
Fortran 90 Control StructuresFortran 90 Control Structures

Computer programming is an art form,
like the creation of poetry or music.

1
Donald Ervin Knuth

Fall 2010

LOGICAL VariablesLOGICAL Variables

A LOGIAL variable can only hold either .TRUE.y
or .FALSE. , and cannot hold values of any
other type.other type.
Use T or F for LOGICAL variable READ(*,*)
WRITE(* *) prints T or F for TRUEWRITE(*,*) prints T or F for .TRUE.
and .FALSE., respectively.

LOGICAL, PARAMETER :: Test = .TRUE.
LOGICAL :: C1, C2

C1 = .true. ! correct
C2 = 123 ! Wrong
READ(*,*) C1, C2

2
C2 = .false.
WRITE(*,*) C1, C2

Relational Operators: 1/4Relational Operators: 1/4
Fortran 90 has six relational operators: <, <=,p , ,
>, >=, ==, /=.
Each of these six relational operators takes two p
expressions, compares their values, and
yields .TRUE. or .FALSE.
Thus, a < b < c is wrong, because a < b is
LOGICAL and c is REAL or INTEGER.
COMPLEX values can only use == and /=
LOGICAL values should use .EQV. or .NEQV.
for equal and not-equal comparison.

3

Relational Operators: 2/4Relational Operators: 2/4

Relational operators have lower priority thanRelational operators have lower priority than
arithmetic operators, and //.
Thus 3 + 5 > 10 is FALSE and “a” // Thus, 3 + 5 > 10 is .FALSE. and a //
“b” == “ab” is .TRUE.
Ch t l d d Diff tCharacter values are encoded. Different
standards (e.g., BCD, EBCDIC, ANSI) have
diff t didifferent encoding sequences.
These encoding sequences may not be
compatible with each other.

4

Relational Operators: 3/4Relational Operators: 3/4
For maximum portability, only assume the p y, y
following orders for letters and digits.
Thus, “A” < “X”, ‘f’ <= “u”, and “2” < , , ,
“7” yield .TRUE. But, we don’t know the
results of “S” < “s” and “t” >= “%”.
However, equal and not-equal such as “S” /=
“s” and “t” == “5” are fine.

A < B < C < D < E < F < G < H < I < J < K < L < M < N
< O < P < Q < R < S < T < U < V < W < X < Y < Z

a < b < c < d < e < f < g < h < i < j < k < l < m < n
< o < p < q < r < s < t < u < v < w < x < y < z

5
0 < 1 < 2 < 3 < 4 < 5 < 6 < 7 < 8 < 9

Relational Operators: 4/4Relational Operators: 4/4
String comparison rules:g p

Start scanning from the first character.
If the current two are equal go for the nextIf the current two are equal, go for the next

If there is no more characters to compare, the
strings are equal (e.g., “abc” == “abc”)
If one string has no more character, the shorter
string is smaller (e.g., “ab” < “abc”
is TRUE)is .TRUE.)

If the current two are not equal, the string
has the smaller character is smaller (e ghas the smaller character is smaller (e.g.,
“abcd” is smaller than “abct”).

6

LOGICAL Operators: 1/2LOGICAL Operators: 1/2

There are 5 LOGICAL operators in Fortran p
90: .NOT., .OR., .AND., .EQV. and .NEQV.
NOT is the highest followed by OR.NOT. is the highest, followed by .OR.

and .AND., .EQV. and .NEQV. are the lowest.
Recall that NOT is evaluated from right to leftRecall that .NOT. is evaluated from right to left.
If both operands of .EQV. (equivalence) are the

isame, .EQV. yields .TRUE..
.NEQV. is the opposite of .EQV. (not equivalence).
If the operands of .NEQV. have different
values, .NEQV. yields .TRUE.

7

LOGICAL Operators: 2/2LOGICAL Operators: 2/2

If INTEGER variables m, n, x and y have , , y

values 3, 5, 4 and 2, respectively.

