
Differentiation and IntegrationDifferentiation and Integration

You think you know when you learn, are more sure when you can write,
even more when you can teach, but certain when you can program.
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Topics to Be DiscussedTopics to Be Discussed

This unit requires the knowledge ofThis unit requires the knowledge of 
differentiation and integration in calculus.
The following topics will be presented:The following topics will be presented:

Forward difference, backward difference and 
t l diff th d f diff ti ticentral difference methods for differentiation.

Richardson extrapolation technique
Trapezoid, Simpson’s  3-point and iterative 
methods for numerical integration
Romberg’s method for numerical integration.
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Numerical Differentiation: 1/14Numerical Differentiation: 1/14

If function f(x) is complex, computing f’(x) isIf function f(x) is complex, computing f (x) is 
difficult and approximation may be needed.
Suppose we wish to compute f’(x ) We maySuppose we wish to compute f (xi).  We may 
choose a xi+1 > xi and approximate f’(xi) by the 
slope (f(x )-f(x ))/(x -x ) ⎯ forward differenceslope  (f(xi+1)-f(xi))/(xi+1-xi) ⎯ forward difference.
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Numerical Differentiation: 2/14Numerical Differentiation: 2/14

Or, we may choose a xi 1 < xi and use the slopeOr, we may choose a xi-1  xi and use the slope 
(f(xi)-f(xi-1))/(xi-xi-1) as an approximation of f’(xi)
⎯ backward difference.backward difference.

' ( )if x

f(xi)1

1

( ) ( )i i

i i

f x f x
x x

−

−

−
−

4
xi-1 xi

f(xi-1)



Numerical Differentiation: 3/14Numerical Differentiation: 3/14

Or, we may choose xi 1 < xi and xi+1 > xi, bothOr, we may choose xi-1  xi and xi+1  xi, both 
close to xi, and use slope (f(xi+1)-f(xi-1))/(xi+1-xi-1)
as an approximation of f’(xi) ⎯ centralas an approximation of f (xi) central 
difference.
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Numerical Differentiation: 4/14Numerical Differentiation: 4/14
Forward difference, backward difference and ,
central difference methods can be viewed as 
the use of an interpolating polynomial of degree 
1 that interpolates two chosen points and uses 
its slope for the derivative of f(x) .
If we can use interpolating polynomial of 
degree 1, why don’t we use degree 2, degree 3, 
t ?etc?

Yes, of course we can.  But, higher degree 
i t N ll th (imeans more points.  Normally, three (i.e., 

degree 2) may be sufficient.
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Numerical Differentiation: 5/14Numerical Differentiation: 5/14

Suppose we wish to compute f’(xi). We maySuppose we wish to compute f (xi).  We may 
choose xi+1 and xi+2, both close to xi, and 
evaluate fi, fi+1 and fi+2.evaluate fi, fi+1 and fi+2.  
Then, we have three points (xi, fi), (xi+1, fi+1) and 
(x f )(xi+2, fi+2).  
An interpolating polynomial of degree 2, P2(x), 

b f d d P ’( )can be found, and, use P2 (xi) as an 
approximation of f’(xi).  See next slide.
Newton divided difference is a simple tool for 
this purpose.
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Numerical Differentiation: 6/14Numerical Differentiation: 6/14

P2(x) f(x)

P’2(x) f’(x)

fi+1

fi+2

f
xi xi+1 xi+2

fi
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Numerical Differentiation: 7/14Numerical Differentiation: 7/14

Given xi < xi+1 < xi+2, divided difference yieldsGiven xi  xi+1  xi+2, divided difference yields 
P2(x) as follows:

( ) [ ] [ ]( ) [ ]( )( )P f f f2 1 1 2 1( ) [ ] [ , ]( ) [ , , ]( )( )i i i i i i i i iP x f x f x x x x f x x x x x x x+ + + += + − + − −

Differentiating P2(x) yields:
' ( ) [ ] [ ](2 ( ))P x f x x f x x x x x x= + +

Plugging x into P ’(x) as an approximation of

2 1 1 2 1( ) [ , ] [ , , ](2 ( ))i i i i i i iP x f x x f x x x x x x+ + + += + − +

Plugging xi into P2 (x) as an approximation of 
f’(xi) yields:

'
9
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Numerical Differentiation: 8/14Numerical Differentiation: 8/14

