Differentiation and Integration

You think you know when you learn, are more sure when you can write, even more when you can teach, but certain when you can program.

Alan J. Perlis
Fall 2010

Topics to Be Discussed

This unit requires the knowledge of differentiation and integration in calculus.
-The following topics will be presented:
>Forward difference, backward difference and central difference methods for differentiation.
$>$ Richardson extrapolation technique
$>$ Trapezoid, Simpson's 3-point and iterative methods for numerical integration
$>$ Romberg's method for numerical integration.

Numerical Differentiation: 1/14

- If function $f(x)$ is complex, computing $f(x)$ is difficult and approximation may be needed.
- Suppose we wish to compute $f\left(x_{i}\right)$. We may choose a $x_{i+1}>x_{i}$ and approximate $f\left(x_{i}\right)$ by the slope $\left(f\left(x_{i+1}\right)-f\left(x_{i}\right)\right) /\left(x_{i+1}-x_{i}\right)$-forward difference.

Numerical Differentiation: 2/14

- Or, we may choose a $x_{i-1}<x_{i}$ and use the slope $\left(f\left(x_{i}\right)-f\left(x_{i-1}\right)\right) /\left(x_{i}-x_{i-1}\right)$ as an approximation of $f\left(x_{i}\right)$ —backward difference.

Numerical Differentiation: 3/14

\bullet Or, we may choose $x_{i-1}<x_{i}$ and $x_{i+1}>x_{i}$, both close to x_{i}, and use slope $\left(f\left(x_{i+1}\right)-f\left(x_{i-1}\right)\right) /\left(x_{i+1}-x_{i-1}\right)$ as an approximation of $f\left(x_{i}\right)$ - central difference.

Numerical Differentiation: 4/14

- Forward difference, backward difference and central difference methods can be viewed as the use of an interpolating polynomial of degree 1 that interpolates two chosen points and uses its slope for the derivative of $f(x)$.
- If we can use interpolating polynomial of degree 1, why don't we use degree 2 , degree 3 , etc?
- Yes, of course we can. But, higher degree means more points. Normally, three (i.e., degree 2) may be sufficient.

Numerical Differentiation: 5/14

- Suppose we wish to compute $\boldsymbol{f}^{\prime}\left(x_{i}\right)$. We may choose x_{i+1} and x_{i+2}, both close to x_{i}, and evaluate f_{i}, f_{i+1} and f_{i+2}.
\bullet Then, we have three points $\left(x_{i}, f_{i}\right),\left(x_{i+1}, f_{i+1}\right)$ and $\left(x_{i+2}, f_{i+2}\right)$.
- An interpolating polynomial of degree $2, P_{2}(x)$, can be found, and, use $P_{2}^{\prime}\left(x_{i}\right)$ as an approximation of $f\left(x_{i}\right)$. See next slide.
\bullet Newton divided difference is a simple tool for this purpose.

Numerical Differentiation: 6/14

Numerical Differentiation: 7/14

- Given $x_{i}<x_{i+1}<x_{i+2}$, divided difference yields $P_{2}(x)$ as follows:

$$
P_{2}(x)=f\left[x_{i}\right]+f\left[x_{i}, x_{i+1}\right]\left(x-x_{i}\right)+f\left[x_{i}, x_{i+1}, x_{i+2}\right]\left(x-x_{i}\right)\left(x-x_{i+1}\right)
$$

- Differentiating $P_{\mathbf{2}}(x)$ yields:

$$
P_{2}^{\prime}(x)=f\left[x_{i}, x_{i+1}\right]+f\left[x_{i}, x_{i+1}, x_{i+2}\right]\left(2 x-\left(x_{i}+x_{i+1}\right)\right)
$$

- Plugging x_{i} into $P_{2}{ }^{\prime}(x)$ as an approximation of $f\left(x_{i}\right)$ yields:

$$
P_{2}^{\prime}\left(x_{i}\right)=f\left[x_{i}, x_{i+1}\right]+f\left[x_{i}, x_{i+1}, x_{i+2}\right]\left(x_{i}-x_{i+1}\right)
$$

