Differentiation and I ntegration

You think you know when you learn, are more sure when you can write,
even more when you can teach, but certain when you can program.

Alan J. Perlis
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Thisunit reguiresthe knowledge of
differentiation and integration in calculus.

Thefollowing topics will be presented:
»Forward difference, backward difference and

central difference methods for differentiation.
» Richardson extrapolation technique

» Trapezoid, Simpson’s 3-point and Iiterative
methods for numerical integration

»Romberg’'smethod for numerical integration.




Numerical Differentiation: 1/14

®|f function f(x) iscomplex, computing f'(X) is
difficult and approximation may be needed.

® Suppose we wish to computef (x;,). We may
choose a x;,, > x; and approximatef (x;) by the
sope (f(X,.1)-T(x:))/(X ,,-%) — forward difference.

Xi Xi+l



Numerical Differentiation: 2/14

®Or, wemay choose a x; ; < X; and use the slope
(F(x)-T(x:_))/(x-X_,) asan approximation of f'(x;)
— backward difference.




Numerical Differentiation: 3/14

®Or, we may choose x; ; < x; and x.,, > X;, both
closeto x;, and use slope (f(X;,1)-T(X_.1))/ (X 17%;.1)
as an approximation of f'(x,) — central
difference.
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Numerical Differentiation: 4/14

® Forward difference, backward difference and
central difference methods can be viewed as
the use of an interpolating polynomial of degree
1 that interpolates two chosen points and uses
itsslopefor the derivative of f(x) .

® |f we can useinterpolating polynomial of
degree 1, why don’t we use degree 2, degree 3,
etc?

® Yes, of coursewe can. But, higher degree
means mor e points. Normally, three(i.e.,
degree 2) may be sufficient.



Numerical Differentiation: 5/14

® Suppose we wish to compute f’(x;). We may
choose x;,, and X, both closeto x;, and
evaluatef;, f,,; and f ..

® Then, we havethree points (x;, f;), (X4, f.,;) and
(Xi12s Tiso).

® An inter polating polynomial of degree 2, P,(x),

can befound, and, use P, (x)) asan
approximation of f'(x;). Seenext dide.

®Newton divided differenceisa ssmpletool for
this purpose.



Numerical Differentiation: 6/14

P,(x) f(X)




Numerical Differentiation: 7/14

®Given X; < Xi,, < Xi,,, divided differenceyields
P,(x) asfollows:

P (X) = TG+ 11X X0 J(X= %)+ 11X %00 X o[ (X=X ) (X =X,)

®Differentiating P,(x) yields:
D/(vi— flv v 1L flv v v 199v_fv v )
2\A) = LA AL T VA N N2l\EAT N T Ay))

®Plugging x; into P, (x) as an approximation of
f'(x) yields:

P0%) = FI%, X0l + FIX X0 X2l (X = %)



Numerical Differentiation: 8/14

®Normally, x;, x;,, and X, are equally spaced (I.€.,
Xi 1~ Xi = Xizo- X1 = A). Thiscondition makes
computation easier.

®Notethat f[x;, x;,,] and f[x.,,, X;,,] are computed
asfollows:

f ()§+1) — f ()ﬂ) _ f ()§+2) —f (Xi+1)
A f[)§+1’)<i+2] _ A

®Asaresult, f[x, Xi,1, Xi,o] IS

f[)§+1,)§+2]— f[Xi’Xi+1] _ 1:i+2 _2fi+1+ fi
X2~ % 20°

f[xi’)ﬁﬂ] —

f[)ﬂ ’ Xi+1’ Xi+2] =
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Numerical Differentiation: 9/14

®Recall that P, (x) is

PZ(XI) — 1:[Xi’xi+1]+ f[xi’xi+1’xi+2](xi _Xi+1)

‘Plugging f[xi’xi+1]’ 1:[Xi’Xi+1’Xi+2] and Xi _Xi+1: -A
into P, (x), we have

- 1
PZ(Xl) :Z(_Bfi +4fi+1_ 1:i+2)

® T hisisthethree-point forward difference.
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Numerical Differentiation: 10/14

®|f thethreechosen pointsare x, , < x;_; <X, the
Inter polating polynomial of degree 2, P,(x), IS

F(X) = T[X_ o]+ T[X_ 2 X 1 J(X=X_5) + T[X_5, X1, X ] (X=X _5) (X~ X_,)
®Differentiating P,(x) yields:
P(%) = FIX o X1+ FIX50 X0 X1(2X = (X, + Xy))
®Plugging x; into P, (x) yields

PZ()<I) — f[Xi—Z’Xi—1]+ f[Xi—Z’Xi—l’Xi](ZXi _(Xi—z +Xi—1))
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Numerical Differentiation: 11/14

®If X ,, X;_; and x; are equally spaced (i.e., X ;- X ,
=Aandx - x,_,=A), wehave
2% = (X2 +%.1) = (% =% ) + (% =% _,) =A+2A =3A
® P, (x) becomes:

. 1
F)Z()<I) :Z( fi—2 _4fi—1+3fi)

® T hisisthe three-point backward difference.