Normally, xi, xi+1 and xi+2 are equally spaced (i.e.,Normally, xi, xi+1 and xi+2 are equally spaced (i.e., 
xi+1 - xi = xi+2 - xi+1 = ∆).  This condition makes 
computation easier.computation easier.
Note that f[xi, xi+1] and f[xi+1, xi+2] are computed 
as follows:as follows:

1
1

( ) ( )[ , ] i i
i i

f x f xf x x +
+

−= 2 1
1 2

( ) ( )[ , ] i i
i i

f x f xf x x + +
+ +

−=
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Numerical Differentiation: 9/14Numerical Differentiation: 9/14

Recall that P2
’(x) isRecall that P2 (x) is

'
2 1 1 2 1( ) [ ] [ ]( )P x f x x f x x x x x= + −

Plugging f[xi,xi+1], f[xi,xi+1,xi+2] and xi – xi+1 = -∆
’

2 1 1 2 1( ) [ , ] [ , , ]( )i i i i i i i iP x f x x f x x x x x+ + + ++

into P2
’(x), we have

( )' 1( ) 3 4P f f f

This is the three-point forward difference

( )2 1 2( ) 3 4
2i i i iP x f f f+ += − + −
∆

This is the three-point forward difference.

11



Numerical Differentiation: 10/14Numerical Differentiation: 10/14
If the three chosen points are xi-2 < xi-1 < xi, the p i-2 i-1 i,
interpolating polynomial of degree 2, P2(x), is

( ) [ ] [ ]( ) [ ]( )( )P f f f+ +

Differentiating P2(x) yields:

2 2 2 1 2 2 1 2 1( ) [ ] [ , ]( ) [ , , ]( )( )i i i i i i i i iP x f x f x x x x f x x x x x x x− − − − − − − −= + − + − −

Differentiating P2(x) yields:
'

2 2 1 2 1 2 1( ) [ , ] [ , , ](2 ( ))i i i i i i iP x f x x f x x x x x x− − − − − −= + − +

Plugging xi into P2
’(x) yields

'
2 2 1 2 1 2 1( ) [ , ] [ , , ](2 ( ))i i i i i i i i iP x f x x f x x x x x x− − − − − −= + − +
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Numerical Differentiation: 11/14Numerical Differentiation: 11/14

If xi 2, xi 1 and xi are equally spaced (i.e., xi 1- xi 2If xi-2, xi-1 and xi are equally spaced (i.e., xi-1 xi-2
= ∆ and xi - xi-1 = ∆), we have
2 ( ) ( ) ( ) 2 3x x x x x x x+ = + = ∆ + ∆ = ∆
P2

’(x) becomes:
2 1 1 22 ( ) ( ) ( ) 2 3i i i i i i ix x x x x x x− − − −− + = − + − = ∆ + ∆ = ∆

( )'
2 2 1

1( ) 4 3
2i i i iP x f f f− −= − +
∆

This is the three-point backward difference.
backward

-3 4 -1
3-41 forward

backward
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Numerical Differentiation: 12/14Numerical Differentiation: 12/14
Forward difference uses xi < xi+1 < xi+2, and i i+1 i+2,
backward difference uses xi-2 < xi-1 <  xi. Is there 
a “central” difference that uses xi-1 < xi < xi+1?
You certainly can do this because the P2(x) is:

2 1 1 1 1 1 1( ) [ ] [ , ]( ) [ , , ]( )( )i i i i i i i i iP x f x f x x x x f x x x x x x x− − − − + −= + − + − −
Some calculations yield the following (exercise):

2 1 1 1 1 1 1( ) [ ] [ ]( ) [ ]( )( )i i i i i i i i if f f +

' 1 1i if f−

This does not involve f and is the same as the 2

' 1 1
2 ( )

2
i i

i
f fP x + −=

∆
This does not involve fi and is the same as the 2-
point central difference.
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Numerical Differentiation: 13/14Numerical Differentiation: 13/14

Exercises:Exercises:
If the equally spaced data points are xi-1 < xi
< x show that P ’(x ) is the following:< xi+1, show that P2 (xi) is the following:

2

' 1 1
2 ( )

