1 anova(lm(rt~color+setsize+stimsize),lm(rt~color+stimsize))

3 Analysis of Variance Table

5 Model 1: rt ~ color + setsize + stimsize

Model 2: rt ~ color + stimsize

7 Res.Df RSS Df Sum of Sq F Pr(>F)

1 22 12.153

9 2 23 12.280 -1 -0.12704 0.23 0.6363

Or we could compare:

1 anova(lm(rt~setsize+stimsize),lm(rt~stimsize))

Analysis of Variance Table

3

Model 1: rt ~ setsize + stimsize

5 Model 2: rt ~ stimsize

Res.Df RSS Df Sum of Sq F Pr(>F)

7 1 24 12.174

2 25 12.302 -1 -0.12704 0.2504 0.6213

Or:

1 anova(lm(rt~color+setsize),lm(rt~color))

3 Analysis of Variance Table

5 Model 1: rt ~ color + setsize

Model 2: rt ~ color

7 Res.Df RSS Df Sum of Sq F Pr(>F)

1 23 12.623

9 2 24 12.750 -1 -0.12704 0.2315 0.635

or even:

414

Chapter 17 Applied Statistics in R

2 > anova(lm(rt~setsize))

Analysis of Variance Table

4

Response: rt

6 Df Sum Sq Mean Sq F value Pr(>F)

setsize 1 0.127 0.12704 0.2512 0.6206

8 Residuals 25 12.644 0.50577

These are three different ANOVA tests to assess whether set size has an effect. If your
experiment used an orthogonal design (i.e., full factorial, or appropriately counterbalanced),
these will all agree in terms of the change in the sum-square-error (here it is 0.127). The F
values, however, will differ because the residual error differs. What is more, if you have an
orthogonal design, it doesn’t matter the order of the variables in the model:

1 anova(lm(rt~setsize+color))

anova(lm(rt~color+setsize))

3 anova(lm(rt~setsize+color))

Analysis of Variance Table

5

Response: rt

7 Df Sum Sq Mean Sq F value Pr(>F)

setsize 1 0.127 0.12704 0.2315 0.6350

9 color 2 0.021 0.01051 0.0191 0.9811

Residuals 23 12.623 0.54883

11 > anova(lm(rt~color+setsize))

Analysis of Variance Table

13

Response: rt

15 Df Sum Sq Mean Sq F value Pr(>F)

color 2 0.021 0.01051 0.0191 0.9811

17 setsize 1 0.127 0.12704 0.2315 0.6350

Residuals 23 12.623 0.54883

Here, all the F, P, SS, and other values are identical. This is not always true. If instead of
a completely balanced design like we had, what if we had used a quasi-experimental design,
or randomly-sampled conditions for each person, or for some other reason have unbalanced
factors? In this case, these three comparisons could in fact differ!

When you are creating your own experiments, having a orthogonally balanced design
makes things much easier. A complete factorial design will be balanced, provided you have
equal numbers of observations in each group. A partial factorial design (such as a latin
square) can also be orthogonal. But usually random assignment to experimental groups,
or subject attrition, sampling problems will create an unbalanced design. What do you do
when that happens?

Here is an example:
Create a fake data set where the outcome is related to the levels of two factors, but those

factors are sampled and not chosen by design. We will use just two predictors for now–color
and setsize:

1

set.seed (100)

3 color <- sample(c("r","g","b") ,27,replace=T)

setsize <- sample (1:3,27, replace=T)

5 stimsize <- sample (1:3,27, replace=T)

415

Chapter 17 Applied Statistics in R

rt <- rnorm (27)

7

9 table(color ,setsize)

> table(color ,setsize)

11 setsize

color 1 2 3

13 b 6 0 5

g 3 3 6

15 r 1 3 0

Here, we got especially unlucky because there are no cases of ‘b’ and ‘2’, which will
obviously cause problems. Now, let’s create two linear models, with the predictor terms
entered in different orders:

1 lmz1 <- lm(rt~color+setsize)

lmz2 <- lm(rt~setsize+color)

We can verify that they produce exactly the same regression model. This is as expected,
because the estimate is done simultaneously for all predictors, regardless of the order the
predictors are specified.

1 > lmz1$coefficients
(Intercept) colorg colorr setsize

3 0.14930149 0.07585296 -0.34465411 -0.07424683

5 > lmz2$coefficients
(Intercept) setsize colorg colorr

7 0.14930149 -0.07424683 0.07585296 -0.34465411

But now let’s look at these in terms of the ANOVA tables. Remember, the ANOVA table
compares each model term with respect to how its next higher model. Now, the order does
matter.

> anova(lmz1)

2 Analysis of Variance Table

4 Response: rt

Df Sum Sq Mean Sq F value Pr(>F)

6 color 2 0.454 0.22716 0.1270 0.8814

setsize 1 0.110 0.10975 0.0613 0.8066

8 Residuals 23 41.149 1.78910

10

> anova(lmz2)

12 Analysis of Variance Table

14 Response: rt

Df Sum Sq Mean Sq F value Pr(>F)

16 setsize 1 0.045 0.04460 0.0249 0.8759

color 2 0.519 0.25974 0.1452 0.8657

18 Residuals 23 41.149 1.78910

20 ---

416

Chapter 17 Applied Statistics in R

The same thing happens if you go straight to the aov() function:

1 z.anova1 <- aov(rt ~ setsize + color)

z.anova2 <- aov(rt ~ color+setsize)

3

> summary(z.anova1)

5 Df Sum Sq Mean Sq F value Pr(>F)

setsize 1 0.04 0.0446 0.025 0.876

7 color 2 0.52 0.2597 0.145 0.866

Residuals 23 41.15 1.7891

9

> summary(z.anova2)

11 Df Sum Sq Mean Sq F value Pr(>F)

color 2 0.45 0.2272 0.127 0.881

13 setsize 1 0.11 0.1098 0.061 0.807

Residuals 23 41.15 1.7891

The results look familiar to the earlier ANOVA on the balanced design (except the data
are re-sampled). Yet if you look carefully, we see something unexpected. Now, what the
aov is doing is running an lm and feeding it to the anova table. Each row of the table is
compared against its predecessor, so the first is compared to the intercept-only model (thus a
difference of 2/3 d.f.), and the next is compared to the next one, and so on. Because we have
non-orthogonal predictors, the order of model comparison impacts the estimates, because it
impacts the variables that happen to be in the model.

We should be able to build the anova test by hand to get a clearer understanding. To do
that, I need to create the ‘lattice’ of models. At the top, we have the intercept-only model,
then we have two ways of adding on factor, and finally the full model at the bottom.

1 lm0 <- lm(rt~1)

lmcolor <-lm(rt~color)

3 lmsetsize <- lm(rt~setsize)

lmcolorsetsize <- lm(rt~color+setsize)

5 lmsetsizecolor <- lm(rt~setsize+color)

If we look at ANOVAs to compare models, we get different SSEs for each comparison
that should produce the same difference:

1 SS

anova(lm0 ,lmcolor) # .454

3 anova(lmsetsizecolor ,lmsetsize) # -.519

5

anova(lm0 ,lmsetsize) # .044

7 anova(lmcolor ,lmsetsizecolor) # .10975

If we look at the ANOVA table for the largest models, we can trace the lines back to
particular comparisons between models.

2

anova(lmsetsizecolor)

4 Analysis of Variance Table

6

Response: rt

417

Chapter 17 Applied Statistics in R

8 Df Sum Sq Mean Sq F value Pr(>F)

setsize 1 0.045 0.04460 0.0249 0.8759

10 color 2 0.519 0.25974 0.1452 0.8657

Residuals 23 41.149 1.78910

12

14 anova(lmzcolorsetsize)

Analysis of Variance Table

16

Response: rt

18 Df Sum Sq Mean Sq F value Pr(>F)

color 2 0.454 0.22716 0.1270 0.8814

20 setsize 1 0.110 0.10975 0.0613 0.8066

Residuals 23 41.149 1.78910

You should be able to trace where each F value comes from in the built-in ANOVA by
looking at the specific model pairs it tests.

17.2.1 What do you do?

This is a problem that cannot just be swept under the rug. The logic of the ANOVA test
requires comparing nested models, and when sets of predictors are not orthogonal, those
predictors’ coefficients will change and will depend on each other, and thus the order you do
the comparison. The type of ANOVA reported by R by default has been called the Type I
ANOVA; a term that appears to have arisen from SAS and been adopted by SPSS. More on
this in a little bit.

The lesson from this is that ANOVA was really designed and created for handling true
experiments with good designs, random assignment to groups, and equal numbers of obser-
vations in each group. This is something you might be able to acheive in botany or when
studying rats, but often human research creates situations that violate this. We can still
manage when we do not have a perfect design, but it involves compromises regardless of
what we do.

This problem becomes even a greater challenge when you have more than two factor-
based predictors, because the model lattice becomes much more complex. For example,
What if x2 is only reliable if it enters after x1, but before x3?

Luckily, It is often not as bad as it might seem it could be. First, remember that this will
only matter when your design is not orthogonal. Many times you can avoid this by simply
designing or sampling equally.

Because you cannot always do that, and a reasonable strategy would be to use the different
models as a way to make your argument stronger. Comparing sets of models demonstrates
statistical control–that a variable has an effect even when other predictors are accounted for.
For the above comparison, color never makes a reliable difference to the model fit, regardless
of whether you compare it first to the intercept or compare it after you let the other variable
setsize have its say.

In fact, oftentimes the order in which the predictors should be tested will have some logical
sense, as it will map onto your theory. For example, suppose it has been well established that
gender impacts spatial skills (this has been established by research, but the reasons for it
are the subject of controversy), but nobody has considered whether participation in sports is
also predictive. A nice default way to present this is to first assess whether the gender effect
is reliably different from the intercept-only model, and then determine if sports participation
can still account for variability after that. Next, if you fit the model the opposite way, it

418

Chapter 17 Applied Statistics in R

would be powerful if you were able to show that not only does the sports activity predict
after gender is taken into account, but gender has no effect if sports activity is first given its
shot. So the order of a Type I ANOVA can be a useful rhetorical/argumentation device.

This example suggests that, because order matters in the standard “Type I” ANOVA,
we should be deliberate about how order of variables are used. Furthermore, a reasonable
way to handle this is to examine the impact of a factor only after all other factors have had
their chance. This is what the Type II ANOVA does.

17.3 Type I, II, and III ANOVA tests

The Type I ANOVA table is unsatisfying because it depends on how you write your model.
Consequently, there are several possible answers. The nice thing about the “Type I” ANOVA
is that it divides your variance into mutually exclusive bins, allowing you to figure out directly
how much each predictor is accounting for. Notice that for any individual model, the sum
square error add up to the same value:

1 > 0.1705 + 5.8233+18.0159

[1] 24.0097

3 > 5.748+0.2457+18.0159

[1] 24.0096

5 >

This is nice because you are truly dividing your variance into the things you know about
and things you don’t; the problem is that it can produce different results if you chose to fit
the model one way versus the other. This has created substantial debate within the applied
statistics community, and is especially important when dealing with interactions in the face
of an unbalanced design (one with different numbers of observations in each cell).

In many cases, you can do an ANOVA test comparing your two specific models of inter-
est, rather than relying on a pre-packaged ANOVA table. Oftentimes, the order in which
predictors are included or removed from a model is important from a theoretical perspective,
and if so, you should rely on testing those hypotheses directly.

Nevertheless, sometimes our default hypothesis involves testing the impact of a predictor,
after all other variables have been entered into the model. This can make it harder to find a
reliable impact if a variable is correlated with others; it can also improve the impact, if two
variables together can account for variance that neither one alone does. This basic notion is
encapsulated in the so-called “Type II” and “Type III” ANOVA models provided by default
by software like SAS and SPSS. When using this type of ANOVA, we usually let go of our
goal of making our table account for all the pieces of variance. Instead, we reports specific F
tests associated with reasonable hypotheses. And of course, in a completely balanced design,
it will not matter because all of the tests will be the same.

We can build get these ANOVA tables by hand from the Type-I ANOVAs:

2 >anova(lm(rt~color + setsize))

Analysis of Variance Table

4

Response: rt

6 Df Sum Sq Mean Sq F value Pr(>F)

color 2 0.454 0.22716 0.1270 0.8814

8 setsize 1 0.110 0.10975 0.0613 0.8066

Residuals 23 41.149 1.78910

10

419

Chapter 17 Applied Statistics in R

> anova(lm(rt~setsize+color))

12 Response: rt

Df Sum Sq Mean Sq F value Pr(>F)

14 setsize 1 0.045 0.04460 0.0249 0.8759

color 2 0.519 0.25974 0.1452 0.8657

16 Residuals 23 41.149 1.78910

By taking just the last line of each, we can make our Type II/III ANOVA table:

Proposed ANOVA table

2 Response: z

Df Sum Sq Mean Sq F value Pr(>F)

4 color 2 0.519 0.25974 0.1452 0.8657

setsize 1 0.110 0.10975 0.0613 0.8066

6 Residuals 23 41.149 1.78910

Notice how the Residuals are the same, but the SS no longer adds up to the same thing:

> .045 + .519 + 41.149

2 [1] 41.713

4 > .519 + .110 +41.149

[1] 41.778

This kind of model is what is known by SAS and SPSS as the Type II and/or Type III
ANOVA. When you have no interaction terms or higher-order polynomials, the two types
are identical.

The car library is a nice R package that is linked to a companion to Fox’s “Companion to
Applied Regression in R”–a textbook that covers much of the same material as the current
course. It contains the special-purpose Anova function that will estimate Type II and Type
III ANOVAs for you.

library(car)

2

> Anova(lmcolorsetsize)

4 Anova Table (Type II tests)

6 Response: rt

Sum Sq Df F value Pr(>F)

8 color 0.519 2 0.1452 0.8657

setsize 0.110 1 0.0613 0.8066

10 Residuals 41.149 23

12

> Anova(lmsetsizecolor)

14 Anova Table (Type II tests)

16 Response: rt

Sum Sq Df F value Pr(>F)

18 setsize 0.110 1 0.0613 0.8066

color 0.519 2 0.1452 0.8657

20 Residuals 41.149 23

420

Chapter 17 Applied Statistics in R

Notice how these two results are the same, regardless of order. This is because they use
just the two ANOVA model comparisons produced by leaving a single factor out at a time,
and combine them for display. We will cover the differences between Type II and Type III
after a section on specifying interactions in a later chapter.

Finally, an admonishment: when using an ANOVA, and there are more than two predictor
factors, be sure to report: 1. whether the predictors were orthogonal and balanced (if they
were, none of this matters); 2. If not and you are using the base “Type I” ANOVA, discuss
how the order matters, and use this as a way to help illustrate your argument; 3. If not and
you are using a Type II/Type III ANOVA, state this explicitly. This is true regardless of
whether you perform your ANOVA in R or SPSS or whatever.

17.4 ANOVA Model Lattice

Just as with the variable selection problem in regression, the ANOVA model is concerned
with a lattice of models. To understand this lattice, we will construct all possible models
including the predictors a, b, and c, and compute pairwise ANOVA tests between them.

17.5 The Model Lattice and ANOVA Types

In the previous section, we discussed how ANOVA tests differences between models, and
when your predictors are not orthogonal, the order of the models matters. We will start
with an exercise that will help us build a model lattice for a data set whose predictors are
not orthogonal:

The following random data set creates a 2x2 design which, because we use the set.seed()
function, should create the same values for all users.

1

set.seed (1000) #Everyone should get the same numbers.

3 ## Build the full model lattice for the set of models with three predictors

5 a <- factor(sample(c("I","II"),replace=T,50))

b <- factor(sample(c("i","ii"),replace=T,50))

7 c <- factor(sample(c("a","b","c"),replace=T,50))

y <- c(.3,-5)[a] - c(50 ,35)[b] + c(-.35,1.5,-5)[c] + rnorm (50)

Remember that the anova() function creates a table which iteratively removes terms
from the model. When you have a non-orthogonal design, the order you remove things
matters. Compare the results of these different commands

1 anova(lm(y~a+b+c))

3 anova(lm(y~a+c+b))

anova(lm(y~b+a+c))

5 anova(lm(y~b+c+a))

anova(lm(y~c+a+b))

7 anova(lm(y~c+b+a))

First, let’s look at the first command.

1 > anova(lm(y~a+b+c))

Analysis of Variance Table

421

Chapter 17 Applied Statistics in R

3

Response: y

5 Df Sum Sq Mean Sq F value Pr(>F)

a 1 458.88 458.88 718.00 < 2.2e-16 ***

7 b 1 2836.58 2836.58 4438.33 < 2.2e-16 ***

c 2 433.42 216.71 339.08 < 2.2e-16 ***

9 Residuals 45 28.76 0.64

11 Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Where do these values come from? We could compute each by hand, by comparing
models explicitly:

1 anova(lm(y~a),lm(y~1))

anova(lm(y~a+b),lm(y~a))

3 anova(lm(y~a+b+c),lm(y~a+b))

5 > anova(lm(y~a),lm(y~1))

Analysis of Variance Table

7

Model 1: y ~ a

9 Model 2: y ~ 1

Res.Df RSS Df Sum of Sq F Pr(>F)

11 1 48 3298.8

2 49 3757.6 -1 -458.88 6.6771 0.01286 *

13

> anova(lm(y~a+b),lm(y~a))

15 Analysis of Variance Table

17 Model 1: y ~ a + b

Model 2: y ~ a

19 Res.Df RSS Df Sum of Sq F Pr(>F)

1 47 462.2

21 2 48 3298.8 -1 -2836.6 288.46 < 2.2e-16 ***

23 ---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

25

> anova(lm(y~a+b+c),lm(y~a+b))

27 Analysis of Variance Table

29 Model 1: y ~ a + b + c

Model 2: y ~ a + b

31 Res.Df RSS Df Sum of Sq F Pr(>F)

1 45 28.76

33 2 47 462.18 -2 -433.42 339.08 < 2.2e-16 ***

35 Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Notice that at each step, the Sum Sq is the difference between two models. You could
think of this as either adding the term to the smaller model, subtracting it from the larger
model; it doesn’t matter.

What should be clear is that the ‘standard’ Type-I ANOVA follows the path up from the
intercept-only model, entering the first term, then the second term, finally the third term.
You can take any of the ANOVA’s shown earlier, and follow them up through the lattice
until you get to the first model.

422

Chapter 17 Applied Statistics in R

We can see that because the levels of a,b,and c are sampled from the population and not
chosen by design, they are not orthogonal. Depending on your design, you could potentially
sample equally from each cell to avoid the unbalanced problem. Remember that if your
predictors are not orthogonal, then their estimates will depend on one another, and so if you
two models where you remove a factor from the larger model, the estimate of the remaining
predictor will change.

As we can see in Figure 17.2, order does matter. For example, there are four different
model pairs who differ by only a. And these four times, a accounts for either 31.6, 342, 25.7,
or 307 Sum of Squares! Which one is the right one?

423

Chapter 17 Applied Statistics in R

Figure 17.2: Model lattice for sample problem. Each model shows the total SS it accounts
for, relative to the residual SS it cannot account for. Each link shows the relative change
stemming from adding/removing a specific entry.

y~1
3757.6

y~a+1

458/3298

y~b+1

2924/833

y~c+1

576/3181

y~a+b+1

3295/462

y~a+c+1

955.4/2802

y~b+c+1

3398.8/358.2

y~a+b+c+1

3728.9/28.8

b
2836.6

a
371 496.5

c a
379.4 474.6

c

b
2822.8

576
cb

2924

a
459

b
2774433

c a
330

424

Chapter 17 Applied Statistics in R

Clearly, if you had just done aov(y~a+b+c), this might not be the right statistic to report,
especially if order is sort of arbitrary. One alternative uses a conservative criterion–report
the SS that a factor can account for AFTER all other factors have done their work. In this
case, it would be the top row of the lattice. This is called “Type II” or “Type III” ANOVA,
which is what SAS and SPSS report by default. You can get it by building the lattice by
hand, or by using the car package ANOVA function, or by looking at the full model and
comparing it to each model that is one smaller, using drop1:

1 > drop1(lm(y~a+b+c))

Single term deletions

3

Model:

5 y ~ a + b + c

Df Sum of Sq RSS AIC

7 <none > 28.76 -17.652

a 1 330.06 358.82 106.539

9 b 1 2773.47 2802.23 209.307

c 2 433.42 462.18 117.197

Looking at the lattice again, we can see the big picture that Type I and Type II/III
miss. Each predictor alone counts for more variability than when it is entered after any
others. This suggests they are somewhat redundant. In this case, all of the SSEs for each
predictor are about the same, but this does not always happen. If they change substantially
for different links in the lattice, this can help you understand the relationships between
variables.

17.6 Solutions to exercises

17.6.1 Orchard spray ANOVA

1

#this isn ’t exactly what we wanted:

3 model1 <-aov(decrease~rowpos+colpos+treatment ,data= OrchardSprays)

model1

5

7 model <- aov(decrease~as.factor(rowpos)+as.factor(colpos)+treatment ,data=

OrchardSprays)

model

9 summary(model)

11 TukeyHSD(model)

library(agricolae)

13 HSD.test(model ,trt="treatment",group=T,console=T)

15 > HSD.test(model ,trt="treatment",group=T,console=T)

17 Study: model ~ "treatment"

19 HSD Test for decrease

425

Chapter 17 Applied Statistics in R

21 Mean Square Error: 380.8311

23 treatment , means

25 decrease std r Min Max

A 4.625 3.204350 8 2 12

27 B 7.625 3.292307 8 4 14

C 25.250 24.429198 8 9 84

29 D 35.000 13.437687 8 20 57

E 63.125 26.909571 8 39 114

31 F 69.000 29.189039 8 20 114

G 68.500 20.142351 8 24 92

33 H 90.250 24.223660 8 69 130

35 alpha: 0.05 ; Df Error: 42

Critical Value of Studentized Range: 4.509098

37

Honestly Significant Difference: 31.11078

39

Means with the same letter are not significantly different.