.NOT. (m > n .AND. x < y) .NEQV. (m <= n .AND. x >= y)
.NOT. (3 > 5 .AND. 4 < 2) .NEQV. (3 <= 5 .AND. 4 >= 2)
.NOT. (.FALSE. .AND. 4 < 2) .NEQV. (3 <= 5 .AND. 4 >= 2)
.NOT. (.FALSE. .AND. .FALSE.) .NEQV. (3 <= 5 .AND. 4 >= 2)
.NOT. .FALSE. .NEQV. (3 <= 5 .AND. 4 >= 2)
TRUE NEQV (3 5 AND 4 2) .TRUE. .NEQV. (3 <= 5 .AND. 4 >= 2)

.TRUE. .NEQV. (.TRUE. .AND. 4 >= 2)

.TRUE. .NEQV. (.TRUE. .AND. .TRUE.)
TRUE NEQV TRUE.TRUE. .NEQV. .TRUE.

.FALSE.

8
.NOT. is higher than .NEQV.

IF-THEN-ELSE Statement: 1/4IF THEN ELSE Statement: 1/4
Fortran 90 has three if-then-else forms.
The most complete one is the IF-THEN-ELSE-
IF-END IF

An old logical IF statement may be very handy
when it is needed.
There is an old and obsolete arithmetic IF that
you are not encouraged to use. We won’t talk y g
about it at all.
Details are in the next few slides.

9

IF-THEN-ELSE Statement: 2/4IF THEN ELSE Statement: 2/4
IF-THEN-ELSE-IF-END IF is the following.g
Logical expressions are evaluated sequentially (i.e., top-
down). The statement sequence that corresponds to the
expression evaluated to .TRUE. will be executed.
Otherwise, the ELSE sequence is executed.

IF (logical-expression-1) THEN
statement sequence 1

ELSE IF (logical expression 2) THEN ELSE IF (logical-expression-2) THEN
statement seqence 2

ELSE IF (logical-expression-3) THEN
statement sequence 3statement sequence 3

ELSE IF (.....) THEN
...........

ELSE

10

ELSE
statement sequence ELSE

END IF

IF-THEN-ELSE Statement: 3/4IF THEN ELSE Statement: 3/4

Two Examples:Two Examples:
Find the minimum of a, b and c
and saves the result to Result Letter grade for x

IF (a < b .AND. a < c) THEN
Result = a

ELSE IF (b < a .AND. b < c) THEN

INTEGER :: x
CHARACTER(LEN=1) :: Grade

and saves the result to Result g f

()
Result = b

ELSE
Result = c

END IF

IF (x < 50) THEN
Grade = 'F'

ELSE IF (x < 60) THEN
G d 'D' END IF Grade = 'D'

ELSE IF (x < 70) THEN
Grade = 'C'

ELSE IF (x < 80) THEN ()
Grade = 'B'

ELSE
Grade = 'A'

END IF

11

END IF

IF-THEN-ELSE Statement: 4/4IF THEN ELSE Statement: 4/4
The ELSE-IF part and ELSE part are optional.p p p
If the ELSE part is missing and none of the
logical expressions is .TRUE., the IF-THEN-g p ,
ELSE has no effect.

no ELSE-IF no ELSE
IF (logical-expression-1) THEN

statement sequence 1
ELSE

IF (logical-expression-1) THEN
statement sequence 1

ELSE IF (logical-expression-2) THEN
statement sequence ELSE

END IF
statement sequence 2

ELSE IF (logical-expression-3) THEN
statement sequence 3

ELSE IF () THEN ELSE IF (.....) THEN
...........

END IF

12

Example: 1/2Example: 1/2

Given a quadratic equation ax2 +bx + c = 0,Given a quadratic equation ax bx c 0,
where a≠0, its roots are computed as follows:

b b± × ×2 4x b b a c
a

= − ± − × ×
×

2 4
2

However, this is a very poor and unreliable way
of computing roots. Will return to this soon.

PROGRAM QuadraticEquation
IMPLICIT NONE
REAL :: a, b, c
REAL :: d
REAL :: root1, root2

13
…… other executable statement ……

END PROGRAM QuadraticEquation

Example: 2/2Example: 2/2

The following shows the executable partThe following shows the executable part
READ(*,*) a, b, c
WRITE(*,*) 'a = ', a
WRITE(*,*) 'b = ', b
WRITE(*,*) 'c = ', c
WRITE(*,*)

d = b*b - 4.0*a*c
IF (d >= 0.0) THEN ! is it solvable?

d = SQRT(d)
root1 = (-b + d)/(2.0*a) ! first root
root2 = (-b - d)/(2.0*a) ! second root
WRITE(* *) 'R t ' t1 ' d ' t2 WRITE(*,*) 'Roots are ', root1, ' and ', root2

ELSE ! complex roots
WRITE(*,*) 'There is no real roots!'
WRITE(* *) 'Discriminant = ' d

14

WRITE(*,*) 'Discriminant = ', d
END IF

IF-THEN-ELSE Can be Nested: 1/2IF THEN ELSE Can be Nested: 1/2

Another look at the quadratic equation solver.Another look at the quadratic equation solver.