2
i i

i
f fP x + −−=

∆
Given a parabola f(x)=ax2+bx+c and three 
points s-∆, s and s+∆, show that 

Now we know that the three-point central

' ( ) ( )( )
2

f s f sf s + ∆ − −∆=
∆

Now we know that the three point central 
difference does not make much sense for 
equally spaced data points.
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Numerical Differentiation: 14/14Numerical Differentiation: 14/14
Examples:p

f(x) = ex, x = 1 and ∆ = 0.001
f’(x) = ex and f’(1) = e1 = 2 718281828f (x)  e and f (1)  e  2.718281828

Method Result
Forward Difference 2.71964142

B k d Diff 2 71962268Backward Difference 2.71962268

Central Difference 2.71828228

3-point Forward 2.71828091

3 point Backward 2 71828091
16
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Richardson Extrapolation: 1/4Richardson Extrapolation: 1/4

Richardson has an extrapolation scheme thatRichardson has an extrapolation scheme that 
can make the central different method more 
accurate.accurate.
This extrapolation scheme is very similar to the 
divided difference scheme:divided difference scheme:

ddi j−1,

d d d
d d

i j i j i j
i j i j

j+
−

+→ = +
−
−1

1
14 1, , ,

, ,

17
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Richardson Extrapolation: 2/4Richardson Extrapolation: 2/4

Richardson extrapolation is computed row-by-Richardson extrapolation is computed row by
row.  The 0-th entry is a central difference with 
reduced step size.reduced step size.

initial value of each row
•

• → •

, 1,
, 1 , 14 1

i j i j
i j i j j

d d
d d −

+ +

−
= +

−
central difference

with halved step size

• → •

result is here!

• → • → •

18
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Richardson Extrapolation: 3/4Richardson Extrapolation: 3/4

Here is the algorithm of Richardson’s method.Here is the algorithm of Richardson s method.
x: input, n: number of rows, and ∆: initial step 
size that will be halved for each rowsize that will be halved for each row. 

DO i = 0, n           ! compute row-by-row
! central difference

j i i

,0
( ) ( )

2i
f x f xd + ∆ − −∆=

∆
DO j = 0, i-1       ! on row i, ……

! obtain di,j+1on next col, 1,
, 1 , 14 1

i j i j
i j i j j

d d
d d −

+ +

−
= +

END DO
∆ = ∆/2             ! reduce step size

4 1j j j −

19
END DO



Richardson Extrapolation: 4/4Richardson Extrapolation: 4/4

Let f(x)=ex. Compute f’(x) at x=1 with n=3 (3Let f(x) e .  Compute f (x) at x 1 with n 3 (3 
rows) and ∆=1 (initial step size=1).

, 1,
, 1 , 14 1

i j i j
i j i j j

d d
d d −

+ +

−
= +

−
row 0 (∆=1)

1 (∆ 5)

3194528.

row 1 (∆=.5)

row 2 (∆= 25)

2 8329677 2 7124476

2 7466855 2 7179248 2 71829

. .→

→ →row 2 (∆=.25)

row 3 (∆=.125)

2 7466855 2 7179248 2 71829

2 7253665 2 7182602 2 7182826 2 7182826

. . .

. . . .

→ →

→ → →

20
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Numerical Integration: 1/4Numerical Integration: 1/4
Numerical integration means computing the g p g
following in a numerical way (i.e., a value 
rather than a closed form formula).

( )
b

a
f x dx∫

In fact, the above cannot be integrated precisely 
in closed form for most functions f(x).  As a f( )
result, numerical integration is needed.
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Numerical Integration: 2/4Numerical Integration: 2/4

One way to compute the integration is to (1)One way to compute the integration is to (1)
choose a number of data points (x0=a, f0), (x1, 
f1), …, (xn=b, fn) and (2) find an interpolatingf1), …, (xn b, fn) and (2) find an interpolating 
polynomial of degree n, Pn(x).
Then we use P (x) to replace f(x):Then, we use Pn(x) to replace f(x):

( ) ( )
b b

nf x dx P x dx≈∫ ∫
Since Pn(x) is a polynomial, its integration is 

( ) ( )na a
f x dx x dx∫ ∫

n
easy to compute.  But, this is a tedious and 
inefficient procedure.
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Numerical Integration: 3/4Numerical Integration: 3/4

In fact, one may divide the interval [a,b] intoIn fact, one may divide the interval [a,b] into 
subintervals for better approximation instead of 
using the whole interval [a,b].using the whole interval [a,b].
If the subintervals are small enough, degree 1 or 
2 interpolating polynomials may be good2 interpolating polynomials may be good 
enough.

