Differentiation and Integration

You think you know when you learn, are more sure when you can write, even more when you can teach, but certain when you can program.

Alan J. Perlis

Topics to Be Discussed

• This unit requires the knowledge of differentiation and integration in calculus. • The following topics will be presented: **Forward difference, backward difference and** central difference methods for differentiation. **Richardson extrapolation technique >**Trapezoid, Simpson's 3-point and iterative methods for numerical integration **>**Romberg's method for numerical integration.

Numerical Differentiation: 1/14

• If function f(x) is complex, computing f'(x) is difficult and approximation may be needed. • Suppose we wish to compute $f(x_i)$. We may choose a $x_{i+1} > x_i$ and approximate $f(x_i)$ by the slope $(f(x_{i+1})-f(x_i))/(x_{i+1}-x_i)$ — forward difference. (X_i) $f(x_{i+1})$ $f(x_{i+1}) - f(x_i)$ $x_{i+1} - x_i$ $f(x_i)$ 3 $\boldsymbol{x_i}$ x_{i+1}

Numerical Differentiation: 2/14

• Or, we may choose a $x_{i-1} < x_i$ and use the slope $(f(x_i)-f(x_{i-1}))/(x_i-x_{i-1})$ as an approximation of $f(x_i)$ — *backward difference*.

Numerical Differentiation: 3/14

• Or, we may choose $x_{i-1} < x_i$ and $x_{i+1} > x_i$, both close to x_i , and use slope $(f(x_{i+1})-f(x_{i-1}))/(x_{i+1}-x_{i-1})$ as an approximation of $f'(x_i)$ — *central difference*.

5

Numerical Differentiation: 4/14

- Forward difference, backward difference and central difference methods can be viewed as the use of an *interpolating polynomial of degree 1* that interpolates two chosen points and uses its slope for the derivative of *f*(*x*).
- If we can use interpolating polynomial of degree 1, why don't we use degree 2, degree 3, etc?
- Yes, of course we can. But, higher degree means more points. Normally, three (*i.e.*, degree 2) may be sufficient.

Numerical Differentiation: 5/14

- Suppose we wish to compute $f'(x_i)$. We may choose x_{i+1} and x_{i+2} , both close to x_i , and evaluate f_i , f_{i+1} and f_{i+2} .
- Then, we have three points (x_i, f_i) , (x_{i+1}, f_{i+1}) and (x_{i+2}, f_{i+2}) .
- An interpolating polynomial of degree 2, $P_2(x)$, can be found, and, use $P_2'(x_i)$ as an approximation of $f(x_i)$. See next slide.
- Newton divided difference is a simple tool for this purpose.

Numerical Differentiation: 6/14

Numerical Differentiation: 7/14

• Given $x_i < x_{i+1} < x_{i+2}$, divided difference yields $P_2(x)$ as follows:

 $P_2(x) = f[x_i] + f[x_i, x_{i+1}](x - x_i) + f[x_i, x_{i+1}, x_{i+2}](x - x_i)(x - x_{i+1})$

• Differentiating $P_2(x)$ yields:

 $P'_{2}(x) = f[x_{i}, x_{i+1}] + f[x_{i}, x_{i+1}, x_{i+2}](2x - (x_{i} + x_{i+1}))$

• Plugging x_i into $P_2'(x)$ as an approximation of $f(x_i)$ yields:

$$P_{2}'(x_{i}) = f[x_{i}, x_{i+1}] + f[x_{i}, x_{i+1}, x_{i+2}](x_{i} - x_{i+1})$$

Numerical Differentiation: 8/14

- •Normally, x_i , x_{i+1} and x_{i+2} are *equally spaced* (*i.e.*, $x_{i+1} x_i = x_{i+2} x_{i+1} = \Delta$). This condition makes computation easier.
- •Note that $f[x_i, x_{i+1}]$ and $f[x_{i+1}, x_{i+2}]$ are computed as follows:

$$f[x_{i}, x_{i+1}] = \frac{f(x_{i+1}) - f(x_{i})}{\Delta} \quad f[x_{i+1}, x_{i+2}] = \frac{f(x_{i+2}) - f(x_{i+1})}{\Delta}$$