IF (a == 0.0) THEN ! could be a linear equation
IF (b == 0 0) THEN ! the input becomes c = 0IF (b == 0.0) THEN ! the input becomes c = 0

IF (c == 0.0) THEN ! all numbers are roots
WRITE(*,*) 'All numbers are roots'

ELSE ! unsolvableELSE ! unsolvable
WRITE(*,*) 'Unsolvable equation'

END IF
ELSE ! linear equation bx + c = 0ELSE ! linear equation bx + c 0

WRITE(*,*) 'This is linear equation, root = ', -c/b
END IF

ELSE ! ok, we have a quadratic equation, q q
...... solve the equation here ……

END IF

15

IF-THEN-ELSE Can be Nested: 2/2IF THEN ELSE Can be Nested: 2/2

Here is the big ELSE part:g S p

d b*b 4 0*a*c d = b*b - 4.0*a*c
IF (d > 0.0) THEN ! distinct roots?

d = SQRT(d)
root1 = (-b + d)/(2 0*a) ! first rootroot1 = (-b + d)/(2.0*a) ! first root
root2 = (-b - d)/(2.0*a) ! second root
WRITE(*,*) 'Roots are ', root1, ' and ', root2

ELSE IF (d == 0.0) THEN ! repeated roots?ELSE IF (d == 0.0) THEN ! repeated roots?
WRITE(*,*) 'The repeated root is ', -b/(2.0*a)

ELSE ! complex roots
WRITE(*,*) 'There is no real roots!' (,)
WRITE(*,*) 'Discriminant = ', d

END IF

16

Logical IFLogical IF

The logical IF is from Fortran 66, which is an g ,
improvement over the Fortran I arithmetic IF.
If logical-expression is .TRUE. , statement is g p ,
executed. Otherwise, execution goes though.
The statement can be assignment and g
input/output.

IF (logical-expression) statementIF (logical expression) statement

Smallest = b Cnt = Cnt + 1Smallest = b
IF (a < b) Smallest = a

Cnt = Cnt + 1
IF (MOD(Cnt,10) == 0) WRITE(*,*) Cnt

17

The SELECT CASE Statement: 1/7The SELECT CASE Statement: 1/7
Fortran 90 has the SELECT CASE statement for S S
selective execution if the selection criteria are
based on simple values in INTEGER, LOGICALp ,
and CHARACTER. No, REAL is not applicable.
SELECT CASE (selector)

CASE (label-list-1)
statements-1

CASE (label-list-2)
2

selector is an expression evaluated
to an INTEGER, LOGICAL or
CHARACTER value

statements-2
CASE (label-list-3)

statements-3
 other cases

label-list is a set of constants or
PARAMETERS of the same type

…… other cases ……
CASE (label-list-n)

statements-n
CASE DEFAULT

yp
as the selector

statements is one or more

18

CASE DEFAULT
statements-DEFAULT

END SELECT

statements s o e o o e
executable statements

The SELECT CASE Statement: 2/7The SELECT CASE Statement: 2/7
The label-list is a list of the following forms:The label list is a list of the following forms:

value a specific value
al e1 al e2 values betweenvalue1 : value2 values between
value1 and value2, including value1 and
al e2 and al e1 < al e2value2, and value1 <= value2
value1 : values larger than or equal to
value1

: value2 values less than or equal to
value2

Reminder: value, value1 and value2 must
19

,
be constants or PARAMETERs.

The SELECT CASE Statement: 3/7The SELECT CASE Statement: 3/7
The SELECT CASE statement is SELECT CASE (selector)
executed as follows:

Compare the value of

SELECT CASE (selector)
CASE (label-list-1)

statements-1
CASE (label-list-2)

selector with the labels in
each case. If a match is
f d t th

()
statements-2

CASE (label-list-3)
statements-3

found, execute the
corresponding statements.
If no match is found and if

…… other cases ……
CASE (label-list-n)

statements-nIf no match is found and if
CASE DEFAULT is there,
execute the statements-

CASE DEFAULT
statements-DEFAULT

END SELECT

DEFAULT.
Execute the next statement optional

20
following the SELECT CASE.