41

Groups , Treatments and means

43 a H 90.25

a F 69

45 a G 68.5

ab E 63.12

47 bc D 35

c C 25.25

49 c B 7.625

c A 4.625

51 > HSD.test(model ,trt="treatment",group=T,console=T)

426

Chapter 18

Factorial ANOVA: Main effects
and interactions

18.1 Interactions Between Factors in a balanced ANOVA
model

So far, we have looked at main effects within ANOVA and regression models. Earlier, we
examined how the product of two continuous variables could be used to make an orthog-
onal predictor that amounts to a curved surface in a regression space. Within categorical
predictions, this product is called an interaction.

An interaction simple allows that the impact of one factor depends on the level of a second
factor. It should make intuitive sense–just like a drug interaction causes an unexpected result
that differs from either of the main effects of two drugs, a statistical interaction does the
same.

We have also used interactions previously to fit a different slope or intercept for each
level of a condition. But now let’s consider interactions of pure categorical variables. The
toothgrowth data set we examined previously is a good example. From the mean values in
each condition, it looks like the impact of supplement changes for large versus small doses:

1 tapply(ToothGrowth$len ,list(ToothGrowth$supp ,ToothGrowth$dose),mean)
0.5 1 2

3 OJ 13.23 22.70 26.06

VC 7.98 16.77 26.14

The general question we want to ask here is whether there is an interaction between dose
and supplement. We can include this in a regression or ANOVA model using the ‘:’ or ‘*’
symbols. The ‘*’ symbol includes both main effects and the interaction, but the ‘:’ includes
just the interaction. Lets use the ANOVA here to look at categorical effects (and be sure to
convert dose to a factor).

tg1 <- aov(len~supp+as.factor(dose),data=ToothGrowth)

2 tg2 <- aov(len~supp*as.factor(dose),data=ToothGrowth)

tg3 <- aov(len~supp:as.factor(dose),data=ToothGrowth)

4

> summary(tg1)

6 Df Sum Sq Mean Sq F value Pr(>F)

supp 1 205.4 205.4 14.02 0.000429 ***

427

Chapter 18 Applied Statistics in R

8 as.factor(dose) 2 2426.4 1213.2 82.81 < 2e-16 ***

Residuals 56 820.4 14.7

10 ---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

12 > summary(tg2)

Df Sum Sq Mean Sq F value Pr(>F)

14 supp 1 205.4 205.4 15.572 0.000231 ***

as.factor(dose) 2 2426.4 1213.2 92.000 < 2e-16 ***

16 supp:as.factor(dose) 2 108.3 54.2 4.107 0.021860 *

Residuals 54 712.1 13.2

18 ---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

20

> summary(tg3)

22 Df Sum Sq Mean Sq F value Pr(>F)

supp:as.factor(dose) 5 2740.1 548.0 41.56 <2e-16 ***

24 Residuals 54 712.1 13.2

26 Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

28 anova(tg2 ,tg1)

Analysis of Variance Table

30

Model 1: len ~ supp * as.factor(dose)

32 Model 2: len ~ supp + as.factor(dose)

Res.Df RSS Df Sum of Sq F Pr(>F)

34 1 54 712.11

2 56 820.43 -2 -108.32 4.107 0.02186 *

36 ---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Notice several things. First of all, the baseline model found both supplement and dose
were significant. When their interaction was added, it was also significant. Next, see that
supp:dose has two degrees of freedom associated with it. The DF of an interaction is the
product of the DFs of the main effects, and so because 1x2=2, this 2x3 interaction has 2 df.
Finally, compare tg2 to tg3. They account for exactly the same amount of variability, but
in this case, the interaction term has 5 degrees of freedom. We can maybe learn a bit more
about this by doing the lm versions to examine each fitted beta weight:

2 > summary(lm(len~supp*as.factor(dose),data=ToothGrowth))

4 Call:

lm(formula = len ~ supp * as.factor(dose), data = ToothGrowth)

6

Residuals:

8 Min 1Q Median 3Q Max

-8.20 -2.72 -0.27 2.65 8.27

10

Coefficients:

12 Estimate Std. Error t value Pr(>|t|)

(Intercept) 13.230 1.148 11.521 3.60e-16 ***

14 suppVC -5.250 1.624 -3.233 0.00209 **

as.factor(dose)1 9.470 1.624 5.831 3.18e-07 ***

16 as.factor(dose)2 12.830 1.624 7.900 1.43e-10 ***

suppVC:as.factor(dose)1 -0.680 2.297 -0.296 0.76831

18 suppVC:as.factor(dose)2 5.330 2.297 2.321 0.02411 *

20 Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

428

Chapter 18 Applied Statistics in R

22 Residual standard error: 3.631 on 54 degrees of freedom

Multiple R-squared: 0.7937 , Adjusted R-squared: 0.7746

24 F-statistic: 41.56 on 5 and 54 DF , p-value: < 2.2e-16

26

28 summary(lm(len~supp:as.factor(dose),data=ToothGrowth))

30 Call:

lm(formula = len ~ supp:as.factor(dose), data = ToothGrowth)

32

Residuals:

34 Min 1Q Median 3Q Max

-8.20 -2.72 -0.27 2.65 8.27

36

Coefficients: (1 not defined because of singularities)

38 Estimate Std. Error t value Pr(>|t|)

(Intercept) 26.140 1.148 22.763 < 2e-16 ***

40 suppOJ:as.factor(dose)0.5 -12.910 1.624 -7.949 1.19e-10 ***

suppVC:as.factor(dose)0.5 -18.160 1.624 -11.182 1.13e-15 ***

42 suppOJ:as.factor(dose)1 -3.440 1.624 -2.118 0.0388 *

suppVC:as.factor(dose)1 -9.370 1.624 -5.770 3.98e-07 ***

44 suppOJ:as.factor(dose)2 -0.080 1.624 -0.049 0.9609

suppVC:as.factor(dose)2 NA NA NA NA

46 ---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

48

Residual standard error: 3.631 on 54 degrees of freedom

50 Multiple R-squared: 0.7937 , Adjusted R-squared: 0.7746

F-statistic: 41.56 on 5 and 54 DF , p-value: < 2.2e-16

Notice that it carves the effects up into slightly different bins, and none of the numbers
are the same, but overall it accounts for all the levels of one factor crossed with all the levels
of the other. This is because we lose some degrees of freedom estimating the means of the two
main effects, and so the interaction is then estimated with respect to those means. Without
estimating those first, we just compare each pairing of levels, and estimate the values. Then,
to determine whether the interaction is significant, ANOVA compares a model containing
those terms to a model that does not contain those terms.

18.1.1 Exercise

Verify that the two models’ estimates for suppVC:dose1 and suppVC:dose2 are identical.

The fact that these two produce the same estimates makes sense when we look at the
’table of effects’ produced by the model.tables() function. In each case, this ignores the
intercept (which was 18.8), but then codes effects related to the different predictors:

1 > model.tables(tg2)

Tables of effects

3

supp

5 supp

OJ VC

7 1.85 -1.85

429

Chapter 18 Applied Statistics in R

9 as.factor(dose)

as.factor(dose)

11 0.5 1 2

-8.208 0.922 7.287

13

supp:as.factor(dose)

15 as.factor(dose)

supp 0.5 1 2

17 OJ 0.775 1.115 -1.890

VC -0.775 -1.115 1.890

19

> model.tables(tg3)

21 Tables of effects

23 supp:as.factor(dose)

as.factor(dose)

25 supp 0.5 1 2

OJ -5.583 3.887 7.247

27 VC -10.833 -2.043 7.327

If we use the ’means’ argument, it produces the estimated at each level of prediction, and
you can see they are the same. Thus, the sort of have to have the same degrees of freedom.

1

> model.tables(tg2 ,type="means")

3 Tables of means

Grand mean

5

18.81333

7

supp

9 supp

OJ VC

11 20.663 16.963

13 as.factor(dose)

as.factor(dose)

15 0.5 1 2

10.605 19.735 26.100

17

supp:as.factor(dose)

19 as.factor(dose)

supp 0.5 1 2

21 OJ 13.23 22.70 26.06

VC 7.98 16.77 26.14

23

25 > model.tables(tg3 ,type="means")

Tables of means

27 Grand mean

29 18.81333

31 supp:as.factor(dose)

as.factor(dose)

33 supp 0.5 1 2

OJ 13.23 22.70 26.06

35 VC 7.98 16.77 26.14

430

Chapter 18 Applied Statistics in R

So, in this case, adding an interaction term will let us model all six points exactly.
We add to the base effects differential effects of each level, and then can recompute the
exact 6 means precisely. Then, the question we want to ask, statistically, is whether this
more complex model accounts for sufficiently more data. With a NHST, when testing the
interaction, we are asking whether the difference from the main-effect model would have
occurred by chance if no true interaction existed.

18.2 The model lattice with interactions

Understanding the model lattice is important for standard ANOVA, but even more critical
when we start to deal with interactions. Suppose that a predictor we call c were an interaction
term (we’d have to recreate the term in order to do this). In that case, the Type III ANOVA
logic we discussed in the previous chapter makes a strange assumption. It shows the impact
that the a predictor has after the a:b interaction (called c) has entered the model, and
similarly for b, it shows the effect of b in comparison to the model with a and a:b. This
violates the principle of marginality1, which means the estimates will depend on how the
factor’s contrasts are created–so we need to be careful to use orthogonal contrasts. Using
Helmert or polynomial contrasts will ensure this is done properly.

It may seem strange to test the main effect in comparison to a model with an interaction
of that effect. The Type-II ANOVA uses a different approach, looking elsewhere in the
lattice. It tests the main effects by comparing the model with all main effects to one without
the predictor of interest, and then tests the interactions in comparison to the model with all
main effects. This can be seen as the small-hashed blue highlighted path through the lattice
in Figure 18.1.

1See W. N. Venables (1998), An exegesis on Linear Models, http://www.stats.ox.ac.uk/pub/MASS3/

Exegeses.pdf; also Fox message to R mailing list on Mar-2-2010 “[R] Type-I v/s Type-III Sum-Of-Squares
in ANOVA”

431

http://www.stats.ox.ac.uk/pub/MASS3/Exegeses.pdf
http://www.stats.ox.ac.uk/pub/MASS3/Exegeses.pdf

Chapter 18 Applied Statistics in R

Figure 18.1: Model lattice for sample problem, where c is an interaction of a:b.

y~a+1

y~b+1

y~c+1

y~a+b+1

y~a+c+1

y~b+c+1

y~a+b+c+1

a
c

a
c

b

c ba

c a

"Type I" ANOVA

"Type III" ANOVA
"Type II" ANOVA

Interaction:
c=a:b

b

b

Violates
Marginality

y~1

432

Chapter 18 Applied Statistics in R

Overall, it is more important to test your hypotheses than to worry about these particular
default tests. Recognize that none of the three tests will always automatically test the
comparison between models you are interested in, and then use specific ANOVA models to
test your specific hypotheses. However, Fox recommends using Type-II as a default, in part
because it is does not violate marginality (and so you don’t have to worry about contrasts),
and in part because it is reasonably intuitive.

When you have an interaction, the main effects become ambiguous. One approach is
to simply ignore the main effects, and either interpret the interaction on its own, or break
it apart and look at each level separately. However, sometimes there is still a reasonable
interpretation of the main effect–you might mean the marginal means–the average effect
across all levels of the other predictor(s). This gets tricky if you have an unbalanced design–
different numbers of observations in each cell, because the SSE will overweight some groups.
Thus, a reasonable test of a main effect in this context might to examine the effect of A after
accounting for both B AND AB. this is called a “Type-III” ANOVA, and is also available
as an option in Fox’s Anova in the car package. It needs to be used with care though,
because since marginality is violated, the contrasts used to represent your factors use could
matter. In these cases, you should code your factor variable with contrasts that are balanced
and orthogonal, to ensure you get the same estimates regardless of order. The contr.poly,
contr.sum and contr.helmert arguments will do this, (but the default treatment contrasts
do not). Thus, you should either change the default contrast or hand-code the contrasts.

So, to summarize:

• The Type-I anova which is given directly be the R aov command is rarely exactly what
you want, especially in the context of interactions. But it calculates and correctly
divides up sums-of-squares in exactly the order you specify, and so could be used to
calculate the entire model lattice.

• The Type-II ANOVA is is a reasonable default when you have interactions.

• The Type-III is also intuitive, but violates marginality, and so should only be used
when you specify orthogonal contrasts.

18.2.1 Dealing with Interactions: Worked Example

In this study, participants played the first player in the ‘Ultimatum’ game. Two players play
for up to 10 points. The first player decides how to divide up the points between him or
herself and the other player They can choose any whole number value from 0 to 10, either
keeping it all or giving it all to the other player. The second player can only decide whether to
accept the offer (in which case the two players keep whatever money or points were specified
by player 1), or reject it, (in which case neither player gets anything). A rational first player
would minimize the amount given to the other player, and a rational second player would
accept any positive offer, because it is better than the 0 payoff otherwise obtained. In reality,
people tend to reject offers that are not equitable, and tend to offer around 50% of the pot
to the other player.

In this data set, based on a real experiment, we select participants who self-identified
as either men or women to play the first player of the game (the offeror). At the outset,
participants were randomly assigned to one of three conditions: (1) no information about
the opponent (2) background information about opponent who is female; (3) background
information about opponent who is male. The background in the two cases, and the name,
is identical–only the picture indicating gender is changed.

433

Chapter 18 Applied Statistics in R

The questions of interest are whether the background information has an effect, whether
the gender of the opponent has an effect, and whether the gender of the opponent and gender
of player interact.

here is a (simulated) sample data set:

1 set.seed (100)

ultim1 <- data.frame(cond =rep(rep(c("N","F","M") ,2) ,100),

3 gender= rep(rep(c("F","M"),each =3) ,100),

offer = rep(c(5.5, 6.5, 6.5,

5 5, 6.1, 6.0) ,100)+rnorm (600))

7

table(ultim1$cond ,ultim1$gender)
9

F M

11 F 100 100

M 100 100

13 N 100 100

Note that the cells are balanced, which makes as a bit less concerned about the particular
contrasts we are using.

1 matplot(tapply(ultim1$offer ,list(ultim1$cond ,ultim1$gender),mean),
type="o",xaxt="n",pch=c("F","M"),ylab="Mean offer in ultimatum game",

3 xlab="Gender of opponent")

5 axis(1,1:3,c("Female","Male","Unspecified"))

legend (2.5,6,c("Male","Female"),pch=c("F","M"),col=1:2,lty =1:2)

Figure 18.2: Simulated data from the ultimatum game. Here, men and women behave about
the same with respect to the gender of each partner

●
●

●

5.
0

5.
5

6.
0

6.
5

Gender of opponent

M
ea

n
of

fe
r

in
 u

lti
m

at
um

 g
am

e

● ●

●

F
F

F

M M

M

Female Male Unspecified

F
M

Male
Female

Let’s build a model and try to test these hypotheses. We would usually only test the
post-hoc after we examine the model, but in this case we will look first to see what we might
expect

434

Chapter 18 Applied Statistics in R

library(car)

2 model1 <- aov(offer~cond*gender ,data=ultim1)

model1b <- aov(offer~cond+gender ,data=ultim1)

4

TukeyHSD(model1)

6

TukeyHSD(model1)

8 Tukey multiple comparisons of means

95% family -wise confidence level

10

Fit: aov(formula = offer ~ cond * gender , data = ultim1)

12

$cond
14 diff lwr upr p adj

M-F -0.07235367 -0.3102928 0.1655855 0.7550238

16 N-F -1.21990466 -1.4578438 -0.9819655 0.0000000

N-M -1.14755099 -1.3854901 -0.9096118 0.0000000

18

$gender
20 diff lwr upr p adj

M-F -0.4771212 -0.6395116 -0.3147309 0

22

$‘cond:gender ‘
24 diff lwr upr p adj

M:F-F:F -0.11701910 -0.5264759 0.292437727 0.9643759

26 N:F-F:F -1.26425527 -1.6737121 -0.854798446 0.0000000

F:M-F:F -0.53646527 -0.9459221 -0.127008442 0.0027012

28 M:M-F:F -0.56415352 -0.9736103 -0.154696692 0.0012792

N:M-F:F -1.71201933 -2.1214762 -1.302562501 0.0000000

30 N:F-M:F -1.14723617 -1.5566930 -0.737779348 0.0000000

F:M-M:F -0.41944617 -0.8289030 -0.009989344 0.0410458

32 M:M-M:F -0.44713442 -0.8565912 -0.037677594 0.0230551

N:M-M:F -1.59500023 -2.0044571 -1.185543402 0.0000000

34 F:M-N:F 0.72779000 0.3183332 1.137246829 0.0000074

M:M-N:F 0.70010175 0.2906449 1.109558579 0.0000193

36 N:M-N:F -0.44776405 -0.8572209 -0.038307230 0.0227433

M:M-F:M -0.02768825 -0.4371451 0.381768576 0.9999627

38 N:M-F:M -1.17555406 -1.5850109 -0.766097233 0.0000000

N:M-M:M -1.14786581 -1.5573226 -0.738408983 0.0000000

Notice that the Tukey test shows many different specific comparisons between levels of
the interaction.

By default, we should be examining the whole test. Anova will default to a Type-II:

1 Anova(model1)

> Anova(model1)

3 Anova Table (Type II tests)

5 Response: offer

Sum Sq Df F value Pr(>F)

7 cond 187.35 2 91.3448 < 2.2e-16 ***

gender 34.15 1 33.2970 1.274e-08 ***

9 cond:gender 0.26 2 0.1288 0.8792

Residuals 609.16 594

11 ---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

435

Chapter 18 Applied Statistics in R

Here, both the model with gender is compared to gender+condition to give use the SS for
cond; the model with cond is compared to the model with gender + cond to give us the test
for gender, and the model with gender+cond is compared to the model with gender + cond
+ gender:cond to give us the interaction. Here, we see that the interaction is not significant,
but the other two are.

But maybe we’d prefer to test the effect of gender in a Type-III ANOVA. We can’t just
use type=="III", we need to use orthogonal contrasts, as we see below:

1 Anova(model1 ,type="III") ##incorrect

Anova Table (Type III tests)

3

Response: offer

5 Sum Sq Df F value Pr(>F)

(Intercept) 4384.6 1 4275.5231 < 2.2e-16 ***

7 cond 97.6 2 47.5887 < 2.2e-16 ***

gender 14.4 1 14.0317 0.0001973 ***

9 cond:gender 0.3 2 0.1288 0.8791895

Residuals 609.2 594

11 ---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

13

contrasts(ultim1$cond) <- contr.poly (3)

15 contrasts(ultim1$gender) <- contr.poly (2)

model1 <- aov(offer~cond*gender ,data=ultim1)

17

Anova Table (Type III tests)

19

Response: offer

21 Sum Sq Df F value Pr(>F)

(Intercept) 21046.8 1 20523.0746 < 2.2e-16 ***

23 cond 187.4 2 91.3448 < 2.2e-16 ***

gender 34.1 1 33.2970 1.274e-08 ***

25 cond:gender 0.3 2 0.1288 0.8792

Residuals 609.2 594

27 ---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Notice that in this case, the type-II and type-III make no difference, nor does the contrasts
we happen to use. This is because we have a balanced design–so if you have a balanced
design (the same number of each cell), you can get away with a lot. But using the wrong
contrasts in a type-III will give different F values for the main effects.

1

contrasts(ultim1$cond) <- contr.treatment(levels(ultim1$cond))
3 contrasts(ultim1$gender) <- contr.treatment(levels(ultim1$gender))

Resample the data so it is no longer balanced

ultim1b <-ultim1[sample (1: nrow(ultim1),size=nrow(ultim1),replace=T),]

2 table(ultim1b$cond ,ultim1b$gender)

4 F M

F 94 106

6 M 93 103

N 101 103

8 >

436

Chapter 18 Applied Statistics in R

model1b <- aov(offer~cond*gender ,data=ultim1b)

2 Anova(model1b ,type="II")

Anova Table (Type II tests)

4

Response: offer

6 Sum Sq Df F value Pr(>F)

cond 153.22 2 75.2343 < 2.2e-16 ***

8 gender 33.90 1 33.2874 1.28e-08 ***

cond:gender 0.10 2 0.0501 0.9511

10 Residuals 604.85 594

12 Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

14 Anova(model1b ,type="III") ##not right

Anova Table (Type III tests)

16

Response: offer

18 Sum Sq Df F value Pr(>F)

(Intercept) 4073.6 1 4000.5255 < 2.2e-16 ***

20 cond 76.5 2 37.5816 4.281e-16 ***

gender 10.5 1 10.3190 0.001388 **

22 cond:gender 0.1 2 0.0501 0.951144

Residuals 604.9 594

24 ---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

26

contrasts(ultim1b$cond) <- contr.poly (3)

28 contrasts(ultim1b$gender) <- contr.poly (2)

model1c <- aov(offer~cond*gender ,data=ultim1b)

30 Anova(model1c ,type="III")

Anova Table (Type III tests)

32

Response: offer

34 Sum Sq Df F value Pr(>F)

(Intercept) 21188.8 1 20808.6181 < 2.2e-16 ***

36 cond 153.2 2 75.2122 < 2.2e-16 ***

gender 33.9 1 33.3322 1.253e-08 ***

38 cond:gender 0.1 2 0.0501 0.9511

Residuals 604.9 594

40 ---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

42 >

So, when we have an unbalanced design, we need to be careful about (1) choosing II vs.
III, and (2) if we choose Type-III, the type of contrasts we use. In this case, the results all
align, there are main effects of participant gender and condition, but no interaction. Also,
the differences have their effect in the tests of main effects rather than interactions.