€rnnrnnnns backward, ...
1 4 S forward .
3 4 -1
| |
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Numerical Differentiation: 12/14

®Forward difference uses x; < X;,; < Xi,,, and
backward differenceuses x; , < x; ; < X. Isthere
a“central” differencethat usesx;, ; <X < Xi;;,?

@Y ou certainly can do this because the P,(x) IS:
Pz(x) — f[Xi—1]+ f[)ﬁ—lixi](x_)g—l)“' f[)ﬁ—l’)ﬁixiﬂ](x_xi—l)(x_)ﬁ)
® Some calculations yield the following (exer cise):
. f —f
P ) — |+1 -1
2(%) A

®Thisdoes not involvef, and isthe same asthe 2-
point central difference.

14



Numerical Differentiation: 13/14

®EXxercises:

“|f the equally spaced data pointsare x; ; < x;
< Xi,1, Show that P, (x;) isthefollowing:

. f o —f
PZ(XI) — |+1ZA -1
“*Given a parabola f(x)=ax?+bx+c and three

pointss-A, sand st+A, show that
£(s) = f(s+A)—f(s—A)

2A .
Now we know that the three-point central
difference does not make much sense for
equally spaced data points.

15



Numerical Differentiation: 14/14

®Examples:

df(x) =e,x=1and A =0.001

Qf(x)=e‘and (1) = et =2.718281828

Method Result
Forward Difference 2.71964142
Backward Difference 2.71962268
Central Difference 2.71828228
3-point Forward 2.71828091
3-point Backward 2.71828091
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Richardson Extrapolation: 1/4

®Richardson has an extrapolation scheme that
can makethe central different method more
accur ate.

® T hisextrapolation schemeisvery smilar to the
divided differ ence scheme:

di—l,j

N\
di; - di—l,j

d. : —> d..."i:: di .+ I’J.i:.

I, ] 3]+ v 4:.J+1:0_1

colj  col IR
17




Richardson Extrapolation: 2/4

® Richardson extrapolation is computed row-by-
row. TheO-th entry isa central differencewith

reduced step size.

initial value of each row,

di,j _di—l,j

ij+l = ] A _q

d

central difference
with halved step size

result isherel

Ve:—> e —> o — e
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Richardson Extrapolation: 3/4

®Hereisthealgorithm of Richardson’s method.

®X: input, n: number of rows, and A: initial step
sizethat will be halved for each row.

DO i =

O, n
f(Xx+A)—f(Xx—A)

QQ:
DO j
d

END
A =
END DO

j+1
DO
A/2

0
=d;

2A
, 1-

d

-1
] _di—l,j

4 -1

compute row-by-row
central difference

on row 1i, ...

obtain d;;,;on next col

reduce step size

19




Richardson Extrapolation: 4/4

®L et f(x)=ex. Computef (x) at x=1 with n=3 (3
rows) and A=1 (initial step size=1).

di,j _di—l,j

L =T A _1

d

row 0 (A=1) 3194528

row 1 (A=.5) 28329677 27124476

N
27179248 —  2.71829

N\ N\
row 3 (A=.125) 2.7253665 2.7182602 — 27182826 — _2.7182826
CO

col O col 1 col 2 20

row 2 (A=.25) 2.7466855

v 1l v 1l v




Numerical Integration: 1/4

®Numerical integration means computing the
following in a numerical way (i.e., avalue
rather than a closed form formula).

jb f (X)dlx

®|n fact, the above cannot beintegrated precisaly
In closed form for most functionsf(x). Asa
result, numerical integration is needed.

21



Numerical Integration: 2/4

®Oneway to computetheintegration isto (1)
choose a number of data points (x,=a, f,), (X4,
f,), ..., (X,=b, f) and (2) find an interpolating
polynomial of degreen, P,(X).

® Then, we use P, (x) to replace f(x):
Jf: f(X)dx ~ Jf: P (x)dx

®3Since P,(x) isapolynomial, itsintegration IS
easy to compute. But, thisisatediousand
Inefficient procedure.

22



Numerical Integration: 3/4

®|n fact, one may dividetheinterval [a,b] Iinto
subintervalsfor better approximation instead of
using the wholeinterval [a,b].