y=f(x)y=f(x)
4 1

0

3

( ) ( )i

i

b x x

a x x
f x dx f x dx+=

=
=∑∫ ∫

0 0 ia x x
i=

∫ ∫

23x0=a x1 x2 x3 x4=b



Numerical Integration: 4/4Numerical Integration: 4/4

While the subintervals do not have to be ofWhile the subintervals do not have to be of 
equal length, equally spaced points do make 
computation easier.computation easier.
Therefore, if we choose to divide the interval 
[a b] into n subintervals each of which has[a,b] into n subintervals, each of which has 
length ∆=(b-a)/n, the division points are x0 = a, 
x = x +∆ x = x +2∆ x = x +i∆ x =x1 = x0+∆, x2 = x0+2∆ …, xi = x0+i∆, .., xn = 
x0+n∆=b.
Th i t ti bThe integration becomes:

1

( ) ( )i
nb x

f x dx f x dx
− +∆

=∑∫ ∫
240

( ) ( )
ia x

i
f x dx f x dx

=

=∑∫ ∫



Trapezoid Rule: 1/5Trapezoid Rule: 1/5

The trapezoid bounded by (a,0), (a, f(a)), (b, f(b))The trapezoid bounded by (a,0), (a, f(a)), (b, f(b))
and (b,0) has an area close to the area below 
y=f(x) bounded by x=a and x=b.y f(x) bounded by x a and x b.

( )( ) ( )
2

b aarea f a f b−= +

y = f(x)

( )( ) ( )
2

f f

f(a)

f(b)

25a b

f(a)



Trapezoid Rule: 2/5Trapezoid Rule: 2/5

If [a,b] is divided into n equally spaced intervalsIf [a,b] is divided into n equally spaced intervals 
with length ∆=(b-a)/n.  Then, xi = x0+i∆.
The area A of the i-th (0 ≤ i ≤ n-1) trapezoid isThe area Ai of the i-th (0 ≤ i ≤ n-1) trapezoid is 
(fi+fi+1)∆/2.
Th i ti i th f ll A ’The approximation is the sum of all Ai’s.

( )4 4 5A f f∆= +

y = f(x)

( )4 4 52
f f

26x0 x1 x2 x3 x4 x5 x6 x7 x8



Trapezoid Rule: 3/5Trapezoid Rule: 3/5

Therefore, the sum of all areas A0, A1, …, An 1 asTherefore, the sum of all areas A0, A1, …, An-1 as 
an approximation of the integration is easy to 
compute.compute.

0 1 1( )
b

na
f x dx A A A −≈ + + +∫

0 1 1 2 1( ) ( ) ( )
2 2 2

a

n nf f f f f f−
∆ ∆ ∆= + + + + + +

∫

[ ]0 1 2 1

2 2 2

2( )
2 n nf f f f f−
∆= + + + + +

1
0

2
n

n
i

f f f
−+⎡ ⎤= ∆ +⎢ ⎥∑
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=
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Trapezoid Rule: 4/5Trapezoid Rule: 4/5

Recall the following trapezoid rule:Recall the following trapezoid rule:
1

0( )
2

nb n
i

f ff x dx f
−+⎡ ⎤≈ ∆ +⎢ ⎥

⎣ ⎦
∑∫

The following is a possible implementation:
12a

i=
⎢ ⎥
⎣ ⎦

∑∫

! INPUT: a, b, n
∆ = (b-a)/n    ! step size
x = a + ∆ ! x1 here
s = 0.0        ! sum of f(x1) to f(xn-1)
DO i = 1, n-1  ! cumulate each term,

s = s + f(x)
x = x + ∆

END DO
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END DO
Result = ((f(a)+f(b))/2+s)*∆



Trapezoid Rule: 5/5Trapezoid Rule: 5/5

Consider the integration of ex from 0 to 1. TheConsider the integration of e from 0 to 1.  The 
correct result is e1-e0=1.718282.
If [0 1] is divided into 4 subintervals we haveIf [0,1] is divided into 4 subintervals, we have 
n=4 and ∆=0.25.