Because the ANOVA model shows two main effects and NO interaction. it would be most
appropriate to consider the main-effects-only model:

1 model1d <- aov(offer~cond+gender ,data=ultim1b)

Anova(model1d)

3 Anova Table (Type II tests)

5 Response: offer

Sum Sq Df F value Pr(>F)

7 cond 153.22 2 75.475 < 2.2e-16 ***

gender 33.90 1 33.394 1.214e-08 ***

9 Residuals 604.95 596

437

Chapter 18 Applied Statistics in R

11 Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Because the interaction is not significant, each main effect is meaningful and we can look
at them individually:

this looks at each pairwise comparison

> pairwise.t.test(ultim1$offer ,ultim1$cond)
2

Pairwise comparisons using t tests with pooled SD

4

data: ultim1$offer and ultim1$cond
6

F M

8 M 0.49 -

N <2e-16 <2e-16

10

P value adjustment method: holm

12 > pairwise.t.test(ultim1$offer ,ultim1$gender)

14 Pairwise comparisons using t tests with pooled SD

16 data: ultim1$offer and ultim1$gender

18 F

M 5.5e-07

20

P value adjustment method: holm

22 >

The drawback of this approach is that we are not factoring out the reliable variability ac-
counted for by the other dimension.

Alternately, use the Tukey or other post-hoc test:

TukeyHSD(model1d)

2 > TukeyHSD(model1d)

Tukey multiple comparisons of means

4 95% family -wise confidence level

6 Fit: aov(formula = offer ~ cond + gender , data = ultim1b)

8 $cond
diff lwr upr p adj

10 M-F -0.09778521 -0.3357063 0.1401358 0.5988856

N-F -1.10108461 -1.3366378 -0.8655315 0.0000000

12 N-M -1.00329940 -1.2400631 -0.7665357 0.0000000

14 $gender
diff lwr upr p adj

16 M-F -0.4756291 -0.6373146 -0.3139437 0

How should we interpret these results?

However, this was all for faked data that we created to specifically not have an interaction.
But in reality, there is an interaction that looks roughly like we see in Figure 18.3

438

Chapter 18 Applied Statistics in R

1 ultim.tmp <- data.frame(cond =rep(rep(c("N","F","M") ,2) ,100),

gender= rep(rep(c("F","M"),each =3) ,100),

3 offer = rep(c(5, 6.2, 6.3,

5, 6.4 ,5.1) ,100)+rnorm (600))

5

ultim2 <- ultim.tmp[sample (1: nrow(ultim.tmp),size=nrow(ultim.tmp),replace=T),]

7 matplot(tapply(ultim2$offer ,list(ultim2$cond ,ultim2$gender),mean),
type="o",xaxt="n",pch=c("F","M"),ylab="Mean offer in ultimatum game",

9 xlab="Gender of opponent")

axis(1,1:3,c("Female","Male","Unspecified"))

11 legend (2.5,6,c("Male","Female"),pch=c("F","M"),col=1:2,lty =1:2)

Figure 18.3: Typical interaction data in the ultimatum game.

●
●

●

5.
0

5.
5

6.
0

Gender of opponent

M
ea

n
of

fe
r

in
 u

lti
m

at
um

 g
am

e

●

●
●

F

F

F

M

M
M

Female Male Unspecified

F
M

Male
Female

This looks like when we don’t tell participants anything about the opponent, the two
genders behave the same. When we tell women anything about the person, they offer more
money. In contrast, men only offer more when the opponent is a woman. How can we test
this more specifically?

We might start by building a model with the two predictors and the interaction (notice
you can run Anova on an aov model):

1 model2 <- aov(offer~cond*gender ,data=ultim2)

Anova(model2)

3 Anova Table (Type II tests)

5 Response: offer

Sum Sq Df F value Pr(>F)

7 cond 155.65 2 73.0621 < 2.2e-16 ***

gender 4.96 1 4.6572 0.03132 *

9 cond:gender 68.92 2 32.3512 4.612e-14 ***

Residuals 632.71 594

The interaction is significant, so we have to think about what the right approach is.
Questions:

439

Chapter 18 Applied Statistics in R

• is the experiment unbalanced (in this case yes!)

• Do we have hypotheses about main effects after accounting for interactions (maybe)

• are there specific contrasts that are more interesting (probably)

• Are the factors represented with orthogonal contrasts (no)

We take a number of approaches.

18.2.2 Approach 0: Type II and III ANOVAs

Here, we set the constrasts, and use type-II and type-III ANOVAs to examine the main
effects and interactions:

contrasts(ultim2$cond) <- contr.poly (3)

2 contrasts(ultim2$gender) <- contr.poly (2)

model2a <- aov(offer~cond*gender ,data=ultim2)

4

Anova(model2a ,type="II") ##type II: test effect of interaction after main

effects considered

6 Anova Table (Type II tests)

8 Response: offer

Sum Sq Df F value Pr(>F)

10 cond 155.65 2 73.0621 < 2.2e-16 ***

gender 4.96 1 4.6572 0.03132 *

12 cond:gender 68.92 2 32.3512 4.612e-14 ***

Residuals 632.71 594

14 ---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

16

Anova(model2a ,type="III") ##type III: test effect of main effects after

interaction considered

18 Anova Table (Type III tests)

20 Response: offer

Sum Sq Df F value Pr(>F)

22 (Intercept) 18922.5 1 17764.7950 < 2.2e-16 ***

cond 155.9 2 73.1619 < 2.2e-16 ***

24 gender 4.8 1 4.4883 0.03454 *

cond:gender 68.9 2 32.3512 4.612e-14 ***

26 Residuals 632.7 594

28 Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Do these map onto any hypotheses we have? The type-II ANOVA showed that there
were main effects for the marginal means of condition and gender once the interaction is
accounted for; the Type-III test showed that each main effect was significant even when the
interaction was accounted for. We can look at the specific means as well

1 summary(model2a)

model.tables(model2a ,type="means")

3 model.tables(model2a ,type="effects")

Maybe the gender effect is most interpretable–women tended to offer more on average
when the effect of condition is cancelled out, but even then that looks misleading. Overall,
we’d maybe like to compare specific pairs in greater detail.

440

Chapter 18 Applied Statistics in R

18.2.3 Approach 1: Post-hoc Tukey test on individual pairs

:
we can look at TukeyHSD, which will show all pairwise comparisons that we might be

interested in–here consider just the interaction comparisons

1 TukeyHSD(model2a)

> TukeyHSD(model2a)

3 Tukey multiple comparisons of means

95% family -wise confidence level

5

Fit: aov(formula = offer ~ cond * gender , data = ultim2)

7

$cond
9 diff lwr upr p adj

M-F -0.5980595 -0.8384785 -0.3576406 0

11 N-F -1.2501747 -1.4931026 -1.0072469 0

N-M -0.6521152 -0.8965002 -0.4077302 0

13

$gender
15 diff lwr upr p adj

M-F -0.1818347 -0.3473354 -0.01633399 0.0313437

17

$‘cond:gender ‘
19 diff lwr upr p adj

M:F-F:F 0.1083800 -0.30702939 0.5237894 0.9760260

21 N:F-F:F -1.2989864 -1.71549681 -0.8824761 0.0000000

F:M-F:F 0.2514137 -0.15978064 0.6626081 0.5004492

23 M:M-F:F -1.0272761 -1.43746151 -0.6170907 0.0000000

N:M-F:F -0.9505850 -1.36821630 -0.5329537 0.0000000

25 N:F-M:F -1.4073664 -1.82998515 -0.9847477 0.0000000

F:M-M:F 0.1430338 -0.27434678 0.5604143 0.9243070

27 M:M-M:F -1.1356561 -1.55204265 -0.7192695 0.0000000

N:M-M:F -1.0589650 -1.48268847 -0.6352415 0.0000000

29 F:M-N:F 1.5504002 1.13192386 1.9688765 0.0000000

M:M-N:F 0.2717103 -0.14577461 0.6891953 0.4276094

31 N:M-N:F 0.3484014 -0.07640147 0.7732044 0.1779472

M:M-F:M -1.2786898 -1.69087140 -0.8665083 0.0000000

33 N:M-F:M -1.2019987 -1.62159076 -0.7824067 0.0000000

N:M-M:M 0.0766911 -0.34191219 0.4952944 0.9952285

This shows that all main effect levels are significantly different from one another. For
interactions, we might just pick out the specific pairings we care about, which include:

• For NM vs NF: not significant (p = .18)

• For MM vs MF: significant p < .001

• For FM vs FF: NS p = .5

This tells a different story, because we can test specific pairings.

18.2.4 Approach 2: subset on one variable, t-test/ANOVA for each
level:

1

Anova(aov(offer~gender ,data=ultim2[ultim2$cond=="N" ,]))
3 Anova Table (Type II tests)

441

Chapter 18 Applied Statistics in R

5 Response: offer

Sum Sq Df F value Pr(>F)

7 gender 5.857 1 5.8179 0.01681 *

Residuals 192.270 191

9 ---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’

11

Anova(aov(offer~gender ,data=ultim2[ultim2$cond =="M",]))
13

15 Anova Table (Type II tests)

17 Response: offer

Sum Sq Df F value Pr(>F)

19 gender 64.768 1 55.035 3.353e-12 ***

Residuals 234.192 199

21 ---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1> Anova(aov(

offer~gender ,data=ultim2[ultim2$cond=="F" ,]))
23 Anova Table (Type II tests)

25 Response: offer

Sum Sq Df F value Pr(>F)

27 gender 3.255 1 3.2195 0.07425 .

Residuals 206.249 204

29 ---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1>

Here, we can see that there are significant effects of player gender only in the M and F
partner case.

18.2.5 Approach 3: subset to get rid of 3-level, interpret 2x2 inter-
action

Finally, we might edit one of the conditions and test a 2x2 interaction, which is maybe easier
to interpret:

1 Anova(aov(offer~gender*cond ,data=ultim2[ultim2$cond!="N" ,]))

3 Anova Table (Type II tests)

5 Response: offer

Sum Sq Df F value Pr(>F)

7 gender 19.11 1 17.483 3.559e-05 ***

cond 35.47 1 32.456 2.356e-08 ***

9 gender:cond 48.92 1 44.758 7.477e-11 ***

Residuals 440.44 403

11 ---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

13

model.tables(aov(offer~gender*cond ,data=ultim2[ultim2$cond!="N",]))
15 Tables of effects

17 gender

F M

19 0.2235 -0.2202

rep 202.0000 205.0000

21

442

Chapter 18 Applied Statistics in R

cond

23 F M

0.2916 -0.2988

25 rep 206.0000 201.0000

27 gender:cond

cond

29 gender F M

F -0.34 0.36

31 rep 104.00 98.00

M 0.35 -0.34

33 rep 102.00 103.00

Here, the gender x subjectgender interaction is more easily interpretable, and had a
significant interaction. Using model.tables, we can also see what the interaction looks like.
In this approach, we could also transform this into one-way ANOVA, use custom contrasts
to test the hypotheses you care about.

1 cond3 <- as.factor(paste(ultim2$cond ,ultim2$gender ,sep="-"))
contrasts(cond3) <- cbind(a=c(0,0,0,0,1,-1),

3 b=c(1,-1,-1,1,0,0),

c=c(2,0,-1,0,-1,0),

5 d=rep(0,6),

e=rep(0,6),

7 f=rep(0,6))

9 summary(lm(ultim2$offer~cond3))

11 > summary(lm(ultim2$offer~cond3))

13 Call:

lm(formula = ultim2$offer ~ cond3)

15

Residuals:

17 Min 1Q Median 3Q Max

-2.70787 -0.62712 -0.05767 0.69411 2.68717

19

Coefficients: (2 not defined because of singularities)

21 Estimate Std. Error t value Pr(>|t|)

(Intercept) 5.62236 0.04355 129.100 <2e-16 ***

23 cond3a 0.13825 0.08221 1.682 0.0932 .

cond3b -0.81316 0.06877 -11.824 <2e-16 ***

25 cond3c 0.62830 0.05852 10.736 <2e-16 ***

cond3d NA NA NA NA

27 cond3e NA NA NA NA

29 Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

31 Residual standard error: 1.066 on 596 degrees of freedom

Multiple R-squared: 0.2139 , Adjusted R-squared: 0.21

33 F-statistic: 54.06 on 3 and 596 DF , p-value: < 2.2e-16

18.3 Effect sizes and ANOVA models

In an ANOVA or regression model, effect sizes can help provide good insight into whether
the model is good, and how much each set of predictors account for. For example, the R2

443

Chapter 18 Applied Statistics in R

statistic is a good measure of effect size, because it tells you about how much of the variance
you account for.

Now, consider the following ANOVA model predicting mean response time (rt) based
on classes of stimuli. Here is a model for data from an experiment that measures the time
needed to find one of fourteen target letters amongst a set of thirteen identical foils. That
is, on each trial, a target and a set of foils appeared on the screen, and each of 14 targets
was tested amongst each of the other foils. Note: data are not available for this example

2 > x <- aov(rt~target+foil)

> x

4

Call:

6 aov(formula = rt ~ target * foil)

8 Terms:

target foil Residuals

10 Sum of Squares 249534642 230659625 1419803758

Deg. of Freedom 13 12 702

12

Residual standard error: 1422.151

14 170 out of 196 effects not estimable

Estimated effects may be unbalanced

16 > summary(x)

Df Sum Sq Mean Sq F value Pr(>F)

18 target 13 2.495e+08 19194972 9.491 <2e-16 ***

foil 12 2.307e+08 19221635 9.504 <2e-16 ***

20 Residuals 702 1.420e+09 2022512

22 Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

>

First, notice that because it is an ANOVA table, it will not give us an R2 directly, like
we get in an lm model. But it is easy to figure out.

1 cor(x$fit ,tmpsearch$rt)^2
[1] 0.2527341

Now, remember that this is the percent of variance accounted for, and so we should be
able to get it directly from the sum-of-squares in the ANOVA model:

> (249534642+ 230659625)/ (249534642+ 230659625 +1419803758)

2 [1] 0.2527341

But, we could generalize the total variance accounted for explanation with the proportion
of variance accounted for by each set of predictors. For target:

(230659625)/ (249534642+ 230659625 +1419803758)

2 [1] 0.1213999

> (249534642)/ (249534642+ 230659625 +1419803758)

4 [1] 0.1313342

444

Chapter 18 Applied Statistics in R

Here, we see that target accounts for 12% of the variance, and foil 13%, summing to 25%.
This is exactly what Cohen’s η2 computes. More formally:

η2 =
SSeffect

SStotal
(18.1)

There is a sense in which this is perhaps biased, because we include in the denominator
a lot of variance we can actually explain. So, what if we were to divide just the SS related
to the effect by the total SS related to either the effect or the unknown variance:

> (230659625)/ (230659625 +1419803758)

2 [1] 0.1397545

4 > (249534642)/ (249534642+ 1419803758)

[1] 0.1494812

This is known as partial η2:

η2p =
SSeffect

SSeffect + SSresidual
(18.2)

.
Both versions of η2 are interpretable like R2, and can give you an intuitive understanding

for how good your model is.
Finally, a third effect size often used in ANOVA is ω2 (Omega-squared), and it is more

complicated to compute. The rationale is that we want a fair measure of how much the
current factor is explaining over and above the variability that would be expected by chance,
given the number of predictors we use to account for it. The mean squared residuals (MSE)
gives a value for how much error is associated with each point in the data set. Because a we
could completely explain the residual error with a set of random predictors equal in number
to the degrees of freedom, we can assume that each random predictor would account for the
1/DF proportion of that total, or the MSE. So, the top of the omega equation gets penalized
by MSE times the degrees of freedom of the predictor (in our case, 13 or 12). We then divide
by the total SS, but add one MSE to the bottom as well:

1 > (249534642 - 13 * 2022512) / (249534642+ 230659625 +1419803758 + 2022512)

[1] 0.117371

3

> (230659625 - 12 * 2022512) / (249534642+ 230659625 +1419803758 + 2022512)

5 [1] 0.1085106

>

Or, you can use this function (courtesy http://stats.stackexchange.com/questions/

2962/omega-squared-for-measure-of-effect-in-r):

omega_2 <- function(aov_in , neg2zero=T){

2 aovtab <- summary(aov_in)[[1]]

n_terms <- length(aovtab [["Sum Sq"]]) - 1

4 output <- rep(-1, n_terms)

SSr <- aovtab [["Sum Sq"]][n_terms + 1]

6 MSr <- aovtab [["Mean Sq"]][n_terms + 1]

SSt <- sum(aovtab [["Sum Sq"]])

8 for(i in 1:n_terms){

SSm <- aovtab [["Sum Sq"]][i]

10 DFm <- aovtab [["Df"]][i]

445

http://stats.stackexchange.com/questions/2962/omega-squared-for-measure-of-effect-in-r
http://stats.stackexchange.com/questions/2962/omega-squared-for-measure-of-effect-in-r

Chapter 18 Applied Statistics in R

output[i] <- (SSm -DFm*MSr)/(SSt+MSr)

12 if(neg2zero & output[i] < 0){output[i] <- 0}

}

14 names(output) <- rownames(aovtab)[1:n_terms]

16 return(output)

}

ω2 =
SSeffect −DF ×MSEresidual

SStotal +MSEresidual
(18.3)

This statistic is also interpretable as a percentage of variance accounted for, but accounts
for the extra boost you get from additional non-useful predictors. So, for example, should
you try to predict an effect with 10 random predictors, on average their value will be exactly
canceled out in the numerator. Of course, you may have gotten unlucky and account for less
than what might be expected by chance. In that case, ω2 could be negative.

More conveniently, the sjstats package has built-in functions eta sq, omega sq, and an
all-in-one that computes many effect sizes called anova stats().

Be careful when calculating these in different stats packages, because some ANOVA tables
will report the residual error, whereas others will report total error.

Exercise 18.3

Compute η2, η2p, and ω2 for the tooth growth model

1 ToothGrowth$dose2 <- as.factor(ToothGrowth$dose)
aov.tootha <- aov(len~supp+dose2 ,data=ToothGrowth)

Considering the tooth growth data examined in the previous chapter.

2 aov.tootha <- aov(len~supp+dose2 ,data=ToothGrowth)

aov.toothl <- lm(len~supp+dose2 ,data=ToothGrowth)

4

summary(aov.tootha)

6 Df Sum Sq Mean Sq F value Pr(>F)

supp 1 205.4 205.4 14.02 0.000429 ***

8 dose2 2 2426.4 1213.2 82.81 < 2e-16 ***

Residuals 56 820.4 14.7

10 ---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

12

> summary(aov.toothl)

14

Call:

16 lm(formula = len ~ supp + dose2 , data = ToothGrowth)

18 Residuals:

Min 1Q Median 3Q Max

20 -7.085 -2.751 -0.800 2.446 9.650

22 Coefficients:

Estimate Std. Error t value Pr(>|t|)

24 (Intercept) 12.4550 0.9883 12.603 < 2e-16 ***

suppVC -3.7000 0.9883 -3.744 0.000429 ***

446

Chapter 18 Applied Statistics in R

26 dose21 9.1300 1.2104 7.543 4.38e-10 ***

dose22 15.4950 1.2104 12.802 < 2e-16 ***

28 ---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

30

Residual standard error: 3.828 on 56 degrees of freedom

32 Multiple R-squared: 0.7623 , Adjusted R-squared: 0.7496

F-statistic: 59.88 on 3 and 56 DF , p-value: < 2.2e-16

Notice that if we take the Sum Sq from the ANOVA table, and divide the ’explained’ values
by the total values, we get exactly the same number as produced in the ’multiple R2:

1 (205.35+2426.434)/(205.35+2426.434+820.425)

[1] 0.7623478

We can generalize this to consider the proportion accounted for by each part of the
model. This is called η2 (Eta squared), and is associated with each predictor. For supp,
η2 = (205.35)/(205.35+2426.434+820.425) = .059, and for dose, η2 = (2426.434)/(205.35+
2426.434 + 820.425) = .703. Notice that these two add to .76. Other related measures are
sometimes used, such as an adjusted η2 akin to adjusted R2. Several packages in R provide
automated ways to calculate these.

18.3.1 Effect size for condition and gender in the ultimatum game
data.

We can obtain a number of effect size measures using sjstats anova stats():

eta_sq(aov.tootha)

2 term etasq

1 supp 0.059

4 2 dose2 0.703

6 omega_2(aov.tootha) #from definition above

supp dose2

8 0.05500642 0.69144228

10 sjstats ::omega_sq(aov.tootha)

term omegasq

12 1 supp 0.055

2 dose2 0.691

or the all-in-one function

1 > anova_stats(aov.tootha)

term df sumsq meansq statistic p.value etasq partial.etasq omegasq

3 1 supp 1 205.350 205.350 14.017 0 0.059 0.200 0.055

2 dose2 2 2426.434 1213.217 82.811 0 0.703 0.747 0.691

5 3 Residuals 56 820.425 14.650 NA NA NA NA NA

partial.omegasq cohens.f power

7 1 0.178 0.50 0.963

2 0.732 1.72 1.000

9 3 NA NA NA

447

Chapter 18 Applied Statistics in R

448

Chapter 19

Analysis of Covariance

We have used linear models to handle both categorical and continuous predictors. In ad-
dition, we have mixed categorical and continuous predictors together in a model without
much thought. In some domains, when we do this–especially when the continuous variable
is a predictor we don’t care about theoretically but we know has an impact–this is called an
Analysis of Covariance (ANCOVA). From the perspective of regression, adding a categorical
predictor to a regression seems like no big deal. But from the perspective of ANOVA, some
researchers want to remain focused on the hypothesis testing ability of the ANOVA, while
factoring out a nuisance variable. This makes the most sense when you have a manipulated
experimental variable, and you want to factor out a covariate that you think might impact
your dependent variable.