®|f the subintervals are small enough, degree 1 or
2 Inter polating polynomials may be good
enough.

y=f(X)

>

jbXO f(X)dx = i j: f (x)dlx

> 23



Numerical Integration: 4/4

®\Whilethe subintervalsdo not haveto be of
equal length, equally spaced points do make
computation easier.

® T herefore, If we chooseto dividetheinterval
[a,b] Into n subintervals, each of which has
length A=(b-a)/n, the division pointsare x, = a,
X1 = XgHA, X, = Xg+t2A ..., X = X HA, .., X, =
Xo+NA=D.

® T heintegration becomes.

jb f (X)olx = j j:A f (X)dx

24



Trapezoid Rule: 1/5

® T hetrapezoid bounded by (a,0), (a, f(a)), (b, f(b))
and (b,0) hasan area closeto the area below
y=f(x) bounded by x=a and x=D.

A b—a

25



Trapezoid Rule: 2/5

®|f [a,b] Isdivided into n equally spaced intervals
with length A=(b-a)/n. Then, x; = X,+A.

®Thearea A of thei-th (0<i1<n-1) trapezoid Is
(f;+f.,)A/2.

® The approximation isthe sum of all A;’s.

A

< 26



Trapezoid Rule: 3/5

®Therefore, thesum of all areasA,, Ay, ..., A, as
an approximation of theintegration iseasy to
compute.

[ £ (x)alx

U

AtTA+tA,

. %(fo‘l' f1)+%(f1+ f2)+°"+%(fn—l+ fh)
Z V4 =

%[fo+2(f1+ 4+ f )+ T ]

n-1
{5t

27



Trapezoid Rule: 4/5

®Recall the following trapezoid rule:

[7f(x)dx=A 'c0+2f”+§fi
=1

® Thefollowing is a possible Implementation:

! INPUT: a, b, n
A = (b-a)/n ! step size
Xx =a + A ! x1 here
s = 0.0 ! sum of f(x;,) to f£(x_ _,)
DO i = 1, n-1 ! cumulate each term
s = s + f(x)
X =xXx + A
END DO
Result = ((f(a)+£(b))/2+s)*A




Trapezoid Rule: 5/5

®Consider theintegration of efrom 0to 1. The
correct result iset-e°=1.718282.

®|f [0,1] isdivided into 4 subintervals, we have
n=4 and A=0.25.

X EXP (X;)
Sum = 5.049747
1.284025
1.648721 | jol e‘dx =~ 0_25[1+ 2.118182 | 5.049747} ~1.7272095

2.117000

1.0 |2.718282 29




Simpson’s 3-Point Rule: 1/12

® Trapezoid ruleisan approximation of f(x) on
[X:, %, with aline (i.e., degree 1 polynomial).

® Simpson’s 3-point rule approximates f(x) on
[Xi, X ,»] With a parabola (i.e., degree 2
polynomial) that interpolates (x;, f;), (Xi;1, fis1)

and (X, fi.0). |

\I—D
- r

'.".,.y
S

y=1(x)

()
2\N)

\/

Xi+2



Simpson’s 3-Point Rule: 2/12

® Sincethe P,(x) that interpolates (X, f.), (Xi.1, fi+1)
and (X, f;,,) can easlly befound, we have

jj f (X)dx = L P, (X)dX

®Since P,(x) isa degree 2 polynomial, its
Integration isvery easy.

®How do we find this P,(x)? Should we use

_agrange or Newton divided difference?

@[t turnsout wedon’'t need these tools!

31



Simpson’s 3-Point Rule: 3/12

®\We still use equally spaced subintervals.

® Sincetranglation does not change integration
result, wetrandate x.,, to O so that x;=-A and
Xi.o=A. Thiswill smplify our calculation.

®L et theinterpolating polynomial be c+bx+ax?

y=c+bx+ax?

32



Simpson’s 3-Point Rule: 4/12

®Theintegration of the polynomial c+bx+ax?
from -A to A iseasy to compute as follows:

I_AA (c+bx+ax?)dx=cx[*, +gx2 . +%x3 L= (2A)[c+%A2}

y=c+bx+ax?

b isnot used!

33



Simpson’s 3-Point Rule: 5/12

®How to compute c and ain P,(x) = c+bx+ax2?
®From the setup, we have
f = P(-A)=c-bA+aA’
[ = pO—c—
f., = PB(A)=c+bA+aA’

1+2

® Adding thefirst and the third equations
together and solving for a yield the following:

1
2A?

c isknown!

a=

(f,—-2f, +f.,,)

I1+1

34



Simpson’s 3-Point Rule: 6/12

®\\Vhat do we have now?