The SELECT CASE Statement: 4/7The SELECT CASE Statement: 4/7
Some important notes:Some important notes:

The values in label-lists should be unique.
Otherwise it is not known which CASEOtherwise, it is not known which CASE
would be selected.
CASE DEFAULT should be used whenever itCASE DEFAULT should be used whenever it
is possible, because it guarantees that there is

l t d thi ()a place to do something (e.g., error message)
if no match is found.

b h iCASE DEFAULT can be anywhere in a
SELECT CASE statement; but, a preferred

l i h l i h li
21

place is the last in the CASE list.

The SELECT CASE Statement: 5/7The SELECT CASE Statement: 5/7
Two examples of SELECT CASE:p S S

CHARACTER(LEN=4) :: Title
INTEGER :: DrMD = 0, PhD = 0

CHARACTER(LEN=1) :: c
INTEGER :: DrMD 0, PhD 0
INTEGER :: MS = 0, BS = 0
INTEGER ::Others = 0

i

SELECT CASE (c)
CASE ('a' : 'j')

WRITE(*,*) ‘First ten letters'
SELECT CASE (Title)
CASE ("DrMD")

DrMD = DrMD + 1
CASE ("PhD")

CASE ('l' : 'p', 'u' : 'y')
WRITE(*,*) &

'One of l,m,n,o,p,u,v,w,x,y'
CASE ('z', 'q' : 't') CASE (PhD)

PhD = PhD + 1
CASE ("MS")

MS = MS + 1
()

CASE (z , q : t)
WRITE(*,*) 'One of z,q,r,s,t'

CASE DEFAULT
WRITE(*,*) 'Other characters'

CASE ("BS")
BS = BS + 1

CASE DEFAULT
Others = Others + 1

END SELECT

22

Ot e s Ot e s
END SELECT

The SELECT CASE Statement: 6/7The SELECT CASE Statement: 6/7
Here is a more complex example:Here is a more complex example:

INTEGER :: Number, Range Number Range Why?
<= -10 1 CASE (:-10, 10:)

SELECT CASE (Number)
CASE (: -10, 10 :)
Range = 1

<= 10 1 CASE (: 10, 10:)

-9,-8,-7,-6 6 CASE DEFAULT

-5,-4,-3 2 CASE (-5:-3, 6:9)

CASE (-5:-3, 6:9)
Range = 2

CASE (-2:2)

-2,-1,0,1,2 3 CASE (-2:2)

3 4 CASE (3, 5)

Range = 3
CASE (3, 5)
Range = 4

4 5 CASE (4)

5 4 CASE (3, 5)

6,7,8,9 2 CASE (-5:-3, 6:9)
CASE (4)
Range = 5

CASE DEFAULT
R 6

6,7,8,9 2 CASE (5: 3, 6:9)

>= 10 1 CASE (:-10, 10:)

23

Range = 6
END SELECT

The SELECT CASE Statement: 7/7The SELECT CASE Statement: 7/7
PROGRAM CharacterTesting
IMPLICIT NONE
CHARACTER(LEN=1) :: Input

This program reads in a character and
determines if it is a vowel, a consonant,

CHARACTER(LEN=1) :: Input
READ(*,*) Input
SELECT CASE (Input)
CASE ('A' : 'Z', 'a' : 'z') ! rule out letters

a digit, one of the four arithmetic operators,
a space, or something else (i.e., %, $, @, etc).

WRITE(*,*) 'A letter is found : "', Input, '"'
SELECT CASE (Input) ! a vowel ?