19.0.1 ANCOVA with a single covariate

A typical examples might include an experimental educational training manipulation, in
which we include student pre-test score as a covariate. Alternately we might look at age as
a covariate to another experimental manipulation. Here is an example looking at whether
there is a difference in salary based on gender–something we know is probably true, but it
is difficult to assess the extent. To answer this, you could do a t-test comparing salary by
gender, but this might make an experience effect look like a gender effect (if different genders
have different experience that leads to differing salaries). Here are three different salary data
sets that we will look at with respect to the same gender/experience breakdown:

set.seed (100)

2 gender <- as.factor(c("M","M","M","M","M","M","M","M","M","M",

"F","F", "F","F", "F","F", "F","F", "F","F"))

4 ##we are worried about interactions , so be sure we have an orthogonal set of

contrasts:

contrasts(gender)<- contr.poly (2)

6

experience <- c(4,6,10,5,3,8,12,15,9,19,

8 5,3,5, 6,1,3,5, 9,10,2)

10 salary1 <-c

(52.26 ,59.28 ,71.10 ,56.69 ,49.40 ,65.80 ,77.43 ,85.94 ,68.99 ,98.21 ,56.22 ,50.42 ,

55.12 ,59.74 ,43.51 ,50.91 ,55.69 ,67.65 ,70.18 ,46.30) + rnorm (20)*5

12 salary2 <- c

(53.43 ,59.39 ,70.65 ,55.74 ,49.68 ,65.52 ,76.47 ,85.92 ,67.31 ,97.41 ,50.49 ,

45.23 ,50.3 ,53.17 ,39.92 ,45.93 ,50.55 ,63.53 ,66.77 ,41.81)+rnorm (20)*2

449

Chapter 19 Applied Statistics in R

14 salary3 <- c

(46.6 ,55.01 ,71.21 ,51.82 ,42.83 ,62.5 ,78.35 ,90.98 ,67.6 ,107.52 ,40.54 ,37.25 ,

41.83 ,42.81 ,33.34 ,36.46 ,40.47 ,48.37 ,51.42 ,34.56)+rnorm (20)*2

16

par(mfrow=c(1,3))

18 boxplot(salary1~gender)

boxplot(salary2~gender)

20 boxplot(salary3~gender)

●

F M

50
60

70
80

90

Salary group 1

●

●

F M

40
50

60
70

80
90

10
0

Salary group 2

F M

40
60

80
10

0

Salary group 3

This leads to two questions:

Question 1: Do men make more money than women?

Question 2: Can anything account for this difference?

Traditionally, we would test the difference with a t-test or an ANOVA, because it is a
categorical difference.

t.test(salary1~gender)

2

Welch Two Sample t-test

4

data: salary1 by gender

6 t = -2.1525, df = 13.421 , p-value = 0.0501

alternative hypothesis: true difference in means is not equal to 0

8 95 percent confidence interval:

-23.361112055 0.005598285

10 sample estimates:

mean in group F mean in group M

12 56.74246 68.42021

14 > t.test(salary2~gender)

16 Welch Two Sample t-test

18 data: salary2 by gender

t = -2.9266, df = 14.65, p-value = 0.01063

450

Chapter 19 Applied Statistics in R

20 alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

22 -28.534391 -4.456573

sample estimates:

24 mean in group F mean in group M

51.39823 67.89372

26

> t.test(salary3~gender)

28

Welch Two Sample t-test

30

data: salary3 by gender

32 t = -3.9631, df = 12.048 , p-value = 0.001869

alternative hypothesis: true difference in means is not equal to 0

34 95 percent confidence interval:

-41.58499 -12.08927

36 sample estimates:

mean in group F mean in group M

38 40.61854 67.45567

40 >

In each of these cases, men had a higher salary than women. But if it may be that this
is just an effect of experience–men may have had more experience in the job, and so make
more money. We can look at this in a scatterplot:

1 par(mfrow=c(1,3))

plot(experience ,salary1 ,col=as.numeric(gender),pch=16,cex=2)

3 plot(experience ,salary2 ,col=as.numeric(gender),pch=16,cex=2)

plot(experience ,salary3 ,col=as.numeric(gender),pch=16,cex=2)

Figure 19.1: This shows the relationship between experience and salary, with gender coded
as red/black.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

5 10 15

50
60

70
80

90

experience

sa
la

ry
1

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

5 10 15

40
50

60
70

80
90

10
0

experience

sa
la

ry
2

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

5 10 15

40
60

80
10

0

experience

sa
la

ry
3

If you look carefully, you see that the rightmost case looks like there are two different

451

Chapter 19 Applied Statistics in R

lines, indicating that for the same amount of experience men make more. On the left, it
looks like the same line, with men simply continuing the same line. The center one is maybe
harder to tell. How might we incorporate this in our t-test or ANOVA?

Traditional ANOVA software could not do this, and so special- purpose routines called
‘analysis of covariance’ were used that allowed you to add a covariate Here, experience would
be a covariate, and we’d want to know whether there was a gender effect once experience was
accounted for. We should be comfortable just making linear regression models mixing cate-
gorical and continuous predictors. this is what is meant by the ANCOVA model, but users
typically in an ANCOVA, users essentially ignore the covariate(s) rather than examining
them explicitly, as if they were not of interest. Sometimes when people report ANCOVAs,
the will not even discuss the slopes of the covariate.

To use an ANCOVA model, you should (1) verify that the covariate matters (2) test
whether the covariate has the same impact on all groups; and if not (3) assess the slope
interaction. In case 3, just as in ANOVA, it can be difficult to make an inference about the
main effects when an interaction exists.

Let’s begin by considering salary1. We can make two models and compare them with
anova (or use type-II Anova from car)

library(car)

2 ##for data set 1, try a simple model:

m1.0 <- lm(salary1~experience)

4 Anova(m1.0) ##experience matters!

Anova Table (Type II tests)

6

Response: salary1

8 Sum Sq Df F value Pr(>F)

experience 3097.75 1 239.17 7.724e-12 ***

10 Residuals 233.14 18

12

14

m1 <- lm(salary1~gender+experience)

16 Anova(m1,type="II")

18 Anova Table (Type II tests)

20 Response: salary1

Sum Sq Df F value Pr(>F)

22 gender 0.03 1 0.0022 0.9628

experience 2415.94 1 176.1899 2.119e-10 ***

24 Residuals 233.11 17

26

28 ##how would you interpret this?

anova(m1,m1.0)

30

Analysis of Variance Table

32

Model 1: salary1 ~ gender + experience

34 Model 2: salary1 ~ experience

Res.Df RSS Df Sum of Sq F Pr(>F)

36 1 17 233.11

2 18 233.14 -1 -0.0308 0.0022 0.9628

452

Chapter 19 Applied Statistics in R

Figure 19.2: ANCOVA for salary 1, 2 and 3. When the two lines are on top of one another,
as there is no effect of gender once experience is accounted for. When they differ, there is
an effect of gender once experience is considered.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

5 10 15

50
60

70
80

90

experience

sa
la

ry
1

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

5 10 15

40
50

60
70

80
90

10
0

experience

sa
la

ry
2

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

5 10 15

40
60

80
10

0

experience

sa
la

ry
3

Here, these different anova model comparisons show that experience (the covariate) has
a large effect. But gender does not once experience is considered.

We can we easily plot this to see what is going on. here, the two lines represent the
model for men and for women. Because we have a single salary slope in the model, they are
parallel.

par(mfrow=c(1,1))

2 plot(experience ,salary1 ,col=as.numeric(gender),pch =16)

abline(m1$coef [1]+m1$coef[2],m1$coef[3],col=2)
4 abline(m1$coef[1]-m1$coef[2],m1$coef[3],col=1)

How about the second data set? We will just use Type-II ANOVA here:

m2.0 <- lm(salary2~experience) ##experience matters!

2 > Anova(m2.0)

Anova Table (Type II tests)

4

Response: salary2

6 Sum Sq Df F value Pr(>F)

experience 4117.5 1 724.49 5.424e-16 ***

8 Residuals 102.3 18

10 Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

> m2 <- lm(salary2~gender+experience)

12 > Anova(m2 ,type="II")

Anova Table (Type II tests)

14

453

Chapter 19 Applied Statistics in R

Response: salary2

16 Sum Sq Df F value Pr(>F)

gender 56.07 1 20.62 0.0002893 ***

18 experience 2813.06 1 1034.49 < 2.2e-16 ***

Residuals 46.23 17

20 ---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

In this data, gender matters once experience is accounted for, which can be seen in the
second panel of the figure.

par(mfrow=c(1,1))

2 plot(experience ,salary2 ,col=as.numeric(gender),pch =16)

abline(m2$coef [1]+ sqrt (.5)*m2$coef[2],m2$coef[3],col=2)
4 abline(m2$coef[1]-sqrt (.5)*m2$coef[2],m2$coef[3],col=1)

How about the third company?

m3.0 <- lm(salary3~experience)

2 > Anova(m3.0)

Anova Table (Type II tests)

4

Response: salary3

6 Sum Sq Df F value Pr(>F)

experience 7046.3 1 185.98 6.273e-11 ***

8 Residuals 682.0 18

10 Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

> m3 <- lm(salary3~gender+experience)

12 > Anova(m3 ,type="II") ## experience+gender matter

Anova Table (Type II tests)

14

Response: salary3

16 Sum Sq Df F value Pr(>F)

gender 535.1 1 61.929 4.563e-07 ***

18 experience 3980.2 1 460.650 9.413e-14 ***

Residuals 146.9 17

20 ---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

For model m3, the effect of experience is significant, but the effect of gender remains
significant after it is accounted for. But the plot looks weird–there may be an interaction
here.

19.0.2 ANCOVA with interactions

This begins to answer the question about pay by gender, but the third company looks
strange—it may be that the effect of gender gets worse as experience increases. This would
mean an interaction. We used polynomial contrasts so we could test these interactions. Here
are the interaction models for each salary, but we need to consider what the right model
is. If there is an interaction, does it really make sense to ask what the effect of gender
is? I think not, but if we test gender, it is probably a Type-III test rather than a Type-II
test. That is, we want to test whether gender still has an impact AFTER we account for a
gender:experience interaction. We can run this test because we used polynomial contrasts.

454

Chapter 19 Applied Statistics in R

1 > m1b <- lm(salary1~gender * experience)

> Anova(m1b ,type="III")

3 Anova Table (Type III tests)

5 Response: salary1

Sum Sq Df F value Pr(>F)

7 (Intercept) 8607.6 1 648.1224 2.253e-14 ***

gender 15.3 1 1.1516 0.2991

9 experience 1588.2 1 119.5829 7.807e-09 ***

gender:experience 20.6 1 1.5521 0.2308

11 Residuals 212.5 16

13 Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

> anova(m1b ,m1) ##no difference --interaction does not matter.

15 Analysis of Variance Table

17 Model 1: salary1 ~ gender * experience

Model 2: salary1 ~ gender + experience

19 Res.Df RSS Df Sum of Sq F Pr(>F)

1 16 212.49

21 2 17 233.11 -1 -20.613 1.5521 0.2308

>

23 > m2b <- lm(salary2~gender * experience)

> Anova(m2b ,type="III")

25 Anova Table (Type III tests)

27 Response: salary2

Sum Sq Df F value Pr(>F)

29 (Intercept) 6734.0 1 2363.2318 < 2.2e-16 ***

gender 22.4 1 7.8458 0.01281 *

31 experience 2109.3 1 740.2236 7.961e-15 ***

gender:experience 0.6 1 0.2232 0.64300

33 Residuals 45.6 16

35 Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

37 > m3b <- lm(salary3~gender * experience)

>

39 > Anova(m3b ,type="III")

Anova Table (Type III tests)

41

Response: salary3

43 Sum Sq Df F value Pr(>F)

(Intercept) 4020.0 1 799.116 4.366e-15 ***

45 gender 32.4 1 6.431 0.022020 *

experience 2496.0 1 496.169 1.807e-13 ***

47 gender:experience 66.4 1 13.199 0.002237 **

Residuals 80.5 16

49 ---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

51 > Anova(m3b ,type="II")

Anova Table (Type II tests)

53

Response: salary3

55 Sum Sq Df F value Pr(>F)

gender 535.1 1 106.369 1.785e-08 ***

57 experience 3980.2 1 791.211 4.721e-15 ***

gender:experience 66.4 1 13.199 0.002237 **

59 Residuals 80.5 16

61 Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

>

455

Chapter 19 Applied Statistics in R

As suspected, for salary 3 there was a significant interaction, which was not present in
te other two. But for the first company, since we did a Type-III ANOVA, we are more
confident that the non-effect of gender (accounted for by differences in experience) cannot
be accounted for by the interaction. Note that for Company 1, the significant effect of
gender on its own is still informative, as is the fact that it goes away when accounting for
the experience covariate, even in the face of an interaction. It tells the company that their
gender pay gap insofar as men are indeed making more money, but it really is an experience
gap, and they might make efforts to address the experience gap.

To display this, but because we used poly() contrasts, we need to rescale by the contrasts
to get the right slopes/intercepts:

par(mfrow=c(1,1))

2 plot(experience ,salary3 ,col=as.numeric(gender),pch =16)

abline(m3b$coef [1]+ sqrt (.5)*m3b$coef[2],m3b$coef [3]+ sqrt (.5)*m3b$coef[4],col
=2)

4 abline(m3b$coef[1]-sqrt (.5)*m3b$coef[2],m3b$coef[3]-sqrt (.5)*m3b$coef[4],col
=1)

Exercise 19.0.2

The following data are from a problem solving task, in which people tried to solve the
“Traveling Salesman Problem”. We will remove one subject’s data (B1). Each subject
took part in many different tests, with different difficulties (problem size). There are
several dependent measures, but focus on either solution time (elapsedtime) or how
good the solution was (eff).

dat.raw <- read.table("tsp -all.txt",header=T)

2 dat <- dat.raw[dat.raw$subnum !="B1"&dat.raw$cycle >0,]

Create ANCOVA models to see if cycle (as a factor), or clothing (mopp: 1 vs 4) have
an impact, using problem difficult as a covariate. Note that in this case, cycle and
clothing are designed to be fully crossed with problem size. Note: In general, you
would use an ANCOVA when the covariate is not counterbalanced. In the case of this
data, maybe we would look at each individuals spatial reasoning scores or something
to see if that accounts for overall performance. In this case, the covariate essentially
plays the role of an orthogonal predictor.

456

Chapter 19 Applied Statistics in R

Figure 19.3: ANCOVA for salary 3. The two effects of salary on experience diverge, sug-
gesting that the difference in gender gets worse as experience gets greater.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

5 10 15

40
60

80
10

0

experience

sa
la

ry
3

457

Chapter 19 Applied Statistics in R

Exercise 19.0.2 Solution

The following data are from a problem solving task, in which people tried to solve the
“Traveling Salesman Problem”. We will remove one subject’s data (B1). Each subject
took part in many different tests, with different difficulties (problem size). There are
several dependent measures, but focus on either solution time (elapsedtime) or how
good the solution was (eff).

dat.raw <- read.table("tsp -all.txt",header=T)

2 dat <- dat.raw[dat.raw$subnum !="B1"&dat.raw$cycle >0,]

Create ANCOVA models to see if cycle (as a factor), or clothing (mopp: 1 vs 4) have
an impact, using problem difficult as a covariate.

dat.raw <- read.table("tsp -all.txt",header=T)

2 dat <- dat.raw[dat.raw$subnum !="B1"&dat.raw$cycle >0,]
dat$cycle <- as.factor(dat$cycle)

4 contrasts(dat$cycle) <- contr.poly(levels(dat$cycle))

6 tab1 <- tapply(dat$eff ,list(size=dat$numpos ,cycle=dat$cycle),mean)
matplot(c(10 ,20 ,30),tab1 ,type="o",pch=c(1:4),xlab="Problem size",ylab="

Efficiency")

8 legend (25 ,1.08, paste("Cycle", 1:4),lty=1:4,pch=1:4,col =1:4)

10

##Build and test the ANCOVA models:

12 tsp0 <- aov(eff~numpos ,data=dat)

tsp1 <- aov(eff~numpos+cycle ,data=dat)

14 tsp2 <- aov(eff~numpos*cycle ,data=dat)

16 Anova(tsp1)

Anova(tsp2 , type="II") #test the interaction

18 Anova(tsp2 ,type="III") #test the interaction

##Here , curiously , whether we find an effect of cycle depends on the

type of ANOVA!

20 ##but it is sort of misleading , because the interaction was not

significant.

22 ##These don ’t differ:

Anova(tsp1 , type="II") #test the interaction

24 Anova(tsp1 ,type="III") #test the interaction

26 ##what about post -hoc tests:

TukeyHSD(tsp1) ##won ’t work!

28

#look at cycle in each case

30 TukeyHSD(tsp1 ,which="cycle")

TukeyHSD(tsp2 ,which="cycle")

32

##what about time instead of efficiency?

1

tab2 <- tapply(dat$elapsedtime ,list(size=dat$numpos ,cycle=dat$cycle),
mean)

3 matplot(c(10 ,20 ,30),tab2 ,type="o",pch=c(1:4),xlab="Problem size",ylab="

Elapsed time")

legend (25 ,1.08, paste("Cycle", 1:4),lty=1:4,pch=1:4,col =1:4)

5

7 ##Build and test the ANCOVA models:

tsp0.2 <- aov(elapsedtime~numpos ,data=dat)

9 tsp1.2 <- aov(elapsedtime~numpos+cycle ,data=dat)

tsp2.2 <- aov(elapsedtime~numpos*cycle ,data=dat)

11

Anova(tsp1 .2)

13 Anova(tsp2.2, type="II") #test the interaction

Anova(tsp2.2,type="III") #test the interaction

15 ##Here , curiously , whether we find an effect of cycle depends on the

type of ANOVA!

##but it is sort of misleading , because the interaction was not

significant.

17

##These don ’t differ:

19 Anova(tsp1.2, type="II") #test the interaction

Anova(tsp1.2,type="III") #test the interaction

21

#look at cycle in each case

23 TukeyHSD(tsp1.2,which="cycle")

TukeyHSD(tsp2.2,which="cycle")

458

Chapter 20

Advanced ANOVA:
Within-Subject Designs,
Repeated Measures, and
Random versus Fixed Factors

We have discussed how we can test many of the assumptions of the ANOVA and regression
models, including linearity, normal residuals, homogeneity of variance, and independence of
predictors (multi-colinearity). However, there is an important aspect of independence that
we haven’t been able to handle in our models yet: repeated measurement. This is analogous
to the paired-samples t-test: we have measured multiple times from the same person, and
this comes with both advantages and disadvantages. If we conduct a study or collect data
in which we have measured a variable multiple times for each person, we will usually get
a more precise estimate of that person. But this is non-independent sampling, and so we
shouldn’t get an advantage in our power just by measuring multiple times. If I wanted to tell
if one group was taller than another, I cannot just measure members of the group a thousand
times, giving a larger N and thus a smaller residual error to compare the differences by. The
residual error should depend mostly on how many people I sample, not how many samples
of each person I take.

This chapter and the next will cover approaches for dealing with repeated measurement,
as well as some of the consequences and challenges of this.

20.1 Terminology

There is a lot of related terminology here. So far, the regressions and ANOVA tests we have
performed assume randomized and independent designs–that there is no relationship between
any particular set of observations. This is essentially making an assumption identical to an
independent-samples t-test, rather than a paired samples t-test. For certain designs when
this is not the case, special terms have been developed to help characterize the design.

459

Chapter 20 Applied Statistics in R

20.1.1 Repeated Measures and within-subject variables

Typically, in psychology, we have multiple observations per individual. This will often happen
across a set of conditions, where every participant is tested in each condition. This is usually
referred to as a within-subject design. Sometimes, the repetition is not meaningful, in which
case we would consider this a repeated-measures design. For example, you might assess
response time by having a person respond as quickly as possible to 100 identical lights. Other
times, the repetition does matter—for example a pre- versus post- intervention design, or
in the case of the light response, response time to different light colors. Both of these are
repeated measures designs, but we would often use an aggregate score (like mean RT) over
the repeated measures we don’t care about, rather than building into the model directly.
But for repetitions that matter to us, we have to be sure to compute the relevant F test with
the right pair of models, and the appropriate residual variance.

20.1.2 Fixed versus Random effects

A related issue involves whether a factor is fixed versus random. A fixed effect is one in
which the conditions or levels are the exact ones we care about and want to generalize to. A
random effect is a condition or categorical predictor in which the particular level is sampled
from a group or category, and we want to generalize to the group, not the individual levels.

For example, when we test a set of participants, we are sampling from the population,
and are hoping to generalize to the population. This means that participant is a random
factor. If we want to compare men and women in a test, this is a fixed factor, because these
are the specific values we want to compare. If we want to test the effect of math expertise
on a set of math problems, the expertise level would be a fixed factor, but the individual
math problems we choose will be a randomized factor.

The biggest debate comes when the stimuli or condition is sampled from possible cases,
but it is treated as fixed. For example, you might want to see whether two genres of music
played during study differentially improve learning. So, you might give one group a bluegrass
song, and another group a K-Pop song. If you find that memory differs between the two
conditions, you have only shown that the two particular songs differ, not the two genres in
general. To establish this, you would need to show this happens across a wide range of songs
within each genre, and you would want to incorporate this directly in your model.

20.1.3 Nested effects

Oftentimes, a factor will be nested within another factor. In the case of a within-subject
variable (e.g., instruction condition), this is a fixed factor nested within a randomized factor
of participant. In other situations, a randomized factor will be nested within a fixed factor.
For example, you might compare charter versus public schools, and select 10 schools at
random from each type. Here, school type is a fixed factor and the particular school is a
random factor.

20.1.4 Mixed Models

There are many approaches to dealing with these issues. If you have a simple repeated
measures design with fixed-factor predictors, we can use the ANOVA with error strata to
compare the appropriate models. If you have a more complex model with multiple fixed and
randomized factors, you may need to use the slightly more complex approach provided by
the ezANOVA model. If you have a more complex model with both fixed and random effects
that are nested, you may need to use one of the special-purpose packages designed to handle

460

Chapter 20 Applied Statistics in R

such models, such as nlme, lme4, nlm4, or more complex models in the ezANOVA model.
As these models get more complex, their interpretation becomes a greater challenge.

20.1.5 Why should we care?

In reality, it is fairly common for people to report the improper ANOVA models. In general,
researchers have been critiquing others about ignoring randomized effects in psychology
since Clark (1974). This is a problem because it fails to consider the randomness involved
in choosing your stimuli, and trying to generalize to the entire class of stimuli you are
choosing from. By treating them as a fixed effect, you will be more likely to reject the null
hypothesis when the effect might really be because you happened to choose stimuli that were
not representative of their group, and so you risk increasing the false positive rate of your
statistical test.