Numerical Differentiation: 8/14

- Normally, x_{i}, x_{i+1} and x_{i+2} are equally spaced (i.e., $x_{i+1}-x_{i}=x_{i+2}-x_{i+1}=\Delta$). This condition makes computation easier.
- Note that $f\left[x_{i}, x_{i+1}\right]$ and $f\left[x_{i+1}, x_{i+2}\right]$ are computed as follows:

$$
f\left[x_{i}, x_{i+1}\right]=\frac{f\left(x_{i+1}\right)-f\left(x_{i}\right)}{\Delta} \quad f\left[x_{i+1}, x_{i+2}\right]=\frac{f\left(x_{i+2}\right)-f\left(x_{i+1}\right)}{\Delta}
$$

- As a result, $f\left[x_{i}, x_{i+1}, x_{i+2}\right]$ is

$$
f\left[x_{i}, x_{i+1}, x_{i+2}\right]=\frac{f\left[x_{i+1}, x_{i+2}\right]-f\left[x_{i}, x_{i+1}\right]}{x_{i+2}-x_{i}}=\frac{f_{i+2}-2 f_{i+1}+f_{i}}{2 \Delta^{2}}
$$

Numerical Differentiation: 9/14

- Recall that $P_{2}{ }^{\prime}(x)$ is

$$
P_{2}^{\prime}\left(x_{i}\right)=f\left[x_{i}, x_{i+1}\right]+f\left[x_{i}, x_{i+1}, x_{i+2}\right]\left(x_{i}-x_{i+1}\right)
$$

\bullet Plugging $f\left[x_{i}, x_{i+1}\right], f\left[x_{i}, x_{i+1}, x_{i+2}\right]$ and $x_{i}-x_{i+1}=-\Delta$ into $P_{2}{ }^{\prime}(x)$, we have

$$
P_{2}^{\prime}\left(x_{i}\right)=\frac{1}{2 \Delta}\left(-3 f_{i}+4 f_{i+1}-f_{i+2}\right)
$$

- This is the three-point forward difference.

Numerical Differentiation: 10/14

- If the three chosen points are $x_{i-2}<x_{i-1}<x_{i}$, the interpolating polynomial of degree $2, P_{2}(x)$, is

$$
P_{2}(x)=f\left[x_{i-2}\right]+f\left[x_{i-2}, x_{i-1}\right]\left(x-x_{i-2}\right)+f\left[x_{i-2}, x_{i-1}, x_{i}\right]\left(x-x_{i-2}\right)\left(x-x_{i-1}\right)
$$

- Differentiating $P_{2}(x)$ yields:

$$
P_{2}^{\prime}(x)=f\left[x_{i-2}, x_{i-1}\right]+f\left[x_{i-2}, x_{i-1}, x_{i}\right]\left(2 x-\left(x_{i-2}+x_{i-1}\right)\right)
$$

- Plugging x_{i} into $P_{2}{ }^{\prime}(x)$ yields

$$
P_{2}^{\prime}\left(x_{i}\right)=f\left[x_{i-2}, x_{i-1}\right]+f\left[x_{i-2}, x_{i-1}, x_{i}\right]\left(2 x_{i}-\left(x_{i-2}+x_{i-1}\right)\right)
$$

Numerical Differentiation: 11/14

- If x_{i-2}, x_{i-1} and x_{i} are equally spaced (i.e., $x_{i-1}-x_{i-2}$
$=\Delta$ and $x_{i}-x_{i-1}=\Delta$), we have

$$
2 x_{i}-\left(x_{i-2}+x_{i-1}\right)=\left(x_{i}-x_{i-1}\right)+\left(x_{i}-x_{i-2}\right)=\Delta+2 \Delta=3 \Delta
$$

- $P_{2}{ }^{\prime}(\boldsymbol{x})$ becomes:

$$
P_{2}^{\prime}\left(x_{i}\right)=\frac{1}{2 \Delta}\left(f_{i-2}-4 f_{i-1}+3 f_{i}\right)
$$

- This is the three-point backward difference.

Numerical Differentiation: 12/14

-Forward difference uses $x_{i}<x_{i+1}<x_{i+2}$, and backward difference uses $x_{i-2}<x_{i-1}<x_{i}$. Is there a "central" difference that uses $x_{i-1}<x_{i}<x_{i+1}$?