•As a result, $f[x_i, x_{i+1}, x_{i+2}]$ is

$$f[x_i, x_{i+1}, x_{i+2}] = \frac{f[x_{i+1}, x_{i+2}] - f[x_i, x_{i+1}]}{x_{i+2} - x_i} = \frac{f_{i+2} - 2f_{i+1} + f_i}{2\Delta^2}$$

10

Numerical Differentiation: 9/14

• Recall that $P_2'(x)$ is

$$P_{2}'(x_{i}) = f[x_{i}, x_{i+1}] + f[x_{i}, x_{i+1}, x_{i+2}](x_{i} - x_{i+1})$$

• Plugging $f[x_i, x_{i+1}]$, $f[x_i, x_{i+1}, x_{i+2}]$ and $x_i - x_{i+1} = -\Delta$ into $P_2'(x)$, we have

$$P_{2}'(x_{i}) = \frac{1}{2\Delta} \left(-3f_{i} + 4f_{i+1} - f_{i+2}\right)$$

• This is the *three-point forward difference*.

Numerical Differentiation: 10/14

• If the three chosen points are $x_{i-2} < x_{i-1} < x_i$, the interpolating polynomial of degree 2, $P_2(x)$, is

 $P_2(x) = f[x_{i-2}] + f[x_{i-2}, x_{i-1}](x - x_{i-2}) + f[x_{i-2}, x_{i-1}, x_i](x - x_{i-2})(x - x_{i-1})$

• Differentiating $P_2(x)$ yields: $P'_2(x) = f[x_{i-2}, x_{i-1}] + f[x_{i-2}, x_{i-1}, x_i](2x - (x_{i-2} + x_{i-1}))$ • Plugging x_i into $P'_2(x)$ yields

 $P_{2}'(x_{i}) = f[x_{i-2}, x_{i-1}] + f[x_{i-2}, x_{i-1}, x_{i}](2x_{i} - (x_{i-2} + x_{i-1}))$

Numerical Differentiation: 11/14

- If x_{i-2} , x_{i-1} and x_i are equally spaced (*i.e.*, x_{i-1} x_{i-2} = Δ and x_i - $x_{i-1} = \Delta$), we have
- $2x_i (x_{i-2} + x_{i-1}) = (x_i x_{i-1}) + (x_i x_{i-2}) = \Delta + 2\Delta = 3\Delta$ **P**₂'(x) becomes:

$$P_{2}'(x_{i}) = \frac{1}{2\Delta} (f_{i-2} - 4f_{i-1} + 3f_{i})$$

• This is the *three-point backward difference*.

Numerical Differentiation: 12/14

• Forward difference uses $x_i < x_{i+1} < x_{i+2}$, and backward difference uses $x_{i-2} < x_{i-1} < x_i$. Is there a "central" difference that uses $x_{i-1} < x_i < x_{i+1}$?

• You certainly can do this because the $P_2(x)$ is:

 $P_2(x) = f[x_{i-1}] + f[x_{i-1}, x_i](x - x_{i-1}) + f[x_{i-1}, x_i, x_{i+1}](x - x_{i-1})(x - x_i)$

•Some calculations yield the following (exercise):

$$P_{2}'(x_{i}) = \frac{f_{i+1} - f_{i-1}}{2\Delta}$$

• This does not involve f_i and is the same as the 2point central difference.

Numerical Differentiation: 13/14

•Exercises:

•• If the equally spaced data points are $x_{i-1} < x_i$ $\langle x_{i+1},$ show that $P_2(x_i)$ is the following: $P_2'(x_i) = \frac{f_{i+1} - f_{i-1}}{2\Lambda}$ **Given a parabola** $f(x) = ax^2 + bx + c$ and three points s- Δ , s and s+ Δ , show that $f'(s) = \frac{f(s + \Delta) - f(s - \Delta)}{2\Delta}$ Now we know that the three-point central difference does not make much sense for equally spaced data points.