A more critical problem involves failing to incorporate subject into a within-subject
repeated measures design. If you collected 500 trials from 20 subjects, that is 10,000 total
trials. If you use a standard ANOVA model, you will have close to 10,000 residual degrees
of freedom, and your residual error will become very small because of it, giving you the
impression that you have a very sensitive test. But you are not trying to generalize over all
the trials of every person under the assumption that every person is identical–you expect
variation across people. This between-participant variability is the sampling variability you
are trying to generalize over, and so in reality you should have close to 20 degrees of freedom
rather than 10,000. Considered in another way, if you had the ability to collect 10,000
trials, which would give you a better understanding of the distribution across a population–
20 participants measured for 500 trials, or 200 participants measured for 50 trials? In most
situations, the added benefit you would get by increasing trials from 50 to 500 would be small
relative to the added benefit of sampling a larger number of people. Furthermore, most of the
time you are essentially ignoring the repeated trials, and so are essentially considering the
mean value of each participant in each condition. Those 50 or 500 trials might be averaged
into just 5 numbers—one for each condition.

Next, we will go over some typical designs we see in psychology.

20.2 ANOVA with Repeated Measurement

Let’s suppose that we run an experiment with 20 participants, and measure response times for
three conditions with five observations per condition. We have 15 observations per subject,
but really just 3 means we care about (a b and c).

1 x1 <- factor(rep(c("a","b","c") ,20*5))

subj <- factor(rep(1:20, each=3*5))

3 rt <- 200 + runif (20)[subj]*100+ c(-50,0,100)[x1] + rnorm (300) * 30

boxplot(rt~x1)

5 points(as.numeric(x1),rt,cex=2,col="grey")

Notice that if we plot the actual subjects, there is a noticeable consistent variation.

1 rttab <- tapply(rt,list(x1 ,subj),mean)

matplot(rttab ,pch=16,col="black",type="o",add=T,lty =3)

461

Chapter 20 Applied Statistics in R

Figure 20.1: In this study, we have measured each person multiple times in three conditions.
The mean of each subject appears to follow a very consistent pattern across conditions

●

a b c

10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

● ●

●

●
●

●

●

● ●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Here, each line represents a person. We can see that some individuals have higher values,
and others have lower overall values, but there are actually very few lines that cross, indi-
cating a very consistent pattern. So, how should we fit a model to this data to determine
the impact of the condition variable? Let’s start with a simple model:

aov1 <- aov(rt~x1)

2 summary(aov1)

4 Df Sum Sq Mean Sq F value Pr(>F)

x1 2 1104007 552003 341.49 < 2.2e-16 ***

6 Residuals 297 480094 1616

8 Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Let’s consider this model. If we had collected 300 separate points, this might be correct,
but there is something wrong here.

First, think about the within-subject design. We know that each subject had a different
overall performance. But this design acts as if they are all independent. However, our
figure shows that some people are on average faster or slower than others. This is a lack of
independence. It is also double-counting (or quintuple-counting!). If we did a poll where we
asked 200 people who they would vote for, but asked them each five times, we cannot claim
that we sampled 1000 people. In this case we probably got a significant result in both cases,
but it will not always be this way. We’d like to account for the between-subject variability
and factor it out or a least account for it.

A simple way to do this would be to essentially fit a different intercept for each person.
We could do this by adding the subject code as a predictor, and if we remove the intercept,
we won’t even have to worry about the treatment coding issue where participant 1 would be
equated with the intercept, and all other subject coefficients would be relative to that value.

462

Chapter 20 Applied Statistics in R

2 aov2 <- aov(rt~0+subj+x1)

4 Df Sum Sq Mean Sq F value Pr(>F)

subj 20 22040384 1102019 1273.54 < 2.2e-16 ***

6 x1 2 1104007 552003 637.92 < 2.2e-16 ***

Residuals 278 240559 865

8 ---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

10

Anova(aov2)

12 Anova Table (Type II tests)

14 Response: rt

Sum Sq Df F value Pr(>F)

16 subj 4239294 20 265.57 < 2.2e-16 ***

x1 1202115 2 753.07 < 2.2e-16 ***

18 Residuals 221882 278

20 Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Although the Type-I and Type-II anovas differ a bit, our approach appears reasonable
at first. We soak up only 20 degrees of freedom to account for most of the variability in
the data set. What this does is essentially get rid of the mean subject variability. If we
computed ω2 or eta2, we’d find that subject accounts for most of the variance in the model.

1 > library(sjstats)

eta_sq(aov2)

3 term etasq

1 subj 0.938

5 2 x1 0.052

7 omega_sq(aov2)

term omegasq

9 1 subj 0.937

2 x1 0.052

This is good–we soak up only 20 degrees of freedom to account for most of the variability
in the data set. What this does is essentially get rid of the mean subject variability, which is
substantial, and so the residual variance is relatively smaller, and our test is able to detect
smaller effects.

We can see the impact this has by subtracting out the individual means, then adding
back in the grand mean, and overplotting in red:

boxplot(rt~x1)

2 matplot(t(mean(rttab)+ (t(rttab)-(colMeans(rttab)))),

pch=16,type="o",col="red",add=T)

This is what the data would have looked like if we adjust every subject to have their
mean look like the average subject. Now, we have very consistent relative differences.

In this way, we modeled variability into three pools–variability we can explain and relates
to our hypothesis, variability we don’t care about but can explain (the subj code), and
variability we can’t explain.

463

Chapter 20 Applied Statistics in R

Figure 20.2: Plotting participant effects once the mean of each participant is subtracted out.

●

a b c

10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

But the model is still not quite right. Look at the degrees of freedom. Even though
we’ve given each participant his/her own intercept, the residual degrees of freedom are for
the whole data set. Imagine we aggregated the data so we have just a single observation per
subject per cell, and re-run on this aggregated data:

1 dat.agg <-aggregate(rt,list(sub=subj ,x1=x1),mean)

aov3 <- aov(x~0+sub+x1,dat=dat.agg)

3 summary(aov3)

Df Sum Sq Mean Sq F value Pr(>F)

5 sub 20 4408077 220404 1906.4 < 2.2e-16 ***

x1 2 220801 110401 954.9 < 2.2e-16 ***

7

Residuals 38 4393 116

9 ---

In this model, we have only 38 residual degrees of freedom– 20 subjects by 3 groups -
20 subject parameters - 2 groups parameters. We are comparing this to the intercept-only
model which contains 1 parameter.

Think about some situations in which aov2 does not make sense. If there is very little
within-subject variability for a measure (say height), and I wanted to see whether height
was related to gender, I might collect ten male and ten female participants and find non-
significant results. So all I need to do is measure my participants ten times each, add those
observations to the data set, thus increasing the residual d.f. by a factor of nearly 10, without
appreciably increasing the variance associated with the intercept-only model. Then, I might
find a significant result. This should seem suspicious, and we don’t want our analyses to
work this way.

What we really want to do is compare the main effect model to the smaller model con-
sisting of the variability we cannot account for, after removing the variability we can account
for. Let’s start with the full x1*subject model, as we can always partial out the variability
into any bins we know about. Here we build a partial lattice:

464

Chapter 20 Applied Statistics in R

Full model subj + x1 + subj x1

No subj: x1 + subj:x1

∨

No effect: subj:x1

∨

intercept-only

∨

First, remove the variability we can account for but don’t care about–the main effect of
subject. We could compare these models directly, but the remaining model has just the x1
predictor plus the subject x factor interaction.

Now, think about what that interaction is. It is the extent to which the effect of x1
depends on the subject. If it does greatly, than it should be harder to find a reliable main
effect. If it does not, than even a very small main effect should be detectable.

Notice that we can account for the subj main effect and we don’t really care about it; but
within each subject, they do not replicate the main effect exactly, even once their intercept is
factored out. Each pattern of A-B-C is a bit different. Consequently, the subj:x1 interaction
is the interesting and unknown source of variance we care about when trying to test if there
is an effect of x1:

1 aov4 <- aov(rt~x1*subj)

summary(aov4)

3 Anova(aov4)

This all can be understood in terms of the ANOVA model lattice. Consider a model
that tries to predict response time or accuracy based on the color and size of stimuli. Each
combination of color and size was measured multiple times for each participant, and so we
sort of have three predictors: color, size, and participant. For this study, we really only
care about the particular colors and sizes used, and so we don’t worry about generalizing
to any randomly chosen color or size (whatever that might mean). But our participants
were randomly sampled, and we want to generalize to the population from which they were
sampled, and so participant is a randomized factor.

Figure 20.3 shows the basic model lattice for this experiment which looks exactly like the
previous models. Previously, we had simply compared particular models to other models
in the lattice, and used the ANOVA procedure (and an F test) to determine whether the
models differed, and thus whether the factor was reliable.

But now, things get tricky. Let’s say we wanted to estimate the impact of color. Our
standard approach is to compare a model with color to one without color, and there are three
such comparisons, which would be identical if conditions were orthogonal. But now we want
to compare the variance we can account with color to what we’d expect given the variability
in the color effect across people. The top right comparison measures the difference color
makes in the context of participant and size. But this model doesn’t tell us much about the
variability in color across people. We could have 20 participants with nearly identical means,

465

Chapter 20 Applied Statistics in R

Figure 20.3: Basic Model lattice for a within-participant (repeated measures) experiment
looking at the impact of color and size on responding.

Fixed: Color &
Size
Randomized:
Participant

Fixed: Color
Randomized:
Participant

<

Fixed:
Color, Size

∨
Fixed: Size
Randomized:
Participant

>

Fixed: Color

∨ <
Randomized:
Participant

∨ <
>

Fixed: Size

∨>

Intercept

∨ <
>

466

Chapter 20 Applied Statistics in R

Figure 20.4: Basic Model lattice for a within-participant (repeated measures) experiment
looking at the impact of color and size on responding. Each candidate comparison to test
the impact of color is inappropriate

Fixed: Color &
Size
Randomized:
Participant

Improper

Fixed: Color
Randomized:
Participant

<

Fixed:
Color, Size

∨
Fixed: Size
Randomized:
Participant

>

Improper

Fixed: Color

∨ <
Randomized:
Participant

∨ <>

Fixed: Size

∨>

Improper

Intercept

∨ <>

yet individual responses differ substantially; on the other hand, we could have 20 individuals
with very different means, but individual responses don’t differ much within a person.

The middle and lower comparisons simply ignores participant completely, and so it is
definitely not what we want. What we want to do is compare the effect to the part of the
variability in the upper right box that participant accounts for. This is just asking what
the variability across the means of the participants is, ignoring individual responses. If you
consider this carefully, you should recognize that this is the participant by color interaction,
which estimates a color effect individually for each participant. Although this interaction
was not in the original model lattice, it is in the data. Consider Figure 20.5, which shows
how the complete model could include all main effects and interactions. Once these are
accounted for, the only remaining variance stems from repeated measurement within each
cell of the experiment, and so to estimate variance we need more than one measure in each
condition.

Finally, let’s expand the interaction model to a complete model lattice. This is pretty
complex, and we display only the models that don’t violate marginality. (i.e., no interaction
without the main effects). Now, we also show what the difference between each model in the
lattice is accounting for. To test the impact of one factor (color), we need to compare the
SS associated with color alone to the SS associated with the color+participant interaction.
Similarly, to test size, we form the ratio between the MS associated with size versus the

467

Chapter 20 Applied Statistics in R

Figure 20.5: Basic Model lattice for a within-participant (repeated measures) experiment
looking at the impact of color and size on responding. The total variance in the complete
model can be divided into all possible main effects and interactions.

Fixed: color,
Randomized: participant

Fixed: color, size
Randomized: participant

Fixed: color, size Fixed: size
Randomized: participant

Fixed: color Randomized: participant

~1

Fixed: size

Residual Variance

color+size +part+ color:size
color:part + size:part + size:part:color + residuals

468

Chapter 20 Applied Statistics in R

~color + part+1

~color+ size +participant
color :size + part:color+part:size + part:color:size+1

~color+ size+1
~ size + part. +1

~color+1
~participant+1

~1

~size+1

color part.
size

~color+ size +participant
color :size + part:color+part:size +1

~color+ size +participant
color :size + part:color +1

~color+ size +participant
color :size +part:size +1

part:color:size

~color+ size +participant
 part:color+part:size +1

~color+ size +participant
color :size +1

~color+ size +participant
 part:size +1

~color+ size +participant
 part:color +1

~color+ size +participant +1

part:color part:sizecolor:size

color:size color:size
part:color

part:color part:size

part:size

part:size part:colorcolor:size

colorpartsize

color

color

part part

size

size

Test color
effect

Test size
effect

Test color:size
interaction

size:participant interaction, and to test the interaction between size and color, we compare
to size:color:participant interaction. This produces an F test whose first degree of freedom
will be related to the number of levels of the test, and whose second degree of freedom is
related closely to the number of participants (rather than the total number of observations
or trials in the study, which could be hundreds of times larger).

1 aov4 <- aov(rt~x1*subj)

summary(aov4)

20.2.1 Exercise

Identify the path through the lattice for aov4. label the MSE on each node of the lattice.
Looking at aov4, it provides us with a SS divided into each transition between models in

the lattice. Remember that because the design is balanced, we get the same answer whether
we use x1*subj or subj*x1. But the SS related to the subj*x1 interaction term is the
critical pool of variance to compare to. Look at the SSE/MSE for the 4 lines, ignoring the
F scores: x1*subject

Df Sum Sq Mean Sq F value Pr(>F)

469

Chapter 20 Applied Statistics in R

2 x1 2 1104007 552003 606.0651 <2e-16 ***

subj 19 239535 12607 13.8418 <2e-16 ***

4 x1:subj 38 21967 578 0.6347 0.9533

Residuals 240 218592 911

• The first line is the delta SS related the main effect, which we care about. It is currently
being compared to the residuals.

• The next line is the set of intercepts related to subject variability. This is stuff we can
account for but we don’t care about.

• The third line is the variance that can be attributed to the subj * effect interaction,
which tells us how much the effect depends on participant.

• The fourth line tells us the rest, which is the difference from the mean value predicted
by subject and condition and subj*condition provide.

For generalization, we don’t care about predicting new single observations, we want to
understand the mean impact that condition has on the population. The x1:sub interaction
tells us how much it depends, and so this is the proper pool of variance (subtracting out the
intercept) to use. This means that the F values are computed incorrectly. What we really
want is an F value of 552003/578=955.0225

Exercise 20.2.1

Notice that this is different from the following: Why?

1 > anova(aov(rt~x1),aov(rt~x1:subj))

The basic logic we have gone through involves picking out the proper error term for
your factors when they are nested within randomized variables such as participant. Notice
that this last model would be fine if subj were a blocking variable that was not sampled
randomly. In that case, we’d want to be generalizing over the individual observations still,
not the blocks. But for subjects, we usually want to make inference about the population
mean.

There are several libraries for handling this, but R let’s you specify so-called error strata
using the Error() function. Instead of entering a randomized factor directly into the model,
place it inside the Error function, and tell it which non-randomized factors are nested within
it (in this case, just x1)

1 aov5 <- aov(rt~x1+Error(subj/x1)+0)

summary(aov5)

3

Error: subj

5 Df Sum Sq Mean Sq F value Pr(>F)

Residuals 19 215235 11328

7

Error: subj:x1

9 Df Sum Sq Mean Sq F value Pr(>F)

x1 2 1202115 601057 1263 <2e-16 ***

11 Residuals 38 18090 476

470

Chapter 20 Applied Statistics in R

13 Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

15 Error: Within

Df Sum Sq Mean Sq F value Pr(>F)

17 Residuals 240 203792 849.1

Notice that the F test is the same as we calculated earlier, (1263) considering rounding
error for the MSE reported in the table. Also, notice the d.f. are appropriate. F (2, 38) =
1263,p < .0001.

A number of examples are provided in the alternate readings for today. (see personali-
typroject and Baron’s R notes’)

Exercise 20.2.1

Use the data from the example provided by Baron:

1 data1 <-c(

49,47,46,47,48,47,41,46,43,47,46,45,

3 48,46,47,45,49,44,44,45,42,45,45,40,

49,46,47,45,49,45,41,43,44,46,45,40,

5 45,43 ,44,45,48 ,46,40,45 ,40,45 ,47,40)

7 Hays.df <- data.frame(rt = data1 ,

subj = factor(rep(paste("subj", 1:12, sep=""), 4)),

9 shape = factor(rep(rep(c("shape1", "shape2"), c(12, 12)), 2)),

color = factor(rep(c("color1", "color2"), c(24, 24))))

11 par(mfrow=c(1,3))

boxplot(rt~shape ,data=Hays.df)

13 boxplot(rt~color ,data=Hays.df,col=c("grey40","gold"))

boxplot(rt~shape*color ,data=Hays.df)

15 matplot(tapply(Hays.df$rt,Hays.df[,3:4],mean),type="b")

1. Do a full aov model including the main effects’s interactions with subject, and
calculate F values by hand by comparing lines of the table

2. Build a model using the appropriate Error() term, and verify you can obtain
the same F tests.

Exercise 20.2.1

Identify the path through the lattice for aov4. label the MSE on each node of the
lattice.

20.3 Repeated Measures

Consider the following experiment in which we have five repetitions of each participant.
Here, the repetitions do not really represent anything of interest–just additional data to get
a more precise estimate, based on the faked data described earlier.

1 set.seed (500)

x1 <- factor(rep(c("a","b","c") ,20*5))

3 subj <- factor(rep(1:20, each=3*5))

471

Chapter 20 Applied Statistics in R

rt <- 200 + runif (20)[subj]*100+ c(-50,0,100)[x1] + rnorm (300) * 30

5

set.seed (100)

7 data2 <- data.frame(subj=rep(subj ,each =5),

cond = rep(x1 ,each =5),

9 rt = rep(rt,each =5) + rnorm(length(rt)*5))

11 data2 [1:10 ,]

subj cond rt

13 1 1 a 190.3287

2 1 a 190.9624

15 3 1 a 190.7520

4 1 a 191.7177

17 5 1 a 190.9479

6 1 b 230.2393

19 7 1 b 229.3389

8 1 b 230.6352

21 9 1 b 229.0954

10 1 b 229.5608

23 >

Here, we have just observed each person in each condition five times In terms of the
analysis we do, any repetition within the subject x condition table should not increase the
power of the test (although it may increase the accuracy of our estimates.) In a sense, the
test we do should be roughly the same as what we get if we’d simply aggregate down to one
observation per person. Let’s see if we can do this.

1 data2b <- aggregate(data2$rt,list(subj=data2$subj ,cond=data2$cond),mean)
data2b$rt <- data2b$x

3

aov2.a <- aov(rt~cond+Error(subj/cond),data=data2)

5 aov2.b <- aov(rt~cond+Error(subj/cond),data=data2b)

7 summary(aov2.a)

9 Error: subj

Df Sum Sq Mean Sq F value Pr(>F)

11 Residuals 19 1045428 55023

13 Error: subj:cond

Df Sum Sq Mean Sq F value Pr(>F)

15 cond 2 5565412 2782706 501.4 <2e-16 ***

Residuals 38 210897 5550

17 ---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

19

Error: Within

21 Df Sum Sq Mean Sq F value Pr(>F)

Residuals 1440 1131706 785.9

23

25

> summary(aov2.b)

27

Error: subj

29 Df Sum Sq Mean Sq F value Pr(>F)

Residuals 19 41817 2201

31

Error: subj:cond

33 Df Sum Sq Mean Sq F value Pr(>F)

472

Chapter 20 Applied Statistics in R

cond 2 222616 111308 501.4 <2e-16 ***

35 Residuals 38 8436 222

37 Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

To test the effect of condition, in each case we look at the cond:subj error strata. In
aov2.a, the F tests are identical: F(2,38)= 501.4.

Consequently, for true repetition of conditions, this error strata scheme will properly
ignore repetitions within subject in the test, because we care about generalizing across the
mean of people, color, and we don’t see an effect, we shouldn’t get a huge benefit if we simply
decide to measure height ten times per person.

20.4 Repeated measures and the ezANOVA

The ez library has some easier-to-use implementations of ANOVA that support repeated
measures. You need to specify within and between variables specifically, but it provides a
nice output.

1 library(ez)

ez2.a1 <- ezANOVA(data=data2 ,dv=rt,within=cond ,wid=subj)

3 ez2.a2 <- ezANOVA(data=data2 ,dv=rt,within_full=cond ,wid=subj) ##This doesn ’t

work

ez2.b <- ezANOVA(data=data2b ,dv=rt,within=cond ,wid=subj)

5

ez2.a1

7 > ez2.a1

$ANOVA
9 Effect DFn DFd F p p<.05 ges

2 cond 2 38 501.396 4.852583e-28 * 0.8158351

11

$‘Mauchly ’s Test for Sphericity ‘

13 Effect W p p<.05

2 cond 0.9592763 0.6878494

15

$‘Sphericity Corrections ‘

17 Effect GGe p[GG] p[GG]<.05 HFe p[HF] p[HF]<.05

2 cond 0.9608698 4.956839e-27 * 1.066701 4.852583e-28 *

19

> ez2.b

21 $ANOVA
Effect DFn DFd F p p<.05 ges

23 2 cond 2 38 501.396 4.852583e-28 * 0.8158351

25 $‘Mauchly ’s Test for Sphericity ‘

Effect W p p<.05

27 2 cond 0.9592763 0.6878494

29 $‘Sphericity Corrections ‘

Effect GGe p[GG] p[GG]<.05 HFe p[HF] p[HF]<.05

31 2 cond 0.9608698 4.956839e-27 * 1.066701 4.852583e-28 *

Notice that the ez provides the ANOVA test, including a ‘ges’ effect size, which is a
generalized eta-squared value. Also, it includes a test for sphericity, which can tell you if
your test is violating some of the assumptions of regression models. We can see that the test

473

Chapter 20 Applied Statistics in R

is identical across all the versions of this test we have done. You can get all of the sum-of-
squares values if you use the detailed=T argument, and the actual anova object (with error
strata) if you use return aov=T.