- You certainly can do this because the $\boldsymbol{P}_{\mathbf{2}}(\boldsymbol{x})$ is:

$$
P_{2}(x)=f\left[x_{i-1}\right]+f\left[x_{i-1}, x_{i}\right]\left(x-x_{i-1}\right)+f\left[x_{i-1}, x_{i}, x_{i+1}\right]\left(x-x_{i-1}\right)\left(x-x_{i}\right)
$$

- Some calculations yield the following (exercise):

$$
P_{2}^{\prime}\left(x_{i}\right)=\frac{f_{i+1}-f_{i-1}}{2 \Delta}
$$

-This does not involve f_{i} and is the same as the 2 point central difference.

Numerical Differentiation: 13/14

- Exercises:
$*$ If the equally spaced data points are $x_{i-1}<x_{i}$
$<x_{i+1}$, show that $P_{2}^{\prime}\left(x_{i}\right)$ is the following:

$$
P_{2}^{\prime}\left(x_{i}\right)=\frac{f_{i+1}-f_{i-1}}{2 \Delta}
$$

*Given a parabola $f(x)=a x^{2}+b x+c$ and three points $s-\Delta, s$ and $s+\Delta$, show that

$$
f^{\prime}(s)=\frac{f(s+\Delta)-f(s-\Delta)}{2 \Delta}
$$

Now we know that the three-point central difference does not make much sense for equally spaced data points.

Numerical Differentiation: 14/14

-Examples:
$\square f(x)=e^{x}, x=1$ and $\Delta=0.001$
$\square f(x)=e^{x}$ and $f^{\prime}(1)=e^{1}=2.718281828$

Method	Result
Forward Difference	2.71964142
Backward Difference	2.71962268
Central Difference	2.71828228
3-point Forward	2.71828091
3-point Backward	2.71828091

Richardson Extrapolation: 1/4

- Richardson has an extrapolation scheme that can make the central different method more accurate.
-This extrapolation scheme is very similar to the divided difference scheme:

$$
\begin{array}{ll}
d_{i-1, j} & \searrow \\
d_{i, j} & \rightarrow \underset{\substack{i_{j}^{\circ} \dot{j}+i_{o}^{\prime} \\
\operatorname{col} j+1^{\circ} \circ \circ}}{ }=d_{i, j}+\frac{d_{i, j}-d_{i-1, j}}{4_{j}^{\circ+i+1} 1_{0}^{\circ}+1}
\end{array}
$$

Richardson Extrapolation: 2/4

- Richardson extrapolation is computed row-byrow. The 0-th entry is a central difference with reduced step size.

Richardson Extrapolation: 3/4

- Here is the algorithm of Richardson's method.
\bullet_{x} : input, n : number of rows, and Δ : initial step size that will be halved for each row.

```
DO i = 0, n
    di,0}=\frac{f(x+\Delta)-f(x-\Delta)}{2\Delta
    DO j = 0, i-1
        di,j+1}=\mp@subsup{d}{i,j}{}+\frac{\mp@subsup{d}{i,j}{}-\mp@subsup{d}{i-1,j}{}}{\mp@subsup{4}{}{j+1}-1
    END DO
    \Delta = /l2 ! reduce step size
END DO
```

! compute row-by-row
! central difference
! on row i,
! obtain $d_{i, j+1}$ on next col
! reduce step size

Richardson Extrapolation: 4/4

- Let $f(x)=e^{x}$. Compute $f(x)$ at $x=1$ with $n=3$ (3 rows) and $\Delta=1$ (initial step size=1).

Numerical Integration: 1/4

- Numerical integration means computing the following in a numerical way (i.e., a value rather than a closed form formula).

$$
\int_{a}^{b} f(x) d x
$$

- In fact, the above cannot be integrated precisely in closed form for most functions $f(x)$. As a result, numerical integration is needed.

Numerical Integration: 2/4

- One way to compute the integration is to (1) choose a number of data points ($\left.x_{0}=a, f_{0}\right)$, $\left(x_{1}\right.$, f_{1}), ..., ($x_{n}=b, f_{n}$) and (2) find an interpolating polynomial of degree $n, P_{n}(x)$.
- Then, we use $P_{n}(x)$ to replace $f(x)$:

$$
\int_{a}^{b} f(x) d x \approx \int_{a}^{b} P_{n}(x) d x
$$

- Since $P_{n}(x)$ is a polynomial, its integration is easy to compute. But, this is a tedious and inefficient procedure.