( )xi EXP(xi)

0 1 Sum = 5.049747

0.25 1.284025

0 5 1 648721
1 1 2.7181820 25 5 049747 1 7272095xd +⎡ ⎤∫0.5 1.648721

0.75 2.117000
0

0.25 5.049747 1.7272095
2

xe dx ⎡ ⎤≈ + ≈⎢ ⎥⎣ ⎦∫

291.0 2.718282



Simpson’s 3-Point Rule: 1/12Simpson s 3 Point Rule: 1/12

Trapezoid rule is an approximation of f(x) onTrapezoid rule is an approximation of f(x) on 
[xi,xi+1] with a line (i.e., degree 1 polynomial).
Simpson’s 3-point rule approximates f(x) onSimpson s 3-point rule approximates f(x) on 
[xi,xi+2] with a parabola (i.e., degree 2 
polynomial) that interpolates (x f ) (x f )polynomial) that interpolates (xi, fi), (xi+1, fi+1)
and  (xi+2, fi+2). 

y = P (x)y = f(x) y = P2(x)

30xi xi+1 xi+2



Simpson’s 3-Point Rule: 2/12Simpson s 3 Point Rule: 2/12

Since the P2(x) that interpolates (xi, fi), (xi+1, fi+1)Since the P2(x) that interpolates (xi, fi), (xi+1, fi+1)
and  (xi+2, fi+2) can easily be found, we have

2 2

2( ) ( )i i

i i

x x

x x
f x dx P x dx+ +≈∫ ∫

Since P2(x) is a degree 2 polynomial, its 
integration is very easy.
How do we find this P2(x)?  Should we use 
Lagrange or Newton divided difference?
It turns out we don’t need these tools!
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Simpson’s 3-Point Rule: 3/12Simpson s 3 Point Rule: 3/12

We still use equally spaced subintervals.We still use equally spaced subintervals.
Since translation does not change integration 
result we translate x to 0 so that x =-∆ andresult, we translate xi+1 to 0 so that xi=-∆ and 
xi+2=∆.  This will simplify our calculation.
L t th i t l ti l i l b +b + 2Let the interpolating polynomial be c+bx+ax2

y=c+bx+ax2

y = f(x)

32xi+1 = 0 xi+2 = ∆xi = -∆



Simpson’s 3-Point Rule: 4/12Simpson s 3 Point Rule: 4/12

The integration of the polynomial c+bx+ax2The integration of the polynomial c bx ax
from -∆ to ∆ is easy to compute as follows:

b a a∆ ⎡ ⎤∫ 2 2 3 2( ) | | | (2 )
2 3 3
b a ac bx ax dx cx x x c

∆ ∆ ∆ ∆
−∆ −∆ −∆−∆

⎡ ⎤+ + = + + = ∆ + ∆⎢ ⎥⎣ ⎦∫

y=c+bx+ax2

y = f(x)
b is not used!

0 ∆∆
33

xi+1 = 0 xi+2 = ∆xi = -∆



Simpson’s 3-Point Rule: 5/12Simpson s 3 Point Rule: 5/12

How to compute c and a in P2(x) = c+bx+ax2?How to compute c and a in P2(x) c bx ax ?
From the setup, we have

2( )f P b∆ ∆ ∆ c is known!2
2

1 2

( )
(0)

i

i

f P c b a
f P c+

= −∆ = − ∆ + ∆
= =

c is known!

Adding the first and the third equations

2
2 2 ( )if P c b a+ = ∆ = + ∆ + ∆

Adding the first and the third equations 
together and solving for a yield the following:

1 ( )1 22

1 2
2 i i ia f f f+ += − +
∆
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Simpson’s 3-Point Rule: 6/12Simpson s 3 Point Rule: 6/12

What do we have now?What do we have now?
2( ) (2 )

3
af x dx c

∆

−∆

⎡ ⎤≈ ∆ + ∆⎢ ⎥⎣ ⎦∫

( )
1

3

1
ic f +

⎣ ⎦
=

Plugging a and c into the integration yields:

( )1 22

1 2
2 i i ia f f f+ += − +
∆

Plugging a and c into the integration yields:

[ ]1 2( ) 4
3 i i if x dx f f f

∆

+ +∆

∆≈ + +∫
Note that this result does not depend on the xi’s!

[ ]1 23 i i i+ +−∆∫

35



Simpson’s 3-Point Rule: 7/12Simpson s 3 Point Rule: 7/12

Compute
1 1 0 1.718281828...xe dx e e= − =∫Compute

We need 3 equally spaced points x0=0, x1=0.5
and x =1 Thus ∆=0 5

0∫

and x2=1.  Thus, ∆=0.5. 