20.5 Mixed Designs: ANOVA models with between and
within variables

In typical ANOVA/Regression, we assume that all variables are between-participant. In the
current example, the predictors have been within-subject. When we have both types, this is
referred to as a mixed factorial design. Let’s suppose we have such a data set.:

(Be sure subject code is a factor!)

data3 <- data.frame(subj=as.factor(c(subj , as.numeric(subj)+20)),

2 group = rep(c("Control","Experimental"),each =300),

cond = rep(x1 ,2),

4 rt = rep(rt ,2) + rnorm (600))

6 > head(data3)

subj group cond rt

8 1 1 Control a 189.6783

2 1 Control b 230.3848

10 3 1 Control c 365.4999

4 1 Control a 249.0270

12 5 1 Control b 229.3105

6 1 Control c 338.4940

14 >

defining the model is as follows: because group is a between-subject factor, it is not
nested within the Error() notation, but cond is because it is a within-subject variable.

1

model3 <- aov(rt~ group + cond + Error(subj/cond),data=data3)

3 summary(model3)

5 > summary(model3)

7 Error: subj

Df Sum Sq Mean Sq F value Pr(>F)

9 group 1 0 0 0 1

Residuals 38 417296 10981

11

Error: subj:cond

13 Df Sum Sq Mean Sq F value Pr(>F)

cond 2 2222004 1111002 1025 <2e-16 ***

15 Residuals 78 84574 1084

17 Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

19

Error: Within

21 Df Sum Sq Mean Sq F value Pr(>F)

Residuals 480 451797 941.2

interpreting model3 is tricky, because the effects appear in multiple error strata. To find
the right one, it is sometimes helpful to take a look at the degrees of freedom and be sure

474

Chapter 20 Applied Statistics in R

they are sensible. The rule of thumb is that if we are trying to generalize an effect of a
condition across people, so we should look at the error related to the condition x person
interaction. This is the second strata, and we’d report F(2,78)=1060, p¡.001. Note that
there were 40 subjects and 3 conditions; (40-1)*(3-1)=78.

To examine the group variable, the correct statistic is nested within sthe subj error strata
F(1,38)=0.

This can be confusing. A way of figuring out the right test to do is to consider the
one-way ANOVA you’d perform on just the factor you care about, aggregating over subject.
The degrees of freedom should be the same, although the test statistic could differ.

To test the effect of between-subject group

data3.agg1 <- aggregate(data3$rt,list(group=data3$group ,subj=data3$subj),mean)
2 head(data3.agg1)

group subj x

4 1 Control 1 293.0034

2 Control 2 280.8230

6 3 Control 3 323.2033

4 Control 4 256.1180

8 5 Control 5 296.4960

6 Control 6 226.4755

10

12 summary(aov(x~group ,data=data3.agg1))

Df Sum Sq Mean Sq F value Pr(>F)

14 group 1 0 0.0 0 1

Residuals 38 27820 732.1

Notice that here, the test for group is again F(1,38). How about for condition: aggregate
over condition and subject:

1

data3.agg2 <- aggregate(data3$rt,list(cond=data3$cond ,subj=data3$subj),mean)
3 summary(aov(x~cond+Error(subj/cond),data=data3.agg2))

> summary(aov(x~cond+Error(subj/cond),data=data3.agg2))

5

Error: subj

7 Df Sum Sq Mean Sq F value Pr(>F)

Residuals 39 83459 2140

9

Error: subj:cond

11 Df Sum Sq Mean Sq F value Pr(>F)

cond 2 444401 222200 1025 <2e-16 ***

13 Residuals 78 16915 217

15 Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Just as above, here the F test is F (2, 78) = 2619. This is exactly the same test in this
case. If you have a non-orthogonal design, it probably could differ.

How about the ezANOVA?

1

3 ez3.a <- ezANOVA(data=data3 ,dv=rt,within=cond , wid=subj ,between=group ,

detailed=T)

ez3.b <- ezANOVA(data=data3 ,dv=rt,within_full=cond ,wid=subj ,between=group ,

detailed=T) ##This collapses too much and is wrong

475

Chapter 20 Applied Statistics in R

5 > print(ez3.b)

$ANOVA
7 Effect DFn DFd SSn SSd F p p<.05

ges

1 group 1 38 0.0001753375 27819.71 2.395002e-07 0.9996121 6.302636e

-09

9

$‘Levene ’s Test for Homogeneity of Variance ‘

11 DFn DFd SSn SSd F p p<.05

1 1 38 0.0489761 9620.256 0.0001934556 0.9889755

13

>

15 > print(ez3.a)

$ANOVA
17 Effect DFn DFd SSn SSd F p p<.05

ges

1 (Intercept) 1 38 8.982357e+06 83459.14 4.089781e+03 2.681462e-40 *

9.889489e-01

19 2 group 1 38 5.260125e-04 83459.14 2.395002e-07 9.996121e-01

5.240536e-09

3 cond 2 76 4.444008e+05 16914.67 9.983774e+02 2.767544e-55 *

8.157517e-01

21 4 group:cond 2 76 1.616313e-01 16914.67 3.631161e-04 9.996370e-01

1.610291e-06

23 $‘Mauchly ’s Test for Sphericity ‘

Effect W p p<.05

25 3 cond 0.9604942 0.4744085

4 group:cond 0.9604942 0.4744085

27

$‘Sphericity Corrections ‘

29 Effect GGe p[GG] p[GG]<.05 HFe p[HF] p[HF]<.05

3 cond 0.9619956 2.795560e-53 * 1.012247 2.767544e-55 *

31 4 group:cond 0.9619956 9.995202e-01 1.012247 9.996370e-01

Notice that we get the same values for group and cond.

1 summary(model3)

3

Error: subj

5 Df Sum Sq Mean Sq F value Pr(>F)

group 1 0 0 0 1

7 Residuals 38 417296 10981

9 Error: subj:cond

Df Sum Sq Mean Sq F value Pr(>F)

11 cond 2 2222004 1111002 1025 <2e-16 ***

Residuals 78 84574 1084

13 ---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

15

17 Error: Within

Df Sum Sq Mean Sq F value Pr(>F)

19 Residuals 480 451797 941.2

Here, the results are essentially the same, but the ez model will automatically test the
interaction as well, so the residual degrees of freedom goes down by 2 to 76 instead of 78.

476

Chapter 20 Applied Statistics in R

Exercise 20.5

Exercise: Use the data from the examples provided by Baron to test the effect of
shape and color (both within-subject variables)
Use both the Error() syntax and the ezANOVA() model. Write the way you’d report
the test in a paper. Verify that they produce the same results.

1

##>Example 2 from Baron

3 data1 <-c(

49,47,46,47,48,47,41,46,43,47,46,45,

5 48,46,47,45,49,44,44,45,42,45,45,40,

49,46,47,45,49,45,41,43,44,46,45,40,

7 45,43 ,44,45,48 ,46,40,45 ,40,45 ,47,40) # across subjects then conditions

9

Hays.df <- data.frame(rt = data1 ,

11 subj = factor(rep(paste("subj", 1:12, sep=""), 4))

,

shape = factor(rep(rep(c("shape1", "shape2"), c

(12, 12)), 2)),

13 color = factor(rep(c("color1", "color2"), c(24,

24))))

20.6 Sphericity, and corrections for sphericity

The ezANOVA provides additional output testing the assumptions of the model, especially
the homogeneity of variance. Under some conditions, ezANOVA returns Levene’s test, but
for within/between designs it retruns “Mauchly’s Test for Sphericity”:

$‘Mauchly ’s Test for Sphericity ‘

2 Effect W p p<.05

3 cond 0.9604942 0.4744085

4 4 group:cond 0.9604942 0.4744085

6 $‘Sphericity Corrections ‘

Effect GGe p[GG] p[GG]<.05 HFe p[HF] p[HF]<.05

8 3 cond 0.9619956 2.795560e-53 * 1.012247 2.767544e-55 *

4 group:cond 0.9619956 9.995202e-01 1.012247 9.996370e-01

In this example (see above), the condition effect as significant, but let’s focus on the
Mauchly test. Here, the Mauchly test was not significant (p=.477), so we are fine to interpret
them as above.

Sphericity is a special kind of equal variance assumption relevant to repeated measures
ANOVA: it is the assumption that all covariances between levels of variables are equal. In
other words, if, for each participant, you find the pairwise difference between their scores on
each pair of levels of a variable, these pairwise differences all have the same variance.

So, sphericity is an assumption in repeated-measures ANOVA that we didn’t have to look
at for non-repeated measures because it implies a consequence of our lack of independence.
Without repeated measures, there is no sense in which we have differences between levels
on an individual basis. But sphericity does not require that there be no covariance between

477

Chapter 20 Applied Statistics in R

levels–just that it is the same across levels. For example, if you have people drive three
different cars on the same track and examine their completion speed:

Table 20.1: Hypothetical time (in s) of five racers in three different vehicles on the same
track.
Person VW Golf Ford Mustang Tesla VW - Ford Ford - Tesla VW - Tesla
Anders 105 88 66 17 22 39
Blaine 95 75 68 20 7 27
Cristina 83 89 85 -6 4 -2
Donald 125 72 88 53 -16 37
Variance 316 77 129 590 244 358

If we look at the final variance-of-differences, we see that these three scores appear to
differ substantially. The higher covariance for VW-Ford indicates that these two are probably
more closely related than Ford-Tesla. This means that vehicle is not just a constant effect,
and that it interacts with driver, and this is problematic because we are using this interaction
to determine whether the effect of vehicle is significant.

In the event you find a significant test for non-sphericity, the typical recommendation
is to use an adjustment for degrees of freedom–just like we did in the Welch’s t-test and
the one-way ANOVA with non-constant variance. There are several common corrections,
including the Greenhouse-Geisser, Huyn & Feldt correction. These are included in the
‘Sphericity corrections’ table in ezANOVA. If we show the entire output again, we can see
these corrections map onto the Greenhouse-Geisser (GG) and Huyn-Feldt (HF). These are
values that we would adjust the degrees of freedom and p-value by if the Mauchly’s test was
significant.

1 > print(ez3.a)

$ANOVA
3 Effect DFn DFd SSn SSd F p p<.05 ges

1 (Intercept) 1 38 8.982e+06 83459.14 4.089e+03 2.681e-40 * 9.889e-01

5 2 group 1 38 5.260e-04 83459.14 2.395e-07 9.996e-01 5.240e-09

3 cond 2 76 4.444e+05 16914.67 9.983e+02 2.767e-55 * 8.157e-01

7 4 group:cond 2 76 1.616e-01 16914.67 3.631e-04 9.996e-01 1.610e-06

9 $‘Mauchly ’s Test for Sphericity ‘

Effect W p p<.05

11 3 cond 0.9604942 0.4744085

4 group:cond 0.9604942 0.4744085

13

15 $‘Sphericity Corrections ‘

Effect GGe p[GG] p[GG]<.05 HFe p[HF] p[HF]<.05

17 3 cond 0.9619956 2.795560e-53 * 1.012247 2.767544e-55 *

4 group:cond 0.9619956 9.995202e-01 1.012247 9.996370e-01

So, if the Mauchly’s test is not significant, we might report this test as follows:

Mauchly’s test for sphericity was not significant (W=.96, p=.47), and so the
repeated-measures ANOVA showed there was a significant effects of condition
(F (2, 76) = 998, p < .001), generalized η2 = .81, but no effect of group (F (1, 38) =
0, p = 1.0) and no condition by group interaction (F (2, 76) = 0, p = 1).

If, however, the sphericity test was significant, we would adjust both degrees of freedom
by GGe or HFe. In the cases above, GGe and HFE are both close to 1.0, so there is no large

478

Chapter 20 Applied Statistics in R

adjustment. We can then report the p-value from the corrections lines–in this case they do
not differ.

Mauchly’s test for sphericity was significant (W=.12, p < .01), and so we applied
the Greenhouse-Geisser correction to degrees of freedom. The resulting adjusted
ANOVA showed there was a significant effects of condition (F (2, 75.7) = 998,
p < .001), generalized η2 = .81, but no effect of group (F (1, 37.8) = 0, p = 1.0)
and no condition by group interaction (F (2, 75.7) = 0, p = 1).

20.7 Post-hoc tests with repeated measures ANOVA

If we are using a repeated-measures ANOVA–either with ez or with Error(), one remaining
problem is that we’d often like to compute post-hoc tests. This is problematic, because the
software will not generally permit this, and it is not even clear that the the proper way
to compute post-hoc tests in a repeated-measures context is widely agreed upon or widely
used. This is, in part, because more modern approaches to modeling repeated measures in
the guise of mixed-effects models make the models more principled, and there are libraries
that will handle the post-hoc tests in those contexts.

Some strategies I have seen for dealing with this include:

• Use subsetting to generate sub-models with two levels; this will then test a specific
contrast between levels. This does not correct for family-wise testing, so you would
then likely apply a bonferroni correction

• Do multiple pairwise t-tests and apply a bonferroni or holm correction. For example,
use pairwise.t.test. This will have less power than a true anova, because you are
not factoring out predictors you know, but it may be effective if conservative.

• Some sources have suggested that if the sphericity assumption is met, you can treat
subject as a normal effect, and no longer treat it as a randomized factor but as a fixed
factor. Then, the normal Tukey HSD tests will work on the remaining variables. I
have not seen strong mathematical justification for doing this.

• Use a richer modeling framework. Most sources simply advise people to use nlme/lmer/lme
models and multcomp package, which will do relevant post-hoc tests on those models,
or use a hierarchical Bayesian approach. These are reasonable approaches, but those
models are difficult to understand without a grounding in the historical approach to
repeated measures models, and overall more difficult to create and interpret than these
models. We will cover those models in the next chapter.

479

Chapter 20 Applied Statistics in R

20.8 Answers to exercises

Exercise Solution 20.2.1

Use the data from the example provided by Baron:

data1 <-c(

2 49,47,46,47,48,47,41,46,43,47,46,45,

48,46,47,45,49,44,44,45,42,45,45,40,

4 49,46,47,45,49,45,41,43,44,46,45,40,

45,43 ,44,45,48 ,46,40,45 ,40,45 ,47,40)

6

Hays.df <- data.frame(rt = data1 ,

8 subj = factor(rep(paste("subj", 1:12, sep=""), 4)),

shape = factor(rep(rep(c("shape1", "shape2"), c(12, 12)), 2)),

10 color = factor(rep(c("color1", "color2"), c(24, 24))))

par(mfrow=c(1,3))

12 boxplot(rt~shape ,data=Hays.df)

boxplot(rt~color ,data=Hays.df,col=c("grey40","gold"))

14 boxplot(rt~shape*color ,data=Hays.df)

matplot(tapply(Hays.df$rt,Hays.df[,3:4],mean),type="b")

1. Do a full aov model including the main effects’s interactions with subject, and
calculate F values by hand by comparing lines of the table

2. Build a model using the appropriate Error() term, and verify you can obtain
the same F tests.

1 anova1 <- aov(rt~(color+shape)*subj ,data=Hays.df)

anova2 <- aov(rt~color*shape*subj ,data=Hays.df)

3 anova3 <- aov(rt~color+shape+subj:color + subj:shape ,data=Hays.df)

5 anova4 <- aov(rt~color*shape +Error(subj/(color*shape)), data=Hays.df)

Let’s suppose that we run an experiment with 20 participants, and measure response
times for three conditions with five observations per condition. We have 15 observa-
tions per subject.

480

Chapter 20 Applied Statistics in R

Exercise Solution 20.8

Exercise: Use the data from the examples provided by Baron to test the effect of
shape and color (both within-subject variables)
Use both the Error() syntax and the ezANOVA() model. Write the way you’d report
the test in a paper. Verify that they produce the same results.

1

##>Example 2 from Baron

3 data1 <-c(

49,47,46,47,48,47,41,46,43,47,46,45,

5 48,46,47,45,49,44,44,45,42,45,45,40,

49,46,47,45,49,45,41,43,44,46,45,40,

7 45,43 ,44,45,48 ,46,40,45 ,40,45 ,47,40) # across subjects then conditions

9

Hays.df <- data.frame(rt = data1 ,

11 subj = factor(rep(paste("subj", 1:12, sep=""), 4))

,

shape = factor(rep(rep(c("shape1", "shape2"), c

(12, 12)), 2)),

13 color = factor(rep(c("color1", "color2"), c(24,

24))))

For this data, we are interested in knowing if shape and color of stimuli affect RT.

par(mfrow=c(1,3))

2 boxplot(rt~shape ,data=Hays.df)

boxplot(rt~color ,data=Hays.df,col=c("grey40","gold"))

4 boxplot(rt~shape*color ,data=Hays.df)

matplot(tapply(Hays.df$rt,Hays.df[,3:4],mean),type="b")
6

##incorrect:

8 summary(aov(rt ~ shape * color , data=Hays.df))

10 anova.hays <- aov(rt~color*shape +Error(subj/(color*shape)), data=Hays.

df)

summary(anova.hays)

12

ezANOVA(Hays.df,,dv=rt,within =.(shape ,color),wid=subj ,detailed=T)

14

Exercise: compute aov() and ezANOVA models for each of Baron ’s

examples:

16 # Baron example 2 (Maxwell & Delaney)

18 #Two within -subject variables:

20 MD.rt <- matrix(c(

420, 420, 480, 480, 600, 780,

22 420, 480, 480, 360, 480, 600,

480, 480, 540, 660, 780, 780,

24 420, 540,540, 480, 780, 900,

540, 660,540, 480, 660, 720,

26 360, 420, 360, 360, 480, 540,

480, 480,600, 540, 720, 840,

28 480, 600, 660, 540, 720, 900,

540, 600,540, 480, 720, 780,

30 480, 420,540, 540, 660, 780),

ncol = 6,byrow = T) # byrow=T so the matrix ’s layout is exactly like

this

481

Chapter 20 Applied Statistics in R

482

Chapter 21

Mixed effects models, lmer, and
nlme models

The previous chapter considered a special class of models with just one randomized factor:
participant. The other factors were fixed, and you had the possibility of repeated measures.
Sometimes you have additional random factors, and also additional fixed factors. These are
handled with a more advanced set of models referred to as mixed-effects models. Mixed-
effects just refers to the fact that you are combining both fixed and random factors in a
model.

A fixed effect is one whose independent variables won’t change if re-run the experiment
using new subjects/materials. A random effect is one that will. Commonly, randomized
factor (often referred to as random effects models) will be participants, batches, stimuli, and
things we sample from to make our conditions. The random factor isn’t really a parame-
ter/condition, it is a random variable whose variability we want to account for and usually
compare against when determining if we have found some systematic effect of a fixed factor.

This especially comes into play when our random factor could have a lot of variability.
Suppose we wanted to test the effectiveness of different types advertisement on websites.
We could select from 100 different advertisements, and we might suspect that the variability
across advertisements is large, based simply on the content, rather than on any variable we
care about. Suppose there is no difference in the kind of ad. In this case, if we get unlucky,
we might pick a subset of ‘good’ ads for one condition, and ‘bad’ ads for a second condition,
and conclude that the manipulation in ad type actually worked. If we acknowledge that
these are a randomized factor, we can account for it and factor out that variability.

Suppose we were trying to test something about how different advertisements impacted
on-line behavior, using three kinds of ads, and so we will examine click-through rates for
“social” advertisements versus traditional ads.

The experiment works like this: people visit a web site we have created, and it contains
different types of advertisements we have identified. For each person, we get end up getting
a server log indicating whether they clicked on or hovered their mouse over each type of
advertisement. We want to know whether the social ads (ones sensitive to their on-line
identity) were better than the non-social advertisements, or maybe from a third type which
includes animated video ads.

Let’s suppose there is actually no difference between social and normal styles of ads, but
animated video ads are better. We can simulate the population of click-through rates like
this–normal and social range in their effectiveness between 0 and 1 uniformly, but animated

483

Chapter 21 Applied Statistics in R

range in their clickthrough from .6 (150/250) to 1.0:

ads.social <- 0:100/100

2 ads.normal <- 0:100/100

ads.animated <- 150:250/250

Now, suppose that in an experiment, we have selected four advertisements of each type,
and created a web page including all advertisements. In the study, each of 50 people either
does or does not follow each link. Ignoring for the moment within-subject effects, we have a
data set like this:

1

set.seed (100)

3 social.eff <- sample(ads.social ,4)

normal.eff <- sample(ads.normal ,4)

5 animated.eff <- sample(ads.animated ,4)

7 ##100 of each ad type

clicks <- c(runif (50*4)<social.eff , runif (50*4)<normal.eff , runif (50*4) <

animated.eff) ##600 long; in

9 type <- as.factor(rep(c("A","B","C"),

each =200)) ## 600 long

11 ad <- as.factor(rep(rep (1:4 ,50) ,3))

ad2 <- as.factor(c(rep (1:4 ,50),rep (11:14 ,50), rep (21:24 ,50)))

##ad id; in blocks of type.

13

##

15 sub <- as.factor(rep(rep (1:50 , each =4) ,3))

17 ##Set the contrasts to be sum -to-zero so they are orthogonal

contrasts(type) <- contr.sum (3)

19 contrasts(ad) <- contr.sum(length(unique(ad)))

contrasts(ad2) <- contr.sum(length(unique(ad2)))

21 contrasts(sub) <- contr.sum (50)

23 ads <- data.frame(sub=sub ,type=type ,ad=ad ,ad2=ad2 ,clicks=clicks)

25 ads [1:10 ,]

27 > ads [1:10 ,]

sub type ad ad2 clicks

29 1 1 A 1 1 TRUE

2 1 A 2 2 TRUE

31 3 1 A 3 3 TRUE

4 1 A 4 4 FALSE

33 5 2 A 1 1 FALSE

6 2 A 2 2 TRUE

35 7 2 A 3 3 TRUE

8 2 A 4 4 FALSE

37 9 3 A 1 1 FALSE

10 3 A 2 2 TRUE

39

41 > table(adsad,adsad2)

43 1 2 3 4 11 12 13 14 21 22 23 24

1 50 0 0 0 50 0 0 0 50 0 0 0

45 2 0 50 0 0 0 50 0 0 0 50 0 0

3 0 0 50 0 0 0 50 0 0 0 50 0

47 4 0 0 0 50 0 0 0 50 0 0 0 50

>

484

Chapter 21 Applied Statistics in R

In this data set, we have 50 participants, each with 12 rows of data. Type indicates
the type of advertisement. We have numbered ad twice–The first (ad) represents if we
had the same product appearing in 3 different ads, and we have sampled 4 ads for this.
The second (ad2) is one where we have sampled 4 different advertisements in each role–12
distinct advertisements and 3 in each type. In one case, advertisement is crossed with type,
and in the other case it is nested within type, and we may want to handle it differently.