Numerical Integration: 3/4

- In fact, one may divide the interval $[a, b]$ into subintervals for better approximation instead of using the whole interval $[a, b]$.
- If the subintervals are small enough, degree 1 or 2 interpolating polynomials may be good

$$
\int_{a=x_{0}}^{b=x_{4}} f(x) d x=\sum_{i=0}^{3} \int_{x_{i}}^{x_{i+1}} f(x) d x
$$

Numerical Integration: 4/4

- While the subintervals do not have to be of equal length, equally spaced points do make computation easier.
-Therefore, if we choose to divide the interval [a,b] into n subintervals, each of which has length $\Delta=(b-a) / n$, the division points are $x_{0}=a$,

$$
x_{1}=x_{0}+\Delta, x_{2}=x_{0}+2 \Delta \ldots, x_{i}=x_{0}+i \Delta, \ldots, x_{n}=
$$ $x_{0}+\boldsymbol{n} \Delta=b$.

- The integration becomes:

$$
\int_{a}^{b} f(x) d x=\sum_{i=0}^{n-1} \int_{x_{i}}^{x_{i}+\Delta} f(x) d x
$$

Trapezoid Rule: 1/5

- The trapezoid bounded by (a,0), (a, f(a)), (b,f(b)) and $(b, 0)$ has an area close to the area below $y=f(x)$ bounded by $x=a$ and $x=b$.

Trapezoid Rule: 2/5

\bullet If $[a, b]$ is divided into \boldsymbol{n} equally spaced intervals with length $\Delta=(b-a) / n$. Then, $x_{i}=x_{0}+i \Delta$.

- The area A_{i} of the i-th $(0 \leq i \leq n-1)$ trapezoid is $\left(f_{i}+f_{i+1}\right) \Delta / 2$.
- The approximation is the sum of all A_{i} 's.

Trapezoid Rule: 3/5

- Therefore, the sum of all areas $A_{0}, A_{1}, \ldots, A_{n-1}$ as an approximation of the integration is easy to compute.

$$
\begin{aligned}
\int_{a}^{b} f(x) d x & \approx A_{0}+A_{1}+\cdots+A_{n-1} \\
& =\frac{\Delta}{2}\left(f_{0}+f_{1}\right)+\frac{\Delta}{2}\left(f_{1}+f_{2}\right)+\cdots+\frac{\Delta}{2}\left(f_{n-1}+f_{n}\right) \\
& =\frac{\Delta}{2}\left[f_{0}+2\left(f_{1}+f_{2}+\cdots+f_{n-1}\right)+f_{n}\right] \\
& =\Delta\left[\frac{f_{0}+f_{n}}{2}+\sum_{i=1}^{n-1} f_{i}\right]
\end{aligned}
$$

Trapezoid Rule: 4/5

- Recall the following trapezoid rule:

$$
\int_{a}^{b} f(x) d x \approx \Delta\left[\frac{f_{0}+f_{n}}{2}+\sum_{i=1}^{n-1} f_{i}\right]
$$

- The following is a possible implementation:

$$
\begin{aligned}
& \text { ! INPUT: } \mathbf{a}, \quad \mathbf{b}, \mathbf{n} \\
& \Delta=(\mathrm{b}-\mathrm{a}) / \mathrm{n} \quad \text { ! step size } \\
& \mathbf{x}=\mathbf{a}+\Delta \quad \text { ! x1 here } \\
& \mathbf{s}=0.0 \quad!\text { sum of } f\left(x_{1}\right) \text { to } f\left(x_{n-1}\right) \\
& \text { DO i = 1, n-1 ! cumulate each term } \\
& \mathbf{s}=\mathbf{s}+\mathbf{f}(\mathbf{x}) \\
& \mathbf{x}=\mathbf{x}+\Delta \\
& \text { END DO } \\
& \text { Result }=((f(a)+f(b)) / 2+s) * \Delta
\end{aligned}
$$

Trapezoid Rule: 5/5

-Consider the integration of \boldsymbol{e}^{x} from 0 to 1. The correct result is $\boldsymbol{e}^{1}-e^{0}=1.718282$.

- If $[0,1]$ is divided into 4 subintervals, we have $n=4$ and $\Delta=0.25$.