CASE ('A', 'E', 'I', 'O', 'U', 'a', 'e', 'i', 'o','u')
WRITE(* *) 'It is a vowel' WRITE(,) It is a vowel

CASE DEFAULT ! it must be a consonant
WRITE(*,*) 'It is a consonant'

END SELECT
CASE ('0' : '9') ! a digit

WRITE(*,*) 'A digit is found : "', Input, '"'
CASE ('+', '-', '*', '/') ! an operator

WRITE(*,*) 'An operator is found : "', Input, '"' WRITE(,) An operator is found : , Input,
CASE (' ') ! space

WRITE(*,*) 'A space is found : "', Input, '"'
CASE DEFAULT ! something else

24

WRITE(*,*) 'Something else found : "', Input, '"'
END SELECT

END PROGRAM CharacterTesting

The Counting DO Loop: 1/6The Counting DO Loop: 1/6
Fortran 90 has two forms of DO loop: the p
counting DO and the general DO.
The counting DO has the following form:The counting DO has the following form:
DO control-var = initial, final [, step]

statementsstatements
END DO

control-var is an INTEGER variable,control var is an INTEGER variable,
initial, final and step are INTEGER
expressions; however, step cannot be zero.expressions; however, step cannot be zero.
If step is omitted, its default value is 1.

t bl t t t f th O
25

statements are executable statements of the DO.

The Counting DO Loop: 2/6The Counting DO Loop: 2/6
Before a DO-loop starts, expressions initial, p , p ,
final and step are evaluated exactly once.
When executing the DO-loop, these values will g p,
not be re-evaluated.
Note again the value of step cannot be zeroNote again, the value of step cannot be zero.
If step is positive, this DO counts up; if step is
negative this DO counts downnegative, this DO counts down

DO control-var = initial final [step] DO control-var = initial, final [, step]
statements

END DO

26

The Counting DO Loop: 3/6The Counting DO Loop: 3/6
If step is positive:p p

The control-var receives the value of initial.
If the value of control-var is less than or equal toIf the value of control var is less than or equal to
the value of final, the statements part is executed.
Then, the value of step is added to control-var,
and goes back and compares the values of
control-var and final.
If the value of control-var is greater than the
value of final, the DO-loop completes and the
statement following END DO is executedstatement following END DO is executed.

27

The Counting DO Loop: 4/6The Counting DO Loop: 4/6
If step is negative:p g

The control-var receives the value of initial.
If the value of control-var is greater than orIf the value of control var is greater than or
equal to the value of final, the statements part is
executed. Then, the value of step is added to
control-var, goes back and compares the values
of control-var and final.
If the value of control-var is less than the value
of final, the DO-loop completes and the statement
following END DO is executedfollowing END DO is executed.

28

The Counting DO Loop: 5/6The Counting DO Loop: 5/6
Two simple examples:Two simple examples:

INTEGER :: N, k odd integers
between 1 & N

READ(*,*) N
WRITE(*,*) “Odd number between 1 and “, N
DO k = 1, N, 2

between 1 & N

WRITE(*,*) k
END DO

INTEGER, PARAMETER :: LONG = SELECTED_INT_KIND(15)
INTEGER(KIND=LONG) :: Factorial, i, N

READ(* *) N

factorial of N

READ(*,*) N
Factorial = 1_LONG
DO i = 1, N

Factorial = Factorial * i

29
END DO
WRITE(*,*) N, “! = “, Factorial

The Counting DO Loop: 6/6The Counting DO Loop: 6/6
Important Notes:Important Notes:

The step size step cannot be zero
N h th l f i bl iNever change the value of any variable in
control-var and initial, final, and
stepstep.
For a count-down DO-loop, step must be

i “ ” inegative. Thus, “do i = 10, -10” is not
a count-down DO-loop, and the statements
portion is not executed.
Fortran 77 allows REAL variables in DO; but,

30
don’t use it as it is not safe.

General DO-Loop with EXIT: 1/2General DO Loop with EXIT: 1/2
The general DO-loop has the following form:The general DO loop has the following form:

DO

statementsstatements
END DO

t t t ill b t d t dlstatements will be executed repeatedly.
To exit the DO-loop, use the EXIT or CYCLE
statement.
The EXIT statement brings the flow of control to
the statement following (i.e., exiting) the END DO.
The CYCLE statement starts the next iteration

31

e C C state e t sta ts t e e t te at o
(i.e., executing statements again).