We are also in the situation where we have two random factors: subject and advertise-
ment. We have essentially sampled advertisements from the population of possible adver-
tisements, and we want to see if it has an impact on the population of advertisements. At
the end of our statistical test, we would like to generalize to the population of people we
sampled from, and to the population of advertisements we sampled from.

But let’s start by imagining that advertisement is not a random factor, and we want to
look at just type. In the previous chapter, we would have done this:

1

> aggregate(ads$clicks ,list(ads$type),mean)
3 Group.1 x

1 A 0.63

5 2 B 0.53

3 C 0.82

7

model1 <- aov(clicks~type+Error(sub/type),data=ads)

9

Error: sub

11 Df Sum Sq Mean Sq F value Pr(>F)

Residuals 49 6.473 0.1321

13

Error: sub:type

15 Df Sum Sq Mean Sq F value Pr(>F)

type 2 8.68 4.340 32.75 1.28e-11 ***

17 Residuals 98 12.99 0.133

19 Signif. codes: 0 ‘***‘ 0.001 ‘**‘ 0.01 ‘*‘ 0.05 ‘.‘ 0.1 ‘ ‘ 1

21 Error: Within

Df Sum Sq Mean Sq F value Pr(>F)

23 Residuals 450 106.5 0.2367

The ad type had a huge effect here, and we are correctly accounting for the repeated-
measures design. But we cannot know if the large effect of type is because all three levels
differ, or just two of them, or what. The inability to use a post-hoc test with the Error()

function prevents us from drawing the conclusions we want to make. The typical advise is
to use pairwise t-tests with a correction:

pairwise.t.test(clicks ,type ,data=ads)

2

Pairwise comparisons using t tests with pooled SD

4

data: clicks and type

6

A B

8 B 0.03 -

C 8.1e-05 1.6e-09

485

Chapter 21 Applied Statistics in R

10

data: clicks and type

This shows that each pair differs significantly. This is a bit worrisome because we created
the data so that A and B should not differ, but A/B would differ from C. But by treating
advertisement as a fixed effect, we have asserted that advertisement in this case is not
random (maybe we are considering a specific ad campaign with specific advertisements, so
the significant result is probably fine. But what if we were to try to consider the random
effect of ad. We can incorporate that in a model instead of participant:

2 #type is a between -ad variable

model2 <- aov(clicks ~ type + Error(ad))

4

> summary(model2)

6

8 Error: ad

Df Sum Sq Mean Sq F value Pr(>F)

10 Residuals 3 17.61 5.871

12 Error: Within

Df Sum Sq Mean Sq F value Pr(>F)

14 type 2 8.68 4.340 23.79 1.15e-10 ***

Residuals 594 108.35 0.182

16 ---

The type variable is significant when considering advertisement a randomized factor.
This means that with respect to the variability within advertisement, the type seems to have
a large enough effect. We’d like to take both random factors into account, but there is no
simple way to do that within Error(), and again no way of knowing which levels of type
differ.

Traditionally, and even today, researchers fail to account for the fact that they are sam-
pling from stimuli, and often do not treat their stimulus as a randomized factor (See Clark,
1974, “The Language-as-fixed-effect fallacy.”).

But what do you do? According to Clark, you should use minF:

Fmin = F1xF2/(F1 + F2) (21.1)

Here, model2 is F1 (treating subject as a random factor) and model3 is F2.
Although people rarely report minf anymore, the linguistics community has developed

advanced mixed-effects and hierarchical effects models to help model the different sources of
variance explicitly. The most cutting-edge libraries for this, such as lme4, are available only
in R.

21.1 Mixed effects models: A modern approach

There are several libraries in R that handle mixed effects models directly. The most promi-
nent are the lme41 library , and nlme. There are many other libraries based on these,
including BayesFactor, which provides means for testing lme4 models using Bayes Factor

1See Bates (2010). Lme4: Mixed-effect modeling with R http://lme4.r-forge.r-project.org/book/front.pdf

486

Chapter 21 Applied Statistics in R

tests, and multcomp, which allows for post-hoc multiple comparison tests such as the Tukey
HSD based on lme4 or nlme models. The ez library has a function that will build lme4
models for you as well.

There is a comprehensive comparison of different approaches to fitting linear mixed mod-
els at http://glmm.wikidot.com/pkg-comparison–both with R and with other tools. We
will focus on lme4, which seems to have broader use in social science/psychology.

With lme4 and nlme, we specify random effect in different ways. In nlme, we need to
specify these as an argument to the lme model. Note that if we have multiple random factors,
they get specified as a list. Both models support nested effects, so a pure random effects is
specified as 1|effect, indicating it is random in its intercept. Let’s start with the equivalent
of the subject-only random factor, comparing oh lme and lmer:

1 library(nlme)

am2 <- lme(clicks ~ type , random = (~1|sub), data=ads) #subject and

randomized factor

3

library(lme4)

5 lmer2 <- lmer(clicks~type + (1|sub),data=ads)

Here, we treat subject as a random factor. Be sure to use the parentheses around the
random effects. These two models specify the random effect as (1—sub). This indicates that
there is a random effect of subject on the intercept–each subject can have their own additive
difference from the population model. The results of the two models are fairly similar:

> summary(am2)

2 Linear mixed -effects model fit by REML

Data: ads

4 AIC BIC logLik

793.401 815.3606 -391.7005

6

Random effects:

8 Formula: ~1 | sub

(Intercept) Residual

10 StdDev: 1.511953e-05 0.4593346

12 Fixed effects: clicks ~ type

Value Std.Error DF t-value p-value

14 (Intercept) 0.66 0.01875226 548 35.19576 0.0000

type1 -0.03 0.02651969 548 -1.13123 0.2585

16 type2 -0.13 0.02651969 548 -4.90202 0.0000

Correlation:

18 (Intr) type1

type1 0.0

20 type2 0.0 -0.5

22 Standardized Within -Group Residuals:

Min Q1 Med Q3 Max

24 -1.7851910 -1.1538430 0.3918712 0.8055130 1.0232192

26 Number of Observations: 600

Number of Groups: 50

28

30

32 > summary(lmer2)

Linear mixed model fit by REML [’lmerMod ’]

34 Formula: clicks ~ type + (1 | sub)

487

http://glmm.wikidot.com/pkg-comparison

Chapter 21 Applied Statistics in R

Data: ads

36

REML criterion at convergence: 783.4

38

Scaled residuals:

40 Min 1Q Median 3Q Max

-1.7852 -1.1538 0.3919 0.8055 1.0232

42

Random effects:

44 Groups Name Variance Std.Dev.

sub (Intercept) 0.000 0.0000

46 Residual 0.211 0.4593

Number of obs: 600, groups: sub , 50

48

Fixed effects:

50 Estimate Std. Error t value

(Intercept) 0.66000 0.01875 35.196

52 type1 -0.03000 0.02652 -1.131

type2 -0.13000 0.02652 -4.902

54

Correlation of Fixed Effects:

56 (Intr) type1

type1 0.000

58 type2 0.000 -0.500

optimizer (nloptwrap) convergence code: 0 (OK)

60 boundary (singular) fit: see ?isSingular

Notice that it shows us the regression coefficients, and so using the right contrasts for
our regression might be helpful here in testing our particular hypotheses.

21.1.1 Interpreting the linear mixed effects models

Let’s look at each of the sections of the lmer4 output and discuss what these entail.

1 Linear mixed model fit by REML [’lmerMod ’]

Formula: clicks ~ type + (1 | sub)

3 Data: ads

5

REML criterion at convergence: 783.4

7

Scaled residuals:

9 Min 1Q Median 3Q Max

-1.7852 -1.1538 0.3919 0.8055 1.0232

This is basically book-keeping, but it tells us we let each subject have its own intercept,
and we treat these are random variables. It also tells us the optimization criteria it used,
which is REML. This is a form of likelihood, and different lme models use different metrics.
Also, we can look at the residuals and maybe conclude that they are reasonably symmetric.
Next, we have the random effects:

Random effects:

2 Groups Name Variance Std.Dev.

sub (Intercept) 0.000 0.0000

4 Residual 0.211 0.4593

Number of obs: 600, groups: sub , 50

488

Chapter 21 Applied Statistics in R

Here, the output is simple: just the subject intercept and the residual variance. Note that
because we have incorporated these as random effects, we do not get beta-weight estimates–
just the variance/standard deviation. We are estimating the variability of these, in order to
account for that in the model.

We only test the fixed effects:

1

Fixed effects:

3 Estimate Std. Error t value

(Intercept) 0.66000 0.01875 35.196

5 type1 -0.03000 0.02652 -1.131

type2 -0.13000 0.02652 -4.902

Here, we get the equivalent of the regression coefficients and tests. Because type was
coded with sum-to-zero contrasts, these are a bit tricky to interpret. Intercept is the grand
mean, type1 and type2 are the differences from the grand mean, and thus type3 is the
opposite value, which is +.03+.13 = .16. To see difference between pairs we would need to
either reset the factors or do a post-hoc test.

Finally, the correlations between fixed effects are reported. These correlations really
just come from the contrasts directly because we have a balanced design. Note that the
correlations with the intercept are 0, and type1 vs type2 have a correlation of -.5 which is
by design. Large correlations between covariates or independent variables are typically bad–
they indicate that the effect on one could be accounted for by the other. However, because
these are just sub-elements of a designed contrast set, they necessarily have these values.

2 Correlation of Fixed Effects:

(Intr) type1

4 type1 0.000

type2 0.000 -0.500

The fixed effects of type are quite similar here. Because we used sum-to-zero coding, we
really don’t have any pairwise comparisons, but it does tell us whether each of two values is
different from the mean, which is useful (although in the case of lmer, we have to look up the
p-value). But we can also use the multcomp library to compute family-wise post-hoc tests
of either of these models (but it won’t work for aov models with Error terms). We can use
the glht function to specify tests, but we need to do that in contrasts of the fixed effects.

Specifying post-hoc contrasts is a bit tricky and depends on how the contrasts were set
up in the factor. Below, we can see the contrasts associated with this factor

1

> contrasts(type)

3 [,1] [,2]

A 1 0

5 B 0 1

C -1 -1

These columns represent the second two factors in a three-factor coding, where the first
factor (not shown here) is the grand mean of the data. So to get the grand mean/intercept,
we want to add the intercept to neither fo these, or a weighted sum of c(1,0,0). To get
A alone, we need the intercept plus the first column (c(1,1,0)), to get B alone we need

489

Chapter 21 Applied Statistics in R

intercept plus the second column (c(1,0,1)), and to get C alone, we need the intercept plus
the reverse of the other two (c(1,-1,-1))).

Getting pairwise differences is just subtracting the codings for each variable alone from
one another. Below, seven interesting contrast tests are extracted, and we can test them
with multcomp:

2 library(multcomp)

contrasts <- rbind(

4 "Grand mean/intercept"=c(1,0,0),

"A alone"= c(1,1,0),

6 "B alone"= c(1,0,1),

"C alone"= c(1,-1,-1),

8 "A to B" = c(0,1,-1),

"A to C" = c(0,2,1),

10 "B to C" = c(0,1,2)

)

12

> summary(glht(am2 ,contrasts))

14

Simultaneous Tests for General Linear Hypotheses

16

Fit: lme.formula(fixed = clicks ~ type , data = ads , random = (~1 |

18 sub))

20 Linear Hypotheses:

Estimate Std. Error z value Pr(>|z|)

22 A alone == 0 0.63000 0.03248 19.397 <0.001 ***

B alone == 0 0.53000 0.03248 16.318 <0.001 ***

24 C alone == 0 0.82000 0.03248 25.246 <0.001 ***

A to B == 0 0.10000 0.04593 2.177 0.119

26 A to C == 0 -0.19000 0.04593 -4.136 <0.001 ***

B to C == 0 -0.29000 0.04593 -6.313 <0.001 ***

28

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

30 (Adjusted p values reported -- single -step method)

Notice that this adjusts p-values, probably with something like a Bonferonni correction.
Because of this, the number of contrasts we specify matters. Let’s try again with just the
pairwise:

2 contrasts <- rbind(

"A to B" = c(0,1,-1),

4 "A to C" = c(0,2,1),

"B to C" = c(0,1,2))

6

8 summary(glht(lmer2 ,contrasts))

10 Simultaneous Tests for General Linear Hypotheses

12 Fit: lmer(formula = clicks ~ type + (1 | sub), data = ads)

14 Linear Hypotheses:

Estimate Std. Error z value Pr(>|z|)

16 A to B == 0 0.10000 0.04593 2.177 0.075270 .

A to C == 0 -0.19000 0.04593 -4.136 0.000118 ***

18 B to C == 0 -0.29000 0.04593 -6.313 < 1e-04 ***

490

Chapter 21 Applied Statistics in R

20 Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

(Adjusted p values reported -- single -step method)

Notice that the Z-values do not change but the p(z) does, because it is correcting for
the number of tests we do. If we want all pairwise comparisons, the Tukey post-hoc is the
best approach anyway. Here, ‘type’ is the name of the variable we want to apply the Tukey
correction to:

1

tukey <- glht(am2 ,

3 linfct=mcp(type="Tukey"))

print(tukey)

5

7 General Linear Hypotheses

9 Multiple Comparisons of Means: Tukey Contrasts

11

Linear Hypotheses:

13 Estimate

B - A == 0 -0.10

15 C - A == 0 0.19

C - B == 0 0.29

17

19 summary(tukey)

21 Simultaneous Tests for General Linear Hypotheses

23 Multiple Comparisons of Means: Tukey Contrasts

25

Fit: lme.formula(fixed = clicks ~ type , data = ads , random = (~1 |

27 sub))

29 Linear Hypotheses:

Estimate Std. Error z value Pr(>|z|)

31 B - A == 0 -0.10000 0.04593 -2.177 0.0752 .

C - A == 0 0.19000 0.04593 4.136 <0.001 ***

33 C - B == 0 0.29000 0.04593 6.313 <0.001 ***

35 Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

(Adjusted p values reported -- single -step method)

Here, both models give identical results, and they show that C differs from A and B, but
A and B do not differ significantly. We can also specify tukey comparisons, which will correct
for multiple comparisons. Notice the p-values appear identical to the hand-built contrasts
before. I’m not sure if they will always be identical, but for all of these, the probability is
calculated with some sampling scheme, so each time it is run the Pr(>|z|) values are a bit
different.

This is fine for testing pairwise contrasts, but this is assuming we only care about these
particular ads we tested, and are not trying to generalize. But that is not likely to be the
case. To do this right, we need to incorporate a random effect for ad as well:

491

Chapter 21 Applied Statistics in R

2 am4 <- lme(clicks~type ,random=list((~1|ad),(~1|sub)),data=ads) ##both

lmer4 <- lmer(clicks~type + (1|ad) + (1| sub),data=ads)

4

6 > summary(am4)

Linear mixed -effects model fit by REML

8 Data: ads

AIC BIC logLik

10 718.8982 745.2497 -353.4491

12 Random effects:

Formula: ~1 | ad

14 (Intercept)

StdDev: 0.1947427

16

Formula: ~1 | sub %in% ad

18 (Intercept) Residual

StdDev: 1.939485e-05 0.4270852

20

Fixed effects: clicks ~ type

22 Value Std.Error DF t-value p-value

(Intercept) 0.66 0.09892010 398 6.672052 0.0000

24 type1 -0.03 0.02465778 398 -1.216655 0.2245

type2 -0.13 0.02465778 398 -5.272170 0.0000

26 Correlation:

(Intr) type1

28 type1 0.0

type2 0.0 -0.5

30

Standardized Within -Group Residuals:

32 Min Q1 Med Q3 Max

-2.1014882 -0.9536002 0.3218473 0.7088314 1.3878528

34

Number of Observations: 600

36 Number of Groups:

ad sub %in% ad

38 4 200

40

42 > summary(lmer4)

Linear mixed model fit by REML [’lmerMod ’]

44 Formula: clicks ~ type + (1 | ad) + (1 | sub)

Data: ads

46

REML criterion at convergence: 706.9

48

Scaled residuals:

50 Min 1Q Median 3Q Max

-2.1015 -0.9536 0.3219 0.7088 1.3879

52

Random effects:

54 Groups Name Variance Std.Dev.

sub (Intercept) 0.00000 0.0000

56 ad (Intercept) 0.03792 0.1947

Residual 0.18240 0.4271

58 Number of obs: 600, groups: sub , 50; ad, 4

60 Fixed effects:

Estimate Std. Error t value

62 (Intercept) 0.66000 0.09892 6.672

type1 -0.03000 0.02466 -1.217

64 type2 -0.13000 0.02466 -5.272

492

Chapter 21 Applied Statistics in R

66 Correlation of Fixed Effects:

(Intr) type1

68 type1 0.000

type2 0.000 -0.500

70 optimizer (nloptwrap) convergence code: 0 (OK)

boundary (singular) fit: see ?isSingular

Now, we can incorporate both random effects. If we look at the results of the last model
using summary(), we see that again, the two models agree. We can do the same glht tests
here too:

> summary(glht(am4 ,contrasts))

2

Simultaneous Tests for General Linear Hypotheses

4

Fit: lme.formula(fixed = clicks ~ type , data = ads , random = list((~1 |

6 ad), (~1 | sub)))

8 Linear Hypotheses:

Estimate Std. Error z value Pr(>|z|)

10 A to B == 0 -0.03000 0.02466 -1.217 0.3778

A to C == 0 -0.13000 0.02466 -5.272 <0.001 ***

12 B to C == 0 -0.10000 0.04271 -2.341 0.0392 *

14

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

16 (Adjusted p values reported -- single -step method)

18 > summary(glht(lmer4 ,contrasts))

Simultaneous Tests for General Linear Hypotheses

20

Fit: lmer(formula = clicks ~ type + (1 | ad) + (1 | sub), data = ads)

22 Linear Hypotheses:

Estimate Std. Error z value Pr(>|z|)

24 A to B == 0 -0.03000 0.02466 -1.217 0.3777

A to C == 0 -0.13000 0.02466 -5.272 <0.001 ***

26 B to C == 0 -0.10000 0.04271 -2.341 0.0395 *

28

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

30 (Adjusted p values reported -- single -step method)

Again, we have highly significant differences between all three advertisement types. But
on average, A and B ads were no different, we must have gotten (un)lucky and sampled
advertisements that happened to differ a lot. If you run the entire data set again without
the set.seed command, you can see how often A and B differ significantly, and it is not very
common.

Finally, maybe, we want to be a bit more conservative here and consider the advertise-
ment to be nested within method. Here, we would not link same ad to multiple types.
It would treat each advertisement as unique and sampled independently from ads of that
type. The type—ad and 1—ad arguments essentially specify that advertisement and the
type:advertisement interaction are random effects. Type is a fixed effect, but the particular
advertisement we selected is sampled from advertisements of that type.

1

493

Chapter 21 Applied Statistics in R

am5 <- lme(clicks~type ,random=list(~1|ad2 ,~type|ad2 ,~1|sub),data=ads) ##both ,

ad nested within type

3 lmer5 <- lmer(clicks~ type + (1| ad2) + (type|ad2) + (1| sub),data=ads)

The lme model:

1 > summary(am5)

Linear mixed -effects model fit by REML

3 Data: ads

AIC BIC logLik

5 590.2903 642.9933 -283.1451

7 Random effects:

Formula: ~1 | ad2

9 (Intercept)

StdDev: 0.1019386

11

Formula: ~type | ad2 %in% ad2

13 Structure: General positive -definite , Log -Cholesky parametrization

StdDev Corr

15 (Intercept) 0.1964997 (Intr) type1

type1 0.1408065 0.751

17 type2 0.1855748 0.845 0.563

19 Formula: ~1 | sub %in% ad2 %in% ad2

(Intercept) Residual

21 StdDev: 0.3467419 0.1384117

23 Fixed effects: clicks ~ type

Value Std.Error DF t-value p-value

25 (Intercept) 0.66 0.09026704 588 7.311639 0.0000

type1 -0.03 0.13259510 9 -0.226253 0.8261

27 type2 -0.13 0.14307455 9 -0.908617 0.3872

Correlation:

29 (Intr) type1

type1 0.107

31 type2 0.323 -0.717

33 Standardized Within -Group Residuals:

Min Q1 Med Q3 Max

35 -0.92583689 -0.17037318 0.06716072 0.24262530 0.82262443

37 Number of Observations: 600

Number of Groups:

39 ad2 ad2.1 %in% ad2 sub %in% ad2.1 %in% ad2

12 12 600

41 > summary(glht(am5 ,contrasts))

43 Simultaneous Tests for General Linear Hypotheses

45 Fit: lme.formula(fixed = clicks ~ type , data = ads , random = list(~1 |

ad2 , ~type | ad2 , ~1 | sub))

47

Linear Hypotheses:

49 Estimate Std. Error z value Pr(>|z|)

A to B == 0 -0.0300 0.1326 -0.226 0.955

51 A to C == 0 -0.1300 0.1431 -0.909 0.523

B to C == 0 -0.1000 0.2555 -0.391 0.874

53 (Adjusted p values reported -- single -step method)

494

Chapter 21 Applied Statistics in R

the lmer model:

1

> summary(lmer5)

3 Linear mixed model fit by REML [’lmerMod ’]

Formula: clicks ~ type + (1 | ad2) + (type | ad2) + (1 | sub)

5 Data: ads

7 REML criterion at convergence: 566.3

9 Scaled residuals:

Min 1Q Median 3Q Max

11 -2.4973 -0.4596 0.1812 0.6544 2.2189

13 Random effects:

Groups Name Variance Std.Dev. Corr

15 sub (Intercept) 0.000000 0.00000

ad2 (Intercept) 0.008901 0.09434

17 type1 0.074154 0.27231 0.29

type2 0.118691 0.34452 0.08 -0.88

19 ad2.1 (Intercept) 0.012544 0.11200

Residual 0.139388 0.37335

21 Number of obs: 600, groups: sub , 50; ad2 , 12

23 Fixed effects:

Estimate Std. Error t value

25 (Intercept) 0.66000 0.09026 7.312

type1 -0.03000 0.13259 -0.226

27 type2 -0.13000 0.14307 -0.909

29 Correlation of Fixed Effects:

(Intr) type1

31 type1 0.107

type2 0.323 -0.717

33 optimizer (nloptwrap) convergence code: 0 (OK)

boundary (singular) fit: see ?isSingular

35

> summary(glht(lmer5 ,contrasts))

37

Simultaneous Tests for General Linear Hypotheses

39

Fit: lmer(formula = clicks ~ type + (1 | ad2) + (type | ad2) + (1 |

41 sub), data = ads)

43 Linear Hypotheses:

Estimate Std. Error z value Pr(>|z|)

45 A to B == 0 -0.0300 0.1326 -0.226 0.955

A to C == 0 -0.1300 0.1431 -0.909 0.523

47 B to C == 0 -0.1000 0.2555 -0.391 0.874

(Adjusted p values reported -- single -step method)

Again, we see very similar results from the two models. Now, however, none of the post-
hoc test were significant. This makes sense because we have only sampled four advertisements
from the world of possible advertisements. Some are better than others, and we are likely
to sample a few in one condition that are better than in another condition, not because of
the condition but just because of the variability in the ad. This nested model takes this into
account. When we did not include it, ad served more like a paired-samples t-test: we had
the ability to detect small differences because we tested the same three delivery methods on
the same ad content.