[ ]2 ( ) 4ix
f x dx f f f+ ∆≈ + +∫

xi fi

[ ]1 2( ) 4
3i

i i ix
f x dx f f f+ +≈ + +∫

0. 1

0.5 1.648721271
×4 + ×(∆/3)

1 7188611520.5 1.648721271

1. 2.718281828

1.718861152
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Simpson’s 3-Point Rule: 8/12Simpson s 3 Point Rule: 8/12

For a general integration problem, we need toFor a general integration problem, we need to 
divide [a,b] into an even number of subintervals, 
and apply Simpson’s 3-point rule to twoand apply Simpson s 3 point rule to two 
consecutive ones.
More precisely apply Simpson’s 3-point rule toMore precisely, apply Simpson s 3-point rule to 
[x0,x1,x2], [x2,x3,x4], [x4,x5,x6], …, [xn-2,xn-1,xn].
N t th t Si ’ 3 i t l l d dNote that Simpson’s 3-point rule only depends 
on the fi’s and the length of subinterval ∆.
For convenience, we shall use n = 2m, where n is 
the number of subintervals, and ∆=(b-a)/n.
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Simpson’s 3-Point Rule: 9/12Simpson s 3 Point Rule: 9/12

Consider the following results from integratingConsider the following results from integrating  
two consecutive subintervals.

∆
Odd indices fi’s have coefficient 4

[ ]0 1 2 0 1 2[ , , ] 4
3

x x x f f f∆ + +

∆ even indices fi’s have coefficient 2
[ ]

[ ]

2 3 4 2 3 4[ , , ] 4
3

[ ] 4

x x x f f f

f f f

∆ + +

∆

even indices fi s have coefficient 2

[ ]4 5 6 4 5 6[ , , ] 4
3

x x x f f f+ + f0 and f2m appear exactly once

[ ]2 4 2 3 2 2 2 4 2 3 2[ , , ] 4
3m m m m m mx x x f f f− − − − − −
∆ + +

38[ ]2 2 2 1 2 2 2 2 1 2[ , , ] 4
3m m m m m mx x x f f f− − − −
∆ + +



Simpson’s 3-Point Rule: 10/12Simpson s 3 Point Rule: 10/12

The following is a computation scheme:The following is a computation scheme:

0 1 2 3 4 5 6 7 2m-4 2m-3 2m-2 2m-1 2m0   1 2 3 4 5 6 7 ……… 2m-4 2m-3 2m-2 2m-1 2m

m terms

×4×2
m-1 terms

×(∆/3)

39final result



Simpson’s 3-Point Rule: 11/12Simpson s 3 Point Rule: 11/12

In summary, the ∆ = (b-a)/n
t   ∆ ∆In summary, the 

sum is the following:
1m m−∆ ⎡ ⎤∑ ∑

step = ∆+∆
m = n/2 
odd = 0.0

odd terms

0 2 2 1 2
1 1

( ) 4 2
3 m i i

i i
f f f f−

= =

∆ ⎡ ⎤+ + +⎢ ⎥
⎣ ⎦

∑ ∑ x = a + ∆
DO i = 1, m, 2

odd = odd + f(x)

Input:
interval: [a,b]

x = x + step
END DO
even = 0.0 even terms

n=2m: # of divisions
Output in Result

x = a + ∆+∆
DO i = 2, m-1, 2

even = even + f(x)

even terms

even = even + f(x)
x = x + step

END DO
Result = (f(a)+f(b)+4*odd

40

Result = (f(a)+f(b)+4*odd
+ 2*even)*∆/3



Simpson’s 3-Point Rule: 12/12Simpson s 3 Point Rule: 12/12

Integrate 1/(1+x2) from 0 to 1. The answer isIntegrate 1/(1 x ) from 0 to 1.  The answer is 
0.78539816…

1 1 11 t (1) t (0) 0 785398163d π− −∫ 1 1
20

tan (1) tan (0) 0.785398163...
1 4

dx
x

= − = =
+∫

i d f
∆=0.25

index xi fi

0 0 1
×4

6 324 0 881 0.25 0.94117647
2 0.5 0.8

×

×2

6.32470588
1.6

×(∆/3)
0.785392156

3 0.75 0.64
4 1 0.5

×2

41



Iterative MethodsIterative Methods

An iterative method increases the number ofAn iterative method increases the number of 
subdivisions until the process converges.
Since trapezoid and Simpson 3-point rules areSince trapezoid and Simpson 3-point rules are 
simple, we shall look at how they can be 
modified to become “iterative ”modified to become iterative.
We may start with a coarse subdivision of [a,b], 

d t th i t tiand compute the integration.
If two successive integration results are close to 
each other, stop.
Otherwise, refine the subdivision and do again!