[" foodx = (2A)[C+2A2}

C = f

i+1
1

a = A2

( fi _2fi+1+ fi+2)

®Plugging a and c into theintegration yields:

A A
j_A f(x)dng[ f+4f

®Note that thisresult does not depend on the x;"s!

T 1:i+2_

1+1

35



Simpson’s 3-Point Rule: 7/12

®Compute [ e'dx=¢ -’ =1718281828...

®\Ve need 3 equally spaced points x,=0, x,=0.5
and x,=1. Thus, A=0.5.

I, f(x)dxz%[ fi+afiatfil
X

0. |1

x4 14+ x(A/3)

0.5 |1.648721271 1.718861152

1. |2.718281828

36



Simpson’s 3-Point Rule: 8/12

®For ageneral integration problem, we need to
divide [a,b] into an even number of subintervals,
and apply Simpson’s 3-point ruleto two
consecutive ones.

®More precisay, apply Simpson’s 3-point ruleto
[Xo:X1:Xol, [X2:X3:Xa] s [Xg:X5:Xel, + -y [Xp2:Xn1.Xn]

®Notethat Simpson’s 3-point rule only depends
on thef,’sand thelength of subinterval A.

®or convenience, we shall usen =2m, wheren is
the number of subintervals, and A=(b-a)/n.

37



Simpson’s 3-Point Rule: 9/12

® Conslder the following resultsfrom integrating

two consecutive subintervals.
«—0dd indicesf;’s have coefficient 4

[%. %, %] 2“0""”1}@\
[%: %5,%,] O

9
+*
PS4
*
\d

A 7 X1 1
[ X4 X5, %] § 4t T fo and f,,, appear exactly once

even indicesf;’s have coefficient 2

*

_[ f2m—4 T 41E2m—3

‘1
.
vs®
ws®
e ®

A
3
A ot
[X2m—2’ Xom-1s X2m] 5 [@-} 4 f2m—1 r me] 38

[X2m—4 ’ X2m—3’ X2m—2]




Simpson’s 3-Point Rule: 10/12

® T hefollowing Isa computation scheme;

012 3458¢67....... 2m-4 2m-3 2m-2 2m-1 2m
| i l i l i ] i l i t )
2 4 m-1terms
lx(A/3)

final result 39
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{( fo+ 1) + 42 fy+2
i=1

Simpson’s 3-Point Rule: 11/12

®|n summary, the
sum isthe following:

m-1

®|nput:
dinterval: [a,b]
dn=2m: # of divisions
dOutput in Result

2t
=1

|

A =
step
m =

(b-a)/n
= A+A

n/2 odd terms

odd
x:
DO 1i
od
X
END

= 0.0
a + A
=1, m, 2
d = odd + f(x)
= X + step

even
X =
DO i
ev
x
END

DO

= 0.0 eventerms
a + A+A
= 2, m-1, 2
en = even + f(x)
= X + step

DO

Resu

1t = (£(a)+£f(b)+4*odd
+ 2*even) *A/3 ,




Simpson’s 3-Point Rule: 12/12

®|ntegrate 1/(1+x2) fromOtol. Theanswer is

0.78539816
jo dx = tan™*(1) — tan*(0) = - = 0.785398163...

A=0.25 L+ 4
index | X, f,

O |0 1 ><4—»

1 |0.25|0.94117647 6.32470588 =P

2 |05 |08 1.6 0.785392156

3 075 |0.64 3’(2

4 |1 0.5 o EEEEEEEE——

41



Iterative Methods

®An iterative method increasesthe number of
subdivisions until the process conver ges.

® Sincetrapezoid and Simpson 3-point rulesare
simple, we shall look at how they can be
modified to become “iterative.”

®\We may start with a coar se subdivision of [a,b],
and computetheintegration.

®|f two successive integration resultsare closeto
each other, stop.

®Otherwise, refinethe subdivision and do again!

42



Iterative Trapezoid Method: 1/4

®|nitially, we have one subinterval [a,b], and
A=Db-a.

®Theintegration isl, = Ax(f(a)+f(b))/2

®|n the next iteration, the length of each

subinterval ishalved (i.e.,, A = A/2) and the
number of subintervalsisdoubled.

® Thus, if the previously computed result |, with
n subintervalsisnot very different from the
newly computed result |, with 2n subintervals,
then stop. Otherwise, start the next iteration.

43



Iterative Trapezoid Method: 2/4

® Trapezoid method has a simplerelationship
between |, and | ,,..
Only need to update

®|t usesthe following for mula: this sum!