Numerical Differentiation: 14/14

•Examples:

 $\Box f(x) = e^x, x = 1 \text{ and } \Delta = 0.001$ $\Box f(x) = e^x \text{ and } f(1) = e^1 = 2.718281828$

Method	Result
Forward Difference	2.71964142
Backward Difference	2.71962268
Central Difference	2.71828 228
3-point Forward	2.71828091
3-point Backward	2.71828091

Richardson Extrapolation: 1/4

- Richardson has an *extrapolation* scheme that can make the central different method more accurate.
- This extrapolation scheme is very similar to the divided difference scheme:

Richardson Extrapolation: 2/4

 Richardson extrapolation is computed row-byrow. The 0-th entry is a central difference with reduced step size.

initial value of each row.

Richardson Extrapolation: 3/4

Here is the algorithm of Richardson's method. *x*: input, *n*: number of rows, and ∆: initial step size that will be halved for each row.

DO i = 0, n

$$d_{i,0} = \frac{f(x+\Delta) - f(x-\Delta)}{2\Delta}$$

$$d_{i,0} = \frac{f(x+\Delta) - f(x-\Delta)}{2\Delta}$$

$$d_{i,0} = 0, i-1$$

$$d_{i,j+1} = d_{i,j} + \frac{d_{i,j} - d_{i-1,j}}{4^{j+1} - 1}$$

$$d_{i,j+1} = d_{i,j} + \frac{d_{i,j} - d_{i-1,j}}{4^{j+1} - 1}$$

$$d_{i,j+1} = d_{i,j} + \frac{d_{i,j} - d_{i-1,j}}{4^{j+1} - 1}$$

$$d_{i,j+1} = d_{i,j} + \frac{d_{i,j} - d_{i-1,j}}{4^{j+1} - 1}$$

$$d_{i,j+1} = d_{i,j} + \frac{d_{i,j} - d_{i-1,j}}{4^{j+1} - 1}$$

$$d_{i,j+1} = d_{i,j} + \frac{d_{i,j} - d_{i-1,j}}{4^{j+1} - 1}$$

$$d_{i,j+1} = d_{i,j} + \frac{d_{i,j} - d_{i-1,j}}{4^{j+1} - 1}$$

$$d_{i,j+1} = d_{i,j} + \frac{d_{i,j} - d_{i-1,j}}{4^{j+1} - 1}$$

$$d_{i,j+1} = d_{i,j} + \frac{d_{i,j} - d_{i-1,j}}{4^{j+1} - 1}$$

$$d_{i,j+1} = d_{i,j} + \frac{d_{i,j} - d_{i-1,j}}{4^{j+1} - 1}$$

$$d_{i,j+1} = d_{i,j} + \frac{d_{i,j} - d_{i-1,j}}{4^{j+1} - 1}$$

$$d_{i,j+1} = d_{i,j} + \frac{d_{i,j} - d_{i-1,j}}{4^{j+1} - 1}$$

Richardson Extrapolation: 4/4

• Let $f(x)=e^x$. Compute f'(x) at x=1 with n=3 (3 rows) and $\Delta=1$ (initial step size=1).

Numerical Integration: 1/4

•Numerical integration means computing the following in a numerical way (*i.e.*, a value rather than a closed form formula).

In fact, the above cannot be integrated precisely in closed form for most functions *f(x)*. As a result, numerical integration is needed.

Numerical Integration: 2/4

- One way to compute the integration is to (1) choose a number of data points $(x_0=a, f_0), (x_1, f_1), \dots, (x_n=b, f_n)$ and (2) find an interpolating polynomial of degree $n, P_n(x)$.
- Then, we use $P_n(x)$ to replace f(x):

$$\int_{a}^{b} f(x) dx \approx \int_{a}^{b} P_{n}(x) dx$$

• Since $P_n(x)$ is a polynomial, its integration is easy to compute. But, this is a tedious and inefficient procedure.

Numerical Integration: 3/4

- In fact, one may divide the interval [a,b] into subintervals for better approximation instead of using the whole interval [a,b].
- If the subintervals are small enough, degree 1 or 2 interpolating polynomials may be good enough.