42



Iterative Trapezoid Method: 1/4Iterative Trapezoid Method: 1/4

Initially, we have one subinterval [a,b], andInitially, we have one subinterval [a,b], and 
∆=b-a.
The integration is I = ∆×(f(a)+f(b))/2The integration is I0 = ∆×(f(a)+f(b))/2
In the next iteration, the length of each 

bi t l i h l d (i ∆ ∆/2) d thsubinterval is halved (i.e., ∆ = ∆/2) and the 
number of subintervals is doubled.
Thus, if the previously computed result In with 
n subintervals is not very different from the 
newly computed result I2n with 2n subintervals, 
then stop.  Otherwise, start the next iteration.
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Iterative Trapezoid Method: 2/4Iterative Trapezoid Method: 2/4

Trapezoid method has a simple relationshipTrapezoid method has a simple relationship 
between In and I2n.
It uses the following formula:

Only need to update
this sum!It uses the following formula:

1
0( )

nb n
i

f ff x dx f
−+⎡ ⎤≈ ∆ +⎢ ⎥

⎣ ⎦
∑∫

this sum!

Let Kn be the previous sum, then K2n can be 
1

( )
2 ia

i
f f

=
⎢ ⎥
⎣ ⎦

∑∫
n 2n

obtained by adding new values.

∆
0 1 2 3 nn-1n-2n-3

∆

44∆
∆/2 n new points, one for each interval



Iterative Trapezoid Method: 3/4Iterative Trapezoid Method: 3/4
1

20

1
1 4

dx
x

π≈
+∫

/ 4 0.785398163π ≈
∆=0 5 ∆=0 25 ∆=0 1250 1 4x+∫ ∆ 0.5 ∆ 0.25 ∆ 0.125

0 1
0.125 0.984615384
0.25 0.94117647
0.375 0.876712328
0 5 0 80.5 0.8
0.625 0.719101123
0.75 0.640.75 0.64
0.875 0.566371681
1 0.5
Prev. Sum 0 0.8 2.381176471
New Sum 0.8 1.581176471 3.146800518
Thi S 0 8 2 381176471 5 527976989

45
(0) (1) 0.75

2
f f+ =

This Sum 0.8 2.381176471 5.527976989
Integration 0.775 0.782794117 0.784747123



Iterative Trapezoid Method: 4/4Iterative Trapezoid Method: 4/4

The following is a possible algorithm:The following is a possible algorithm:
! Initialization
! Int  – integration

DO
∆2 = ∆/2g

! This – new integration
! Prev – previous sum
! Next – new sum

  /
x  = a + ∆2
Next = 0
DO i = 1  Intervals! Next new sum

Fixed = (f(a) + f(b))/2
Int    Fixed

DO i = 1, Intervals
Next = Next + f(x)
x    = x + ∆

END DOInt   = Fixed
Prev  = 0
∆ = b-a

END DO
This = (Fixed+Prev+Next)*∆2
IF (|This – Int| < ε) EXIT

Intervals = 1 Prev = Next
Int  = This
∆ = ∆2

46
Intervals = Intervals*2

END DO



Iterative Simpson Method: 1/3Iterative Simpson Method: 1/3

Simpson method can also be made iterative.Simpson method can also be made iterative.
All newly added points have odd indices!
All i i l i t h i di !All original points have even indices!

2
1

0 2 2 1 2( ) ( ) 4 2
3

m
m mb x

m i ia x
f x f f f f

−=

−
∆ ⎡ ⎤= + + +⎢ ⎥
⎣ ⎦

∑ ∑∫
0 1 13a x

i i
=

= =
⎢ ⎥
⎣ ⎦

∑ ∑∫
0 1 2 3 2m2m-12m-22m-3

prev. even sum prev. odd sum

hihi dd
47

this even sumthis odd sum



Iterative Simpson Method: 2/3Iterative Simpson Method: 2/3
1

20

1
1 4

dx
x

π≈
+∫ / 4 0.785398163π ≈/ 4 0.785398163π

(0) (1) 1.5f f+ = ∆=0.5 ∆=0.25 ∆=0.125
0 0
0.125 0.984615384
0.25 0.94117647
0 375 0 8767123280.375 0.876712328
0.5 0.8
0.625 0.7191011230.625 0.719101123
0.75 0.64
0.875 0.566371681
1 0.5
Previous 0 0.8 2.38117647
Thi Odd 0 8 1 58117647 3 146800516