General DO-Loop with EXIT: 2/2General DO Loop with EXIT: 2/2
REAL PARAMETER :: Lower = 1 0 Upper = 1 0 Step = 0 25REAL, PARAMETER :: Lower = -1.0, Upper = 1.0, Step = 0.25
REAL :: x

x = Lower ! initialize the control variable
DO

IF (x > Upper) EXIT ! is it > final-value?
WRITE(*,*) x ! no, do the loop body
x = x + Step ! increase by step-sizex = x + Step ! increase by step-size

END DO

INTEGER :: Input INTEGER :: Input

DO
WRITE(*,*) 'Type in an integer in [0, 10] please --> '
READ(*,*) Input
IF (0 <= Input .AND. Input <= 10) EXIT
WRITE(*,*) 'Your input is out of range. Try again'

END DO

32

END DO

Example, exp(x): 1/2Example, exp(x): 1/2
The exp(x) function has an infinite series:The exp(x) function has an infinite series:

exp()
! !

....
!

......x x x x x
i

i

= + + + + + +1
2 3

2 3

Sum each term until a term’s absolute value is
! ! !i2 3

less than a tolerance, say 0.00001.
PROGRAM Exponential

IMPLICIT NONE
INTEGER :: Count ! # of terms used
REAL :: Term ! a term
REAL :: Sum ! the sum
REAL :: X ! the input x
REAL, PARAMETER :: Tolerance = 0.00001 ! tolerance

33
…… executable statements ……

END PROGRAM Exponential

Example, exp(x): 2/2Example, exp(x): 2/2
Note:

1

(1)! ! 1

i ix x x
i i i

+ ⎛ ⎞ ⎛ ⎞= ×⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

This is not a good solution, though.

(1)! ! 1i i i⎜ ⎟ ⎜ ⎟+ +⎝ ⎠⎝ ⎠

This is not a good solution, though.
READ(*,*) X ! read in x
Count = 1 ! the first term is 1

iSum = 1.0 ! thus, the sum starts with 1
Term = X ! the second term is x
DO ! for each term

IF (ABS(T) < T l) EXIT ! if t ll itIF (ABS(Term) < Tolerance) EXIT ! if too small, exit
Sum = Sum + Term ! otherwise, add to sum
Count = Count + 1 ! count indicates the next term
Term = Term * (X / Count) ! compute the value of next termTerm = Term * (X / Count) ! compute the value of next term

END DO
WRITE(*,*) 'After ', Count, ' iterations:'
WRITE(* *) ' Exp(' X ') = ' Sum

34

WRITE(,) Exp(, X,) = , Sum
WRITE(*,*) ' From EXP() = ', EXP(X)
WRITE(*,*) ' Abs(Error) = ', ABS(Sum - EXP(X))

Example, Prime Checking: 1/2Example, Prime Checking: 1/2
A positive integer n >= 2 is a prime number if theA positive integer n 2 is a prime number if the
only divisors of this integer are 1 and itself.
If n = 2 it is a primeIf n = 2, it is a prime.
If n > 2 is even (i.e., MOD(n,2) == 0), not a prime.
If n is odd, then:

If the odd numbers between 3 and n-1 cannot
divide n, n is a prime!
Do we have to go up to n-1? No, SQRT(n) is g p , Q ()
good enough. Why?

35

Example, Prime Checking: 2/2Example, Prime Checking: 2/2
INTEGER :: Number ! the input number
INTEGER :: Divisor ! the running divisor

READ(*,*) Number ! read in the input
IF (Number < 2) THEN ! not a prime if < 2

WRITE(* *) 'Illegal input' WRITE(*,*) 'Illegal input'
ELSE IF (Number == 2) THEN ! is a prime if = 2

WRITE(*,*) Number, ' is a prime'
ELSE IF (MOD(Number,2) == 0) THEN ! not a prime if even

WRITE(*,*) Number, ' is NOT a prime'
ELSE ! an odd number here

Divisor = 3 ! divisor starts with 3
DO ! divide the input numberDO ! divide the input number

IF (Divisor*Divisor > Number .OR. MOD(Number, Divisor) == 0) EXIT
Divisor = Divisor + 2 ! increase to next odd

END DO
IF (Divisor*Divisor > Number) THEN ! which condition fails?

WRITE(*,*) Number, ' is a prime'
ELSE

WRITE(* *) Number ' is NOT a prime'

36

WRITE(*,*) Number, is NOT a prime
END IF

END IF
this is better than SQRT(REAL(Divisor)) > Number

Finding All Primes in [2,n]: 1/2Finding All Primes in [2,n]: 1/2
The previous program can be modified to findThe previous program can be modified to find
all prime numbers between 2 and n.