Numerical Integration: 4/4

- While the subintervals do not have to be of equal length, equally spaced points do make computation easier.
- Therefore, if we choose to divide the interval [a,b] into n subintervals, each of which has length $\Delta = (b-a)/n$, the division points are $x_0 = a$, $x_1 = x_0 + \Delta$, $x_2 = x_0 + 2\Delta$..., $x_i = x_0 + i\Delta$, ..., $x_n = x_0 + n\Delta = b$.
- The integration becomes:

$$\int_{a}^{b} f(x) dx = \sum_{i=0}^{n-1} \int_{x_{i}}^{x_{i}+\Delta} f(x) dx$$

Trapezoid Rule: 1/5

The trapezoid bounded by (a,0), (a, f(a)), (b, f(b)) and (b,0) has an area close to the area below y=f(x) bounded by x=a and x=b.

Trapezoid Rule: 2/5

- If [*a*,*b*] is divided into *n* equally spaced intervals with length $\Delta = (b-a)/n$. Then, $x_i = x_0 + i\Delta$.
- The area A_i of the *i*-th $(0 \le i \le n-1)$ trapezoid is $(f_i + f_{i+1})\Delta/2$.
- The approximation is the sum of all A_i 's.

Trapezoid Rule: 3/5

• Therefore, the sum of all areas $A_0, A_1, ..., A_{n-1}$ as an approximation of the integration is easy to compute.

$$\int_{a}^{b} f(x)dx \approx A_{0} + A_{1} + \dots + A_{n-1}$$

$$= \frac{\Delta}{2}(f_{0} + f_{1}) + \frac{\Delta}{2}(f_{1} + f_{2}) + \dots + \frac{\Delta}{2}(f_{n-1} + f_{n})$$

$$= \frac{\Delta}{2}[f_{0} + 2(f_{1} + f_{2} + \dots + f_{n-1}) + f_{n}]$$

$$= \Delta \left[\frac{f_{0} + f_{n}}{2} + \sum_{i=1}^{n-1} f_{i}\right]$$
27

Trapezoid Rule: 4/5

• Recall the following trapezoid rule:

$$\int_{a}^{b} f(x)dx \approx \Delta \left[\frac{f_{0} + f_{n}}{2} + \sum_{i=1}^{n-1} f_{i}\right]$$

• The following is a possible implementation:

```
! INPUT: a, b, n

\Delta = (b-a)/n \quad ! \text{ step size}
x = a + \Delta \quad ! x1 \text{ here}
s = 0.0 \quad ! \text{ sum of } f(x_1) \text{ to } f(x_{n-1})
DO i = 1, n-1 ! cumulate each term

s = s + f(x)
x = x + \Delta
END DO

Result = ((f(a)+f(b))/2+s)*\Delta
```

Trapezoid Rule: 5/5

- Consider the integration of e^x from 0 to 1. The correct result is $e^1 e^0 = 1.718282$.
- If [0,1] is divided into 4 subintervals, we have n=4 and $\Delta=0.25$.

Simpson's 3-Point Rule: 1/12

Trapezoid rule is an approximation of f(x) on [x_i,x_{i+1}] with a line (*i.e.*, degree 1 polynomial).
Simpson's 3-point rule approximates f(x) on [x_i,x_{i+2}] with a parabola (*i.e.*, degree 2 polynomial) that interpolates (x_i, f_i), (x_{i+1}, f_{i+1}) and (x_{i+2}, f_{i+2}).

Simpson's 3-Point Rule: 2/12

• Since the $P_2(x)$ that interpolates $(x_i, f_i), (x_{i+1}, f_{i+1})$ and (x_{i+2}, f_{i+2}) can easily be found, we have

$$\int_{x_i}^{x_{i+2}} f(x) dx \approx \int_{x_i}^{x_{i+2}} P_2(x) dx$$

- Since $P_2(x)$ is a degree 2 polynomial, its integration is very easy.
- How do we find this $P_2(x)$? Should we use Lagrange or Newton divided difference?
- It turns out we don't need these tools!