Simpson's 3-Point Rule: 1/12

- Trapezoid rule is an approximation of $f(x)$ on [x_{i}, x_{i+1}] with a line (i.e., degree 1 polynomial).
- Simpson's 3-point rule approximates $f(x)$ on [$\left.x_{i}, x_{i+2}\right]$ with a parabola (i.e., degree 2 polynomial) that interpolates $\left(x_{i}, f_{i}\right),\left(x_{i+1}, f_{i+1}\right)$ and $\left(x_{i+2}, f_{i+2}\right)$.

Simpson's 3-Point Rule: 2/12

- Since the $P_{2}(x)$ that interpolates $\left(x_{i}, f_{i}\right),\left(x_{i+1}, f_{i+1}\right)$ and $\left(x_{i+2}, f_{i+2}\right)$ can easily be found, we have

$$
\int_{x_{i}}^{x_{i+2}} f(x) d x \approx \int_{x_{i}}^{x_{i+2}} P_{2}(x) d x
$$

- Since $P_{2}(x)$ is a degree 2 polynomial, its integration is very easy.
-How do we find this $P_{2}(x)$? Should we use Lagrange or Newton divided difference?
- It turns out we don't need these tools!

Simpson's 3-Point Rule: 3/12

- We still use equally spaced subintervals.
- Since translation does not change integration result, we translate x_{i+1} to 0 so that $x_{i}=-\Delta$ and $x_{i+2}=\Delta$. This will simplify our calculation.
\bullet Let the interpolating polynomial be $\boldsymbol{c}+\boldsymbol{b x}+\boldsymbol{a} \boldsymbol{x}^{2}$

Simpson's 3-Point Rule: 4/12

-The integration of the polynomial $c+b x+a x^{2}$ from $-\Delta$ to Δ is easy to compute as follows:

$$
\int_{-\Delta}^{\Delta}\left(c+b x+a x^{2}\right) d x=\left.c x\right|_{-\Delta} ^{\Delta}+\left.\frac{b}{2} x^{2}\right|_{-\Delta} ^{\Delta}+\left.\frac{a}{3} x^{3}\right|_{-\Delta} ^{\Delta}=(2 \Delta)\left[c+\frac{a}{3} \Delta^{2}\right]
$$

Simpson's 3-Point Rule: 5/12

\bullet How to compute c and a in $P_{2}(x)=c+b x+a x^{2}$?

- From the setup, we have

$$
\begin{aligned}
f_{i} & =P_{2}(-\Delta)=c-b \Delta+a \Delta^{2} \quad c \text { is known! } \\
f_{i+1} & =P_{2}(0)=c \\
f_{i+2} & =P_{2}(\Delta)=c+b \Delta+a \Delta^{2}
\end{aligned}
$$

- Adding the first and the third equations together and solving for a yield the following:

$$
a=\frac{1}{2 \Delta^{2}}\left(f_{i}-2 f_{i+1}+f_{i+2}\right)
$$

Simpson's 3-Point Rule: 6/12

- What do we have now?

$$
\begin{aligned}
\int_{-\Delta}^{\Delta} f(x) d x & \approx(2 \Delta)\left[c+\frac{a}{3} \Delta^{2}\right] \\
c & =f_{i+1} \\
a & =\frac{1}{2 \Delta^{2}}\left(f_{i}-2 f_{i+1}+f_{i+2}\right)
\end{aligned}
$$

\bullet Plugging a and c into the integration yields:

$$
\int_{-\Delta}^{\Delta} f(x) d x \approx \frac{\Delta}{3}\left[f_{i}+4 f_{i+1}+f_{i+2}\right]
$$

\bullet Note that this result does not depend on the x_{i} 's!

Simpson's 3-Point Rule: 7/12

- Compute $\int_{0}^{1} e^{x} d x=e^{1}-e^{0}=1.718281828 . .$.
- We need 3 equally spaced points $x_{0}=0, x_{1}=0.5$ and $x_{2}=1$. Thus, $\Delta=0.5$.

Simpson's 3-Point Rule: 8/12

-For a general integration problem, we need to divide $[a, b]$ into an even number of subintervals, and apply Simpson's 3-point rule to two consecutive ones.

- More precisely, apply Simpson's 3-point rule to $\left[x_{0}, x_{1}, x_{2}\right],\left[x_{2}, x_{3}, x_{4}\right],\left[x_{4}, x_{5}, x_{6}\right], \ldots,\left[x_{n-2}, x_{n-1}, x_{n}\right]$.
\bullet Note that Simpson's 3-point rule only depends on the f_{i} 's and the length of subinterval Δ.
\bullet For convenience, we shall use $n=2 m$, where n is the number of subintervals, and $\Delta=(b-a) / n$.