PROGRAM Primes
IMPLICIT NONE
INTEGER :: Range, Number, Divisor, Count

WRITE(*,*) 'What is the range ? '
DO ! keep trying to read a good input

READ(*,*) Range ! ask for an input integer
IF (Range >= 2) EXIT ! if it is GOOD, exit
WRITE(*,*) 'The range value must be >= 2. Your input = ', Range
WRITE(*,*) 'Please try again:' ! otherwise, bug the user

END DO END DO
…… we have a valid input to work on here ……

END PROGRAM Primes

37

Finding All Primes in [2,n]: 2/2Finding All Primes in [2,n]: 2/2

Count = 1 ! input is correct. start counting
WRITE(*,*) ! 2 is a prime
WRITE(*,*) 'Prime number #', Count, ': ', 2

DO Number = 3, Range, 2 ! try all odd numbers 3, 5, 7, ...
Divisor = 3 ! divisor starts with 3
DO

i i i i i iIF (Divisor*Divisor > Number .OR. MOD(Number,Divisor) == 0) EXIT
Divisor = Divisor + 2 ! not a divisor, try next

END DO
IF (Divisor*Divisor > Number) THEN ! divisors exhausted?IF (Divisor Divisor > Number) THEN ! divisors exhausted?

Count = Count + 1 ! yes, this Number is a prime
WRITE(*,*) 'Prime number #', Count, ': ', Number

END IF
END DO

WRITE(*,*)
WRITE(*,*) 'There are ', Count, ' primes in the range of 2 and ', Range

38

(,) e e a e , Cou t, p es t e a ge o a d , a ge

Factoring a Number: 1/3Factoring a Number: 1/3
Given a positive integer, one can always factorize p g , y
it into prime factors. The following is an
example:

586390350 = 2×3×52×72×13×17×192

Here, 2, 3, 5, 7, 13, 17 and 19 are prime factors., , , , , , p
It is not difficult to find all prime factors.

We can repeatedly divide the input by 2.We can repeatedly divide the input by 2.
Do the same for odd numbers 3, 5, 7, 9, ….

But we said “prime” factors No problemBut, we said “prime” factors. No problem,
multiples of 9 are eliminated by 3 in an earlier
stage!

39

stage!

Factoring a Number: 2/3Factoring a Number: 2/3
PROGRAM Factorize
IMPLICIT NONE
INTEGER :: Input
INTEGER :: Divisor
INTEGER :: Count

WRITE(*,*) 'This program factorizes any integer >= 2 --> '
READ(*,*) Input
Count = 0
DO ! remove all factors of 2
IF (MOD(I t 2) / 0 OR I t 1) EXIT IF (MOD(Input,2) /= 0 .OR. Input == 1) EXIT
Count = Count + 1 ! increase count
WRITE(*,*) 'Factor # ', Count, ': ', 2
Input = Input / 2 ! remove this factorInput = Input / 2 ! remove this factor

END DO
…… use odd numbers here ……

END PROGRAM Factorize

40

END PROGRAM Factorize

Factoring a Number: 3/3Factoring a Number: 3/3

Divisor = 3 ! now we only worry about odd factors
DO ! Try 3, 5, 7, 9, 11
IF (Divisor > Input) EXIT ! factor is too large, exit and done
DO ! try this factor repeatedly DO ! try this factor repeatedly

IF (MOD(Input,Divisor) /= 0 .OR. Input == 1) EXIT
Count = Count + 1
WRITE(*,*) 'Factor # ', Count, ': ', Divisor
Input = Input / Divisor ! remove this factor from Input

END DO
Divisor = Divisor + 2 ! move to next odd number

END DO END DO

Note that even 9 15 49 will be used they would only be usedNote that even 9, 15, 49, … will be used, they would only be used
once because Divisor = 3 removes all multiples of 3 (e.g., 9, 15, …),
Divisor = 5 removes all multiples of 5 (e.g., 15, 25, …), and
Divisor = 7 removes all multiples of 7 (e.g., 21, 35, 49, …), etc.

41

Divisor 7 removes all multiples of 7 (e.g., 21, 35, 49, …), etc.