×2

4

48

This Odd 0.8 1.58117647 3.146800516
Integration 0.78333… 0.785392156 0.785398125

×4

+
×∆/3



Iterative Simpson Method: 3/3Iterative Simpson Method: 3/3
DO

New_Even = Even + Odd

! Initialization

New_Odd  = 0
∆2 = ∆/2
x  = a + ∆2

! Integrate over [a,b]
! Extra = f(a)+f(b)

DO i = 1, Intervals
New_Odd = New_Odd + f(x)
x       = x + ∆

∆ = (b-a)/2
Fixed = f(a)+f(b)
Even  = 0

x       = x + ∆
END DO
New_Int = (Fixed+4*New_Odd+

2*New Even)*∆2/3Even   0
Odd   = f(a+∆)
Int = (Fixed+4*Odd)*∆/3
Intervals = 2

2*New_Even)*∆2/3
IF (|New_Int – Int| < ε) EXIT
Even = New_Even
Odd   N OddIntervals = 2 Odd  = New_Odd
Int  = New_Int
Intervals=Intervals+Intervals

49
∆ = ∆2

END DO



Romberg’s Method: 1/4Romberg s Method: 1/4

Romberg’s method for integration is similar toRomberg s method for integration is similar to 
Richardson’s method for differentiation.
Romberg’s method extrapolates the resultsRomberg s method extrapolates the results 
from two successive values computed with the 
iterative trapezoid (or Simpson) methoditerative trapezoid (or Simpson) method.

, 1,i j i jr r
r r −−

= +
I1

use Richardson's formula
In: trapezoid
method using

, 1 , 14 1i j i j jr r+ += +
−I2 → •

use Richardson s formulamethod using
n subintervals I

I

3 → • → •

→ • → • → •
50col 0 col 1 col 2

I4 → • → • → •



Romberg’s Method: 2/4Romberg s Method: 2/4

Romberg’s method requires an update from InRomberg s method requires an update from In
to I2n, where Ik is the integration from k
intervals.intervals.
In is computed as follows:

1
0

nf fI f
−+⎡ ⎤∆ ∑

I2n is computed as

0

12
n

n n i
i

f fI f
=

+⎡ ⎤= ∆ +⎢ ⎥
⎣ ⎦

∑

0 1
2 2 ( ) ( )

2n n
f fI original new+⎡ ⎤= ∆ + +⎢ ⎥⎣ ⎦

Since ∆2n = ∆n/2, we have

/ 2 ( )I I ∆
512 2/ 2 ( )n n nI I new= + ∆ ×



Romberg Method: 3/4Romberg Method: 3/4

The left is
∆ = b-a
r0,0 = (f(a) + f(b))*∆/2
i t l   1The left is 

Romberg’s method
n: number of rows

intervals = 1
DO i = 1, n

∆2 = ∆/2n: number of rows
Result is in rn,n

x  = a + ∆
sum = 0
DO k = 1, intervals

sum = sum + f(x)
x   = x + ∆

END DOEND DO
ri,0 = ri-1,0/2 + ∆2*sum
DO j = 0, i-1

1i j i jr r−
trapezoid rule

END DO
∆  ∆2

, 1,
, 1 , 14 1

i j i j
i j i j j

r r
r r −

+ += +
−

52

∆ = ∆2
intervals = intervals*2

END DO

Richardson 
extrapolation



Romberg Method: 4/4Romberg Method: 4/4

The following is an example:The following is an example:

1 1 11 tan (1) tan (0) 0 785398163dx π− −= − = =∫
0.75

20
tan (1) tan (0) 0.785398163...

1 4
dx

x+∫

0.775 0.7833333→

0.7827941 0.78539216 0.78552943→ →

0.7847471 0.7853981 0.78539854 0.78539645

0 7852354 0 7853982 0 7853982 0 7853982 0 7853982

→ → →
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0.7852354 0.7853982 0.7853982 0.7853982 0.7853982→ → → →



The EndThe End
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