Simpson's 3-Point Rule: 9/12

\bullet Consider the following results from integrating two consecutive subintervals.

Simpson's 3-Point Rule: 10/12

-The following is a computation scheme:

final result

Simpson's 3-Point Rule: 11/12

- In summary, the sum is the following:

$$
\frac{\Delta}{3}\left[\left(f_{0}+f_{2 m}\right)+4 \sum_{i=1}^{m} f_{2 i-1}+2 \sum_{i=1}^{m-1} f_{2 i}\right]
$$

- Input:
\square interval: [a,b]
$\square n=2 m$: \# of divisions
\square Output in Result

Simpson's 3-Point Rule: 12/12

- Integrate $1 /\left(1+x^{2}\right)$ from 0 to 1 . The answer is 0.78539816...

$$
\int_{0}^{1} \frac{1}{1+x^{2}} d x=\tan ^{-1}(1)-\tan ^{-1}(0)=\frac{\pi}{4}=0.785398163 \ldots
$$

Iterative Methods

- An iterative method increases the number of subdivisions until the process converges.
- Since trapezoid and Simpson 3-point rules are simple, we shall look at how they can be modified to become "iterative."
-We may start with a coarse subdivision of $[a, b]$, and compute the integration.
- If two successive integration results are close to each other, stop.
- Otherwise, refine the subdivision and do again!

Iterative Trapezoid Method: 1/4

- Initially, we have one subinterval [a,b], and $\Delta=b-a$.
\bullet The integration is $I_{0}=\Delta \times(f(a)+f(b)) / 2$
- In the next iteration, the length of each subinterval is halved (i.e., $\Delta=\Delta / 2$) and the number of subintervals is doubled.
-Thus, if the previously computed result I_{n} with n subintervals is not very different from the newly computed result $I_{2 n}$ with $2 n$ subintervals, then stop. Otherwise, start the next iteration.

Iterative Trapezoid Method: 2/4

- Trapezoid method has a simple relationship between I_{n} and $I_{2 n}$.
- It uses the following formula:

Only need to update this sum!

$$
\int_{a}^{b} f(x) d x \approx \Delta\left[\frac{f_{0}+f_{n}}{2}+\sum_{i=1}^{n-1} f_{i}\right]
$$

- Let K_{n} be the previous sum, then $K_{2 n}$ can be obtained by adding new values.

Iterative Trapezoid Method: 3/4

$\int_{0}^{1} \frac{1}{1+x^{2}} d x \approx \frac{\pi}{4}$	$\pi / 4 \approx 0.785398163$			
		$\Delta=0.5$	$\Delta=0.25$	$\Delta=0.125$
	0	1		
	0.125			0.984615384
	0.25		0.94117647	
	0.375			0.876712328
	0.5	0.8		
	0.625			0.719101123
	0.75		0.64	
	0.875			0.566371681
	1	0.5	7	
	Prev. Sum	0	0.8	2.381176471
	New Sum	0.8	1.581176471	3.146800518
	This Sum	0.8	2.381176471	5.527976989
$\frac{f(0)+f(1)}{2}=0.75$	Integration	0.775	0.782794117	0.784747123