Simpson's 3-Point Rule: 3/12

- We still use equally spaced subintervals.
- Since translation does not change integration result, we translate x_{i+1} to 0 so that x_i=-∆ and x_{i+2}=∆. This will simplify our calculation.
- Let the interpolating polynomial be $c+bx+ax^2$

Simpson's 3-Point Rule: 4/12

• The integration of the polynomial $c+bx+ax^2$ from - Δ to Δ is easy to compute as follows:

Simpson's 3-Point Rule: 5/12

How to compute *c* and *a* in P₂(x) = c+bx+ax²?
From the setup, we have

$$\begin{array}{lll} f_i &=& P_2(-\Delta) = c - b\Delta + a\Delta^2 & c \text{ is known} \\ f_{i+1} &=& P_2(0) = c \\ f_{i+2} &=& P_2(\Delta) = c + b\Delta + a\Delta^2 \end{array}$$

•Adding the first and the third equations together and solving for *a* yield the following:

$$a = \frac{1}{2\Delta^2} (f_i - 2f_{i+1} + f_{i+2})$$

Simpson's 3-Point Rule: 6/12

• What do we have now?

$$\int_{-\Delta}^{\Delta} f(x) dx \approx (2\Delta) \left[c + \frac{a}{3} \Delta^2 \right]$$

$$c = f_{i+1}$$

$$a = \frac{1}{2\Delta^2} \left(f_i - 2f_{i+1} + f_{i+2} \right)$$

Plugging *a* and *c* into the integration yields:

$$\int_{-\Delta}^{\Delta} f(x) dx \approx \frac{\Delta}{3} \left[f_i + 4 f_{i+1} + f_{i+2} \right]$$

•Note that this result does not depend on the x_i 's!

Simpson's 3-Point Rule: 7/12

Compute ∫₀¹ e^x dx = e¹ - e⁰ = 1.718281828...
 We need 3 equally spaced points x₀=0, x₁=0.5 and x₂=1. Thus, Δ=0.5.

Simpson's 3-Point Rule: 8/12

- For a general integration problem, we need to divide [*a*,*b*] into an *even number* of subintervals, and apply Simpson's 3-point rule to two consecutive ones.
- More precisely, apply Simpson's 3-point rule to $[x_0,x_1,x_2], [x_2,x_3,x_4], [x_4,x_5,x_6], ..., [x_{n-2},x_{n-1},x_n].$
- Note that Simpson's 3-point rule only depends on the f_i 's and the length of subinterval Δ .
- For convenience, we shall use n = 2m, where *n* is the number of subintervals, and $\Delta = (b-a)/n$.

Simpson's 3-Point Rule: 9/12

- Consider the following results from integrating two consecutive subintervals.
- Odd indices *f*_i's have coefficient 4 $\frac{\Delta}{3}$ $[x_0, x_1, x_2]$ even indices f_i 's have coefficient 2 $[x_2, x_3, x_4]$ $4f_{5}$ $[x_4, x_5, x_6]$ $+ f_{6}$ f_0 and f_{2m} appear exactly once $[x_{2m-4}, x_{2m-3}, x_{2m-2}] \quad \frac{\Delta}{3} [f_{2m-4} + 4f_{2m-3}]$ $[x_{2m-2}, x_{2m-1}, x_{2m}] \qquad \frac{\Delta}{3} [f_{2m-2} + 4f_{2m-1}]$ 38

Simpson's 3-Point Rule: 10/12

• The following is a computation scheme:

Simpson's 3-Point Rule: 11/12

Result = (f(a)+f(b)+4*odd

+ 2*even) * $\Delta/3_{40}$

Simpson's 3-Point Rule: 12/12

• Integrate $1/(1+x^2)$ from 0 to 1. The answer is 0.78539816...

Iterative Methods

- •An iterative method increases the number of subdivisions until the process converges.
- Since trapezoid and Simpson 3-point rules are simple, we shall look at how they can be modified to become "*iterative*."
- We may start with a coarse subdivision of [*a*,*b*], and compute the integration.
- If two successive integration results are close to each other, stop.
- Otherwise, refine the subdivision and do again!

Iterative Trapezoid Method: 1/4

- Initially, we have one subinterval [a,b], and $\Delta = b a$.
- The integration is $I_0 = \Delta \times (f(a) + f(b))/2$
- In the next iteration, the length of each subinterval is halved (*i.e.*, $\Delta = \Delta/2$) and the number of subintervals is doubled.
- Thus, if the previously computed result *I_n* with *n* subintervals is not very different from the newly computed result *I_{2n}* with 2*n* subintervals, then stop. Otherwise, start the next iteration.