Handling End-of-File: 1/3Handling End of File: 1/3
Very frequently we don’t know the number ofVery frequently we don t know the number of
data items in the input.
Fortran uses IOSTAT= for I/O error handling:Fortran uses IOSTAT= for I/O error handling:

READ(*,*,IOSTAT=v) v1, v2, …, vn

In the above, v is an INTEGER variable.
After the execution of READ(*,*):

If v = 0, READ(*,*) was executed successfully
If v > 0, an error occurred in READ(*,*) and not
all variables received values.
If v < 0, encountered end-of-file, and not all

42
variables received values.

Handling End-of-File: 2/3Handling End of File: 2/3
Every file is ended with a special character.Every file is ended with a special character.
Unix and Windows use Ctrl-D and Ctrl-Z.
When using keyboard to enter data toWhen using keyboard to enter data to
READ(*,*), Ctrl-D means end-of-file in Unix.
If IOSTAT returns a positive value we onlyIf IOSTAT= returns a positive value, we only
know something was wrong in READ(*,*) such

t i t h h fil d i tas type mismatch, no such file, device error, etc.
We really don’t know exactly what happened
because the returned value is system dependent.

43

Handling End-of-File: 3/3Handling End of File: 3/3

i t t t

INTEGER :: io, x, sum 1
3

The total is 8

input output

sum = 0
DO
READ(*,*,IOSTAT=io) x
IF (io > 0) THEN

4

inputIF (io > 0) THEN
WRITE(*,*) 'Check input. Something was wrong'
EXIT

ELSE IF (io < 0) THEN
(* *) h l i

1
&
4

no output

WRITE(*,*) 'The total is ', sum
EXIT

ELSE
sum = sum + x

END IF
END DO

44

Computing Means, etc: 1/4Computing Means, etc: 1/4
Let us compute the arithmetic, geometric andLet us compute the arithmetic, geometric and
harmonic means of unknown number of values:

arithmetic mean = x x xn1 2+ + +......arithmetic mean =
geometric mean =

n

x x xn
n

1 2× × ×......

harmonic mean =
n

1 1 1+ + +

Note that only positive values will be considered

x x xn1 2

+ + +......

Note that only positive values will be considered.
This naïve way is not a good method.

45

Computing Means, etc: 2/4Computing Means, etc: 2/4
PROGRAM ComputingMeans PROGRAM ComputingMeans

IMPLICIT NONE
REAL :: X
REAL :: Sum, Product, InverseSum , ,
REAL :: Arithmetic, Geometric, Harmonic
INTEGER :: Count, TotalValid
INTEGER :: IO ! for IOSTAT=

Sum = 0.0
Product = 1.0
InverseSum = 0.0
TotalValid = 0
Count = 0
…… other computation part ……

END PROGRAM ComputingMeans

46

Computing Means, etc: 3/4Computing Means, etc: 3/4
DO

READ(*,*,IOSTAT=IO) X ! read in data
IF (IO < 0) EXIT ! IO < 0 means end-of-file reached
Count = Count + 1 ! otherwise, got some value
IF (IO > 0) THEN ! IO > 0 means something wrongIF (IO > 0) THEN ! IO > 0 means something wrong

WRITE(*,*) 'ERROR: something wrong in your input'
WRITE(*,*) 'Try again please'

ELSE ! IO = 0 means everything is normal
WRITE(*,*) 'Input item ', Count, ' --> ', X
IF (X <= 0.0) THEN

WRITE(*,*) 'Input <= 0. Ignored'
ELSE ELSE

TotalValid = TotalValid + 1
Sum = Sum + X
Product = Product * X
InverseSum = InverseSum + 1.0/X

END IF
END IF

END DO

47

END DO

Computing Means, etc: 4/4Computing Means, etc: 4/4

WRITE(*,*)
IF (TotalValid > 0) THEN

Arithmetic = Sum / TotalValid
Geometric = Product**(1.0/TotalValid)
Harmonic = TotalValid / InverseSum
WRITE(*,*) '# of items read --> ', Count
WRITE(*,*) '# of valid items -> ', TotalValid WRITE(,) # of valid items > , TotalValid
WRITE(*,*) 'Arithmetic mean --> ', Arithmetic
WRITE(*,*) 'Geometric mean --> ', Geometric
WRITE(*,*) 'Harmonic mean --> ', Harmonic

ELSE
WRITE(*,*) 'ERROR: none of the input is positive'

END IF

48

The EndThe End

49