Iterative Trapezoid Method: 4/4

-The following is a possible algorithm:

```
! Initialization
! Int - integration
! This - new integration
! Prev - previous sum
! Next - new sum
Fixed = (f(a) + f(b))/2
Int = Fixed
Prev = 0
\Delta= b-a
Intervals = 1
```

```
DO
    \(\Delta 2=\Delta / 2\)
    \(\mathrm{x}=\mathrm{a}+\Delta 2\)
    Next \(=0\)
    DO i \(=1\), Intervals
        Next \(=\) Next \(+f(x)\)
        \(\mathbf{x} \quad=\mathbf{x}+\Delta\)
    END DO
    This \(=(\) Fixed+Prev+Next) \(* \Delta 2\)
    IF (|This - Int| < ع) EXIT
    Prev = Next
    Int = This
    \(\Delta \quad=\Delta 2\)
    Intervals = Intervals*2
END DO

\section*{Iterative Simpson Method: 1/3}
- Simpson method can also be made iterative.
- All newly added points have odd indices!
- All original points have even indices!


\section*{Iterative Simpson Method: 2/3}
\begin{tabular}{|c|c|c|c|c|}
\hline \[
\int_{0}^{1} \frac{1}{1+x^{2}} d x \approx \frac{\pi}{4}
\] & \multicolumn{4}{|c|}{\(\pi / 4 \approx 0.785398163\)} \\
\hline \multirow[t]{10}{*}{\(f(0)+f(1)=1.5\)} & & \(\Delta=0.5\) & \(\Delta=0.25\) & \(\Delta=0.125\) \\
\hline & 0 & 0 & & \\
\hline & 0.125 & & & 0.984615384 \\
\hline & 0.25 & & 0.94117647 & \\
\hline & 0.375 & & & 0.876712328 \\
\hline & 0.5 & 0.8 & & \\
\hline & 0.625 & - & & 0.719101123 \\
\hline & 0.75 &  & 0.64 & \\
\hline & 0.875 & & & 0.566371681 \\
\hline & 1 & 0.5 & & \\
\hline \[
\times 2
\] & Previous & \[
0
\] & \(0.8-2\) & 2.38117647 \\
\hline \[
x^{4}
\] & This Odd & 0.8 & \(1.58117647 \rightarrow\) & 3.146800516 \\
\hline & Integration & 0.78333... & 0.785392156 & 0.785398125 \\
\hline
\end{tabular}

\section*{Iterative Simpson Method: 3/3}
```

DO
New_Even = Even + Odd
New_Odd = 0
\Delta2 = \Delta/2
x = a + \Delta2
DO i = 1, Intervals
New_Odd = New_Odd + f(x)
x = x + \Delta
END DO
New_Int = (Fixed+4*New_Odd+
2*New_Even)*\Delta2 / 3
IF (|New_Int - Int| < \&) EXIT
Even = New_Even
Odd = New_Odd
Int = New_Int
Intervals=Intervals+Intervals
\Delta = \Delta2
END DO

Romberg's Method: 1/4

- Romberg's method for integration is similar to Richardson's method for differentiation.
- Romberg's method extrapolates the results from two successive values computed with the iterative trapezoid (or Simpson) method.

Romberg's Method: 2/4

- Romberg's method requires an update from I_{n} to $I_{2 n}$, where I_{k} is the integration from k intervals.
- $I_{\boldsymbol{n}}$ is computed as follows:

$$
I_{n}=\Delta_{n}\left[\frac{f_{0}+f_{n}}{2}+\sum_{i=1}^{n-1} f_{i}\right]
$$

$-I_{2 n}$ is computed as

$$
I_{2 n}=\Delta_{2 n}\left[\frac{f_{0}+f_{1}}{2}+(\text { original })+(\text { new })\right]
$$

- Since $\Delta_{2 n}=\Delta_{n} / 2$, we have

$$
I_{2 n}=I_{n} / 2+\Delta_{2 n} \times(n e w)
$$

Romberg Method: 3/4

-The left is
Romberg's method
On: number of rows

- Result is in $r_{n, n}$

$$
\begin{aligned}
& \Delta=\mathrm{b}-\mathrm{a} \\
& r_{0,0}=(f(a)+f(b)) * \Delta / 2 \\
& \text { intervals = } 1 \\
& \text { DO } \mathrm{i}=1 \text {, } \mathrm{n} \\
& \Delta 2=\Delta / 2 \\
& \mathbf{x}=\mathbf{a}+\Delta \\
& \text { sum }=0 \\
& \text { DO } k=1 \text {, intervals } \\
& \text { sum }=\text { sum }+f(x) \\
& \mathbf{x}=\mathbf{x}+\Delta \\
& \text { END DO } \\
& \begin{array}{l}
r_{i, 0}=r_{\text {i-1,0 }} / 2+\Delta 2 * \mathrm{sum} \\
\text { DO } \mathbf{j}=0, i-1
\end{array} \\
& r_{i, j+1}=r_{i, j}+\frac{r_{i, j}-r_{i-1, j}}{4^{j+1}-1} \\
& \text { END DO } \\
& \Delta=\Delta 2 \\
& \text { intervals = intervals*2 } \\
& \text { END DO }
\end{aligned}
$$

Romberg Method: 4/4

-The following is an example:

The End