Iterative Trapezoid Method: 2/4

- Trapezoid method has a simple relationship between I_n and I_{2n} .
- It uses the following formula:

$$\int_{a}^{b} f(x)dx \approx \Delta \left[\frac{f_{0} + f_{n}}{2} + \sum_{i=1}^{n-1} f_{i}\right]$$

Only need to update this sum!

• Let K_n be the previous sum, then K_{2n} can be obtained by adding new values.

Iterative Trapezoid Method: 3/4

$\int^1 1 \pi$		$\pi/4 \approx 0.785398163$			
$\int_0 \frac{1}{1+x^2} dx \approx \frac{1}{4}$		Δ=0.5	Δ=0.25	Δ=0.125	
	0	1			
	0.125			0.984615384	
	0.25		0.94117647		
	0.375			0.876712328	
	0.5	0.8			
	0.625			0.719101123	
	0.75		0.64		
	0.875	(0.566371681	
	1	0.5			
	Prev. Sum	0	0.8	2.381176471	
←	New Sum	0.8	1.581176471	3.146800518	
f(0) + f(1)	This Sum	0.8	2.381176471	5.527976989	
$\frac{f(0) + f(1)}{2} = 0.75$	Integration	0.775	0.782794117	0.784747123 45	

Iterative Trapezoid Method: 4/4

• The following is a possible algorithm:

! Initialization	DO
! Int - integration	$\Delta 2 = \Delta/2$
! This - new integration	$x = a + \Delta 2$
! Prev - previous sum	Next = 0
! Next - new sum	DO i = 1, Intervals
	Next = Next + $f(x)$
Fixed = (f(a) + f(b))/2	$\mathbf{x} = \mathbf{x} + \Delta$
Int = Fixed	END DO
Prev = 0	This = (Fixed+Prev+Next) $\Delta 2$
Δ = b-a	IF (This - Int < ε) EXIT
Intervals = 1	Prev = Next
	Int = This
	$\Delta = \Delta 2$

END DO

```
Intervals = Intervals*2
```

Iterative Simpson Method: 1/3

- Simpson method can also be made iterative.
- •All newly added points have odd indices!
- •All original points have *even* indices!

Iterative Simpson Method: 2/3

Iterative Simpson Method: 3/3

```
! Initialization

! Integrate over [a,b]

! Extra = f(a)+f(b)

\Delta = (b-a)/2

Fixed = f(a)+f(b)

Even = 0

Odd = f(a+\Delta)

Int = (Fixed+4*Odd)*\Delta/3

Intervals = 2
```

```
DO
  New Even = Even + Odd
  New Odd = 0
  \Lambda 2 = \Lambda / 2
  x = a + \Lambda 2
  DO i = 1, Intervals
     New Odd = New Odd + f(x)
     \mathbf{x} = \mathbf{x} + \mathbf{A}
  END DO
  New Int = (Fixed+4*New Odd+
               2*New Even)*\Delta 2/3
  IF (|New_Int - Int| < \varepsilon) EXIT
  Even = New Even
  Odd = New_Odd
  Int = New Int
  Intervals=Intervals+Intervals
  \Lambda = \Lambda 2
                                   49
END DO
```

Romberg's Method: 1/4

- •Romberg's method for integration is similar to Richardson's method for differentiation.
- Romberg's method extrapolates the results from two successive values computed with the iterative trapezoid (or Simpson) method.

Romberg's Method: 2/4

- Romberg's method requires an update from I_n to I_{2n} , where I_k is the integration from k intervals.
- I_n is computed as follows: $I_n = \Delta_n \left[\frac{f_0 + f_n}{2} + \sum_{i=1}^{n-1} f_i \right]$ • I_{2n} is computed as $I_{2n} = \Delta_{2n} \left[\frac{f_0 + f_1}{2} + (original) + (new) \right]$

• Since $\Delta_{2n} = \Delta_n/2$, we have

$$I_{2n} = I_n / 2 + \Delta_{2n} \times (new)$$

Romberg Method: 3/4

Romberg Method: 4/4

• The following is an example:

The End