495

Chapter 21 Applied Statistics in R

21.1.2 Exercise: Chick Weight

Let’s consider the chick weight example again. We previously found that the outcome log(wt)
was somewhat linear. We can consider the fixed effects (time, diet) and the random effects
(chick, and chick x time interaction).

1

cw <- ChickWeight

3 cw$logwt <- log(ChickWeight$weight)

5 lmer.cw0 <- lmer(logwt~Time*Diet + (1| Chick), data=cw)

summary(lmer.cw0)

7

summary(lmer.cw0)

9 Linear mixed model fit by REML [’lmerMod ’]

Formula: logwt ~ Time * Diet + (1 | Chick)

11 Data: cw

13 REML criterion at convergence: -296

15 Scaled residuals:

Min 1Q Median 3Q Max

17 -4.2030 -0.5479 0.1269 0.6332 2.8654

19 Random effects:

Groups Name Variance Std.Dev.

21 Chick (Intercept) 0.02580 0.1606

Residual 0.02585 0.1608

23 Number of obs: 578, groups: Chick , 50

25 Fixed effects:

Estimate Std. Error t value

27 (Intercept) 3.768319 0.041194 91.477

Time 0.067537 0.001639 41.215

29 Diet2 0.048496 0.071074 0.682

Diet3 0.024561 0.071074 0.346

31 Diet4 0.104324 0.071125 1.467

Time:Diet2 0.008219 0.002716 3.026

33 Time:Diet3 0.022093 0.002716 8.134

Time:Diet4 0.014737 0.002751 5.356

35

Correlation of Fixed Effects:

37 (Intr) Time Diet2 Diet3 Diet4 Tm:Dt2 Tm:Dt3

Time -0.401

39 Diet2 -0.580 0.232

Diet3 -0.580 0.232 0.336

41 Diet4 -0.579 0.232 0.336 0.336

Time:Diet2 0.242 -0.603 -0.405 -0.140 -0.140

43 Time:Diet3 0.242 -0.603 -0.140 -0.405 -0.140 0.364

Time:Diet4 0.239 -0.596 -0.138 -0.138 -0.406 0.359 0.359

This model treats chick as a random factor, and this only impacts the intercept–the mean
log-weight. If we want to find out whether diet matters, we can do an anova, comparing it
to the model we care about. Let’s consider the time x diet interaction:

1

lmer.cw1 <- lmer(logwt~Time+Diet + (1| Chick),data=cw)

3 > summary(lmer.cw1)

Linear mixed model fit by REML [’lmerMod ’]

5 Formula: logwt ~ Time + Diet + (1 | Chick)

496

Chapter 21 Applied Statistics in R

Data: cw

7

REML criterion at convergence: -257.4

9

Scaled residuals:

11 Min 1Q Median 3Q Max

-4.0531 -0.5329 0.1537 0.6429 2.6851

13

Random effects:

15 Groups Name Variance Std.Dev.

Chick (Intercept) 0.02443 0.1563

17 Residual 0.02938 0.1714

Number of obs: 578, groups: Chick , 50

19

Fixed effects:

21 Estimate Std. Error t value

(Intercept) 3.673389 0.038580 95.214

23 Time 0.076998 0.001064 72.361

Diet2 0.129867 0.063729 2.038

25 Diet3 0.257389 0.063729 4.039

Diet4 0.255877 0.063765 4.013

27

Correlation of Fixed Effects:

29 (Intr) Time Diet2 Diet3

Time -0.278

31 Diet2 -0.555 -0.014

Diet3 -0.555 -0.014 0.338

33 Diet4 -0.555 -0.011 0.338 0.338

35

anova(lmer.cw0 ,lmer.cw1)

37 refitting model(s) with ML (instead of REML)

Data: cw

39 Models:

lmer.cw1: logwt ~ Time + Diet + (1 | Chick)

41 lmer.cw0: logwt ~ Time * Diet + (1 | Chick)

Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)

43 lmer.cw1 7 -272.43 -241.91 143.22 -286.43

lmer.cw0 10 -335.24 -291.64 177.62 -355.24 68.807 3 7.684e-15 ***

45 ---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

The summary won’t tell us directly whether diet is significant, but reports the regression
models. This model has a single slope, and main effects for diet. We are comparing it to a
model with different slopes for each diet. The resulting comparison (it uses a chi-squared
test) is highly significant here, and so we would prefer the more complex model with an
interaction.

But, we can model random effects in more precise ways. Here, the (1+Time—Chick)
says that the intercept and slope of chick are random effects. That is, we expect the starting
weight and overall weight gain to depend on the chick we sampled.

lmer.cw2 <- lmer(logwt~Time*Diet + (1+ Time|Chick),data=cw)

2 > summary(lmer.cw2)

Linear mixed model fit by REML [’lmerMod ’]

4 Formula: logwt ~ Time * Diet + (1 + Time | Chick)

Data: cw

6

REML criterion at convergence: -681.1

8

497

Chapter 21 Applied Statistics in R

Scaled residuals:

10 Min 1Q Median 3Q Max

-3.1774 -0.5638 -0.0403 0.5825 3.0850

12

Random effects:

14 Groups Name Variance Std.Dev. Corr

Chick (Intercept) 0.003088 0.05557

16 Time 0.000349 0.01868 -0.57

Residual 0.011374 0.10665

18 Number of obs: 578, groups: Chick , 50

20 Fixed effects:

Estimate Std. Error t value

22 (Intercept) 3.785030 0.018386 205.861

Time 0.064705 0.004429 14.608

24 Diet2 0.031786 0.031428 1.011

Diet3 0.007850 0.031428 0.250

26 Diet4 0.090166 0.031505 2.862

Time:Diet2 0.011051 0.007522 1.469

28 Time:Diet3 0.024925 0.007522 3.313

Time:Diet4 0.017153 0.007531 2.278

30

Correlation of Fixed Effects:

32 (Intr) Time Diet2 Diet3 Diet4 Tm:Dt2 Tm:Dt3

Time -0.535

34 Diet2 -0.585 0.313

Diet3 -0.585 0.313 0.342

36 Diet4 -0.584 0.312 0.341 0.341

Time:Diet2 0.315 -0.589 -0.531 -0.184 -0.184

38 Time:Diet3 0.315 -0.589 -0.184 -0.531 -0.184 0.347

Time:Diet4 0.315 -0.588 -0.184 -0.184 -0.532 0.346 0.346

To test differences, we can use simulation to estimate confidence bounds of each param-
eter with the profile function. This is the best approach if you have correlation between
fixed effects. Or, we can apply the glht test as well. If we want to know whether diet2
and diet 3 slopes with respect to time differ (the diet:time interactions), we can see that
the bootstrapped confidence regions overlap; the glht test shows they are not significantly
different:

2 pr.cw <- profile(lmer.cw2)

confint(pr.cw)

4 2.5 % 97.5 %

.sig01 0.024009039 0.07615894

6 .sig02 -0.903401709 -0.18451232

.sig03 0.014522474 0.02240651

8 .sigma 0.100246669 0.11383234

(Intercept) 3.749651469 3.82016268

10 Time 0.056222048 0.07323108

Diet2 -0.028296122 0.09212537

12 Diet3 -0.052231601 0.06818989

Diet4 0.029930207 0.15064761

14 Time:Diet2 -0.003397207 0.02545495

Time:Diet3 0.010476720 0.03932888

16 Time:Diet4 0.002688380 0.03157406

18 contrasts.cw <- rbind("Diet 3 vs diet 2 by time"=c(0,0,0,0, 0,1,-1,0))

summary(glht(lmer.cw2 ,contrasts.cw))

20 Simultaneous Tests for General Linear Hypotheses

498

Chapter 21 Applied Statistics in R

22 Fit: lmer(formula = logwt ~ Time * Diet + (1 + Time | Chick), data = cw)

24 Linear Hypotheses:

Estimate Std. Error z value Pr(>|z|)

26 Diet 3 vs diet 2 by time == 0 -0.013874 0.008599 -1.614 0.107

(Adjusted p values reported -- single -step method)

21.2 Using ezMixed

Just as the ez package provides a straightforward way of implementing aov models with
Error() terms, it also provides an avenue to creating lmer models.

2 ezm <- ezMixed(data=ads ,

dv=.(clicks1),

4 random =.(sub ,ad2),

fixed =.(type))

6

8 print(ezm)

$summary
10 effect errors warnings bits

1 type FALSE FALSE -2.653758

12

$formulae
14 $formulae$type

$formulae$type$restricted
16 [1] "clicks1 ~ (1| sub) + (1|ad2)"

18 $formulae$type$unrestricted
[1] "clicks1 ~ (1| sub) + (1|ad2) + type"

20

22

$errors
24 $errors$type

named list()

26

28 $warnings
$warnings$type

30 named list()

32

$models
34 $models$type

$models$type$restricted
36 Linear mixed model fit by maximum likelihood [’lmerMod ’]

Formula: clicks1 ~ (1 | sub) + (1 | ad2)

38 Data: this_data

AIC BIC logLik deviance df.resid

40 569.8268 587.4145 -280.9134 561.8268 596

Random effects:

42 Groups Name Std.Dev.

sub (Intercept) 0.0000

44 ad2 (Intercept) 0.2916

Residual 0.3733

46 Number of obs: 600, groups: sub , 50; ad2 , 12

499

Chapter 21 Applied Statistics in R

Fixed Effects:

48 (Intercept)

0.66

50 optimizer (nloptwrap) convergence code: 0 (OK) ; 0 optimizer warnings; 1 lme4

warnings

52 $models$type$unrestricted
Linear mixed model fit by maximum likelihood [’lmerMod ’]

54 Formula: clicks1 ~ (1 | sub) + (1 | ad2) + type

Data: this_data

56 AIC BIC logLik deviance df.resid

571.6662 598.0478 -279.8331 559.6662 594

58 Random effects:

Groups Name Std.Dev.

60 sub (Intercept) 0.0000

ad2 (Intercept) 0.2656

62 Residual 0.3733

Number of obs: 600, groups: sub , 50; ad2 , 12

64 Fixed Effects:

(Intercept) type.L type.Q

66 0.6600 0.1344 0.1592

optimizer (nloptwrap) convergence code: 0 (OK) ; 0 optimizer warnings; 1 lme4

warnings

This prints out two models, the restricted (random only) and unrestricted (complete)
models. Notice that it changes the contrasts of the fixed effects to be polynomial to ensure
they are orthogonal to the other models–even though they were already polynomial. It
might be useful to use ezMixed as a check to make sure you are formatting your lmer model
correctly, because it prints out the formula.

21.3 Summary

This chapter is really just the tip of the iceberg in developing mixed effects models. It is
probably the minimal needed to frame and test simple mixed effects models we see in social
science, with one or two random effects, and simple or no nested structures. They are difficult
to verify whether you are correct, and so you must know how they work to be confident in
your results. But the advantage is they give you a lot of power to represent sampling from
a number of sources, and (unlike aov with Error()) more easily permit post-hoc testing.

500

	Introduction
	Why R?
	Installing R on your computer
	Walkthrough of RStudio functions

	Getting Started
	Simple Math Calculations
	Numbers and vectors
	Your first graphics
	Functions and Function Arguments

	Data arrays, frames, and matrices
	Exercise

	Accessing sub-elements
	Accessing elements by name
	Naming columns of a data frame

	Data types
	Filtering and Selecting or Removing Data Points
	Report Generation in RStudio
	File Management
	Summary
	Solutions to Exercises

	Handling Data: Reading, Filtering, Aggregating, and Applying functions to data frames
	Reading and Writing in data from files
	Reading Files
	Other Functions to Read Data
	Saving a Data Frame to a text file

	Examining data structures
	Sorting
	Aggregation
	Tables
	Functions aggregate and tapply

	The apply function: aggregating by rows or columns
	Aggregating by row or column

	A Complete Example
	Plot the growth `cloud'

	Summary
	Solutions to Exercises

	Programming in R
	Creating functions
	Optional and Default values
	Wrapping a function
	Nameless (Lambda) Functions

	Conditional Branching
	Alternatives to if statements

	Iteration and Looping
	The for loop

	Summary
	Solutions to Exercises

	Graphics Basics
	Cumulative Example: Plotting trials of a multi-trial experiment
	The Experiment
	Summary

	Histograms
	Box-and-whisker plots
	Advanced boxplots

	image plots
	Barcharts/Barplots
	Barcharts with multiple series
	Answers to exercises

	Advanced Graphics Topics
	Pie charts: A Bad Idea
	Dot charts: an alternative to barplots and pie charts
	Error bars/confidence intervals
	Built-in error bar functions
	Error bars on barplots

	Advanced Boxplotting
	Sideways boxplots
	Boxplots with three independent variables
	Adding your own headers and legend to a boxplot

	Adding images to a plot
	Violin plots
	The vioplot library
	The violinmplot library
	Adapting a custom violin plot function

	Solutions to exercises
	Additional Resources

	Colors and Special-purpose graphics packages
	Colors, Color palettes, and Color gradients
	How R handles color
	Color Palettes
	Built-in color scheme generators
	Colorbrewer palettes
	ColorRamps
	Building colorblind-visible from RGB space
	Some thoughts on color schemes
	Using Transparency

	Balloon Plots
	Gap Plot
	The barplot2 function
	The bandplot function
	The pyramid.plot function
	Other Graphics Packages of Note
	Solutions to Exercises

	Random Variables, Probability, and Parameter Estimation
	Randomness, the unknown, and models of reality
	Random variables and sample spaces
	Discrete uniform:
	Discrete non-uniform:
	Continuous Uniform Distribution
	Binomial distribution
	The Normal distribution

	Comparing data to a theoretical distribution
	Inferential Statistics
	Parameter Estimation
	Summary of ad hoc parameter estimation

	Parameter estimation with statistics
	Statistics
	Using statistics for parameter estimation
	Example: The Binomial distribution.

	The Normal Distribution
	More on Comparing Distributions

	Biases in Parameter Estimation
	Summary
	Solutions to Exercises

	Inferential Statistical Tests
	Hypothesis Testing with Statistical Tests
	Classic Null-hypothesis statistical tests
	Non-parametric tests of group differences
	Bayes Factor Tests
	Other Bayesian tests

	Example: Simulating the NULL hypothesis
	The t-test approach
	Estimating the variability of the mean
	One-sample t
	One-sample non-parametric equivalent to the t test
	Example: One-sample Bayes Factor t test

	Paired Sample tests
	Paired t test
	Non-parametric Paired Comparisons
	Bayes Factor Paired Comparisons

	Comparing two independent samples.
	Independent samples t-test
	Independent-samples non-parametric tests
	Bayesian independent samples comparisons of group means

	Estimating Covariance and Correlation
	A statistical test for correlation
	Robust non-parametric Correlation Estimates
	Correlations among a set of variables
	Bayes Factor test for correlation

	Comparison of Categorical Variables
	Exercise
	Technical issues

	Special considerations for comparing group means
	Non-normal and skewed data
	Different sample sizes between independent groups
	Between versus within studies
	Effect sizes for t tests
	Effect sizes for Wilcox test
	The effectsize Library

	Exercise Solutions

	Introduction to Linear Regression
	Linear Regression: The Eyeball Method
	Least-squares fitting with one variable
	Estimating a slope-only model

	Estimating parameters with quantile regression
	Least-squares fitting with two variables
	Examining Models with multiple predictors
	Solutions to Exercises

	Testing the Linear Model
	Estimating the variability of the linear regression model
	Analogy to simpler tests

	Inferential statistics about parameter estimates
	The estimate of sigma provided by lm
	Summarized results from a linear model
	What is the std. error and what does the t-test for a coefficient compute?
	What is Multiple R2 and Adjusted R2
	How do you interpret the F-statistic?

	Bayes Factor Regression Model
	Categorical Predictors
	Caveats and Warnings
	Category by slope interactions
	Variable Selection

	Solutions to exercises
	Stat500 data

	Comparing Regression Models, Variable Selection, Prediction
	Comparing (nested) Regression Models
	Parameter selection versus model testing

	Parameter selection/Model testing using F Tests and the Analysis of Variance procedure
	Parameter selection/Model comparison using AIC and BIC
	Stepwise variable selection

	Using Bayes Factor for Model Selection
	Parameter Selection when using Regression for Prediction
	Predicting Categorical Variables

	Worked Example: Categorical and linear predictors
	Compare end weight or weight gain or end/start ratio
	Exercise
	Categorical outcome variables

	Identifiability, Orthogonality, linear independence, and Multi-colinearity in Regression Models
	Terminology
	Orthogonality of Predictors
	 Orthogonal Predictors in Regression

	Non-orthogonality in regression
	Summary of Orthogonality

	Identifiability
	Example: Dependent Predictors
	More predictors than observations
	How to handle non-identifiability

	Detecting and Managing Multi-Colinearity
	Dealing with Correlated and non-orthogonal predictors

	Uses and limitations of the linear model in human behavioral Data
	Summary

	Polynomials, non-parametric regression, and Transformations
	Polynomial Regression
	Polynomial regression for scientific hypotheses
	Exercise:

	Non-parametric regression approaches
	Moving average properties

	The loess regression
	Generalized Additive Models (GAMs) and Spline regression
	Fitting regression interactions
	Transformations of the Outcome or Predicted Variable
	Additional Transformation

	Solution to exercises

	Determining how good your model is: Diagnostics and Outliers
	Assessing the overall goodness of fit of the model
	Testing assumptions of models
	Detecting and Handling Influential Observations and Outliers
	Examining Residuals and standardized residuals
	Leverage
	Studentized Residuals

	Measures of Influence
	Jackknife Methods

	Impact on inferential statistics
	Downside of transformation to normalize variance

	Example: Houghton County Snowfall
	Graphing the major trends
	Climate Change?
	Did the snowiest month change?
	Highest snowfall month
	Prediction: March Snowfall
	Predictions based on el nino and sunspots records

	Categorical Predictors in lm, the One-Way ANOVA, and post-hoc tests
	Categorical Predictors and their Underlying Contrasts
	Helmert coding
	Successive difference coding
	Sum-to-zero or Deviation coding
	Example regressions with different contrasts
	Regression and the One-way ANOVA

	Testing ANOVA Assumptions
	Bartlett's K-squared Test of Homogeneity of Variance
	Levene's equality of variance Test
	Fligner test

	Dealing with unequal variance
	Kruskal-Wallis H
	Bayesian One-way ANOVA
	Testing differences between levels of a predictor in ANOVA and Multiple Comparisons
	Multiple comparisons and post-hoc tests in ANOVA
	Post-Hoc test with BayesFactor ANOVA

	Multi-Way (Factorial) ANOVA
	Interpreting the Analysis of Variance (ANOVA) Table
	Post-hoc testing in multi-way ANOVA
	Interpreting Bayes Factor Multi-way ANOVA
	Exercise

	Non-orthogonal predictors
	What do you do?

	Type I, II, and III ANOVA tests
	ANOVA Model Lattice
	The Model Lattice and ANOVA Types
	Solutions to exercises
	Orchard spray ANOVA

	Factorial ANOVA: Main effects and interactions
	Interactions Between Factors in a balanced ANOVA model
	Exercise

	The model lattice with interactions
	Dealing with Interactions: Worked Example
	Approach 0: Type II and III ANOVAs
	Approach 1: Post-hoc Tukey test on individual pairs
	Approach 2: subset on one variable, t-test/ANOVA for each level:
	Approach 3: subset to get rid of 3-level, interpret 2x2 interaction

	Effect sizes and ANOVA models
	Effect size for condition and gender in the ultimatum game data.

	Analysis of Covariance
	ANCOVA with a single covariate
	ANCOVA with interactions

	Advanced ANOVA: Within-Subject Designs, Repeated Measures, and Random versus Fixed Factors
	Terminology
	Repeated Measures and within-subject variables
	Fixed versus Random effects
	Nested effects
	Mixed Models
	Why should we care?

	ANOVA with Repeated Measurement
	Exercise

	Repeated Measures
	Repeated measures and the ezANOVA
	Mixed Designs: ANOVA models with between and within variables
	Sphericity, and corrections for sphericity
	Post-hoc tests with repeated measures ANOVA
	Answers to exercises

	Mixed effects models, lmer, and nlme models
	Mixed effects models: A modern approach
	Interpreting the linear mixed effects models
	Exercise: Chick Weight

	Using ezMixed
	Summary