B n— p
(7
| =1

®L et K, betheprevioussum, then K, can be
obtained by adding new values.

n
0 1 2 3 n-3 n-2 n-1

I — I — I ...................... I — I — I
l_D L L L | i:|_|
; ; A 44

A2 n new points, onefor each interval



Iterative Trapezoid Method: 3/4

714 =0.785398163

A=0.5 A=0.25 A=0.125
0 1

0.125 0.984615384
0.25 0.94117647

0.375 0.876712328
05

0.625 0.719101123
0.75 0.64

0.875 /‘! 0.566371681

1] 7T
J 2dXz—
01+ X 4
fO)+f(@) _ 0.75

Prev. Sum 0.8 381176471
New Sum 0.8 1.581176471 / 3.146800518

| ThisSum 0.8 2381176471 | 5.527976989
| ntegration 0.775 0.782794117 | 0.784747123 ¢°




Iterative Trapezoid Method: 4/4

® Thefollowing isa possible algorithm:

! Initialization

! Int - integration

! This - new integration
! Prev - previous sum

! Next - new sum

Fixed = (f(a) + £f(b))/2

Int = Fixed
Prev =0

A = b-a
Intervals = 1

DO
A2 = A/2
X = a + A2
Next = 0

DO 1 = 1, Intervals

Next
X
END DO

Next + £ (x)
x + A

This = (Fixed+Prev+Next) *A2
IF (|This - Int| < €) EXIT

Prev = Next

Int = This
A = A2
Intervals =

END DO

Intervals*2

46
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|

Iterative Simpson Method: 1/3

® Simpson method can also be made iter ative.
® All newly added points have odd indices!
®All original points have even indices!

j;:;zm f (X) ZA{( fo + f2m) + 4Zm: f2i—1 + ZmZ_l f2i }
B i=1 i=1

3
1 2 3 2m-3 2m-2 2m-1  2m
O ] e | e
L L ! !
IOVGV vensum ] | prev. odd sum

thiseven sum
47



Iterative Simpson Method: 2/3

J-lld T

o1 4 714~ 0.785398163
FO)+1(1)=15 A=0.5 A=0.25 A=0.125
0 0
0.125 0.984615384
0.25 0.94117647

[0.876712328

%2 ¢— Previous
xaf— This0dd 08 ¥— | 158117647 | 3.146800516
Integration | 0.78333... 0.785302156 | 0.785398125 48
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Iterative Simpson Method: 3/3

! Tnitialization
! Integrate over [a,Dbl]
! Extra = f(a)+f(b)

A = (b-a)/2
Fixed = f(a)+£f(b)
Even = 0

odd = f(a+A)

Int = (Fixed+4*0dd)*A/3
Intervals = 2

DO

New Even = Even + 0dd
New Odd = 0

A2 = A/2

X = a + A2

DO i = 1, Intervals
New Odd = New 0O0dd + £ (x)

X = xXx + A
END DO
New Int = (Fixed+4*New Odd+

2*New Even) *A2/3
IF (|New_Int - Int| < €) EXIT
Even = New_ Even
0dd = New 0dd
Int = New_Int
Intervals=Intervals+Intervals
A = A2

END DO 49




Romberg’s Method: 1/4

Romberg’smethod for integration issimilar to
Richardson’s method for differentiation.

Romber g’smethod extrapolatestheresults
from two successive values computed with the
Iterativetrapezoid (or Simpson) method.

° I °

([ ] 1.
o ) r . _r .
[ ] r — F I)J |_1’J

Ii,j+1_li,j + 4J-|-1_1

\ . use Richardson's formula

..,\.‘.- }@/
'.. |, o — o

céfO coll col?2

o |
| trapezoid : °

method using
n subintervals ¢ 5

VST

50



Romberg’s Method: 2/4

® Romberg' s method requiresan updatefrom |
tol,,, wherel, istheintegration from k
Intervals.

®|  iscomputed asfollows:
f+f =

| =A | 2" Zf
®|, is computed as \

fo+f
I2n:A2n|: 02 -

®3SinceA,, = A,/2, we have
., =1_12+A, X(new)

H(original) f+ (new)}

51



Romberg Method: 3/4

®Theleftis
Romberg’ s method

®n: number of rows
®Resultisinr, ,

trapezoid rule

/ END DO
Richafdson A = A2

extrapolation

A = b-a

r,o, = (£(a) +
intervals = 1
DO i =1, n

f(b))*A/2

A2 = A/2
X = a + A
sum = 0

X +

DO k = 1, intervals
sum = sum + fF (x)

— *
r; o = Ly, o/2 + A2*sum

A

DO j = 0, 1i-1

intervals =
END DO

intervals*2

52



Romberg Method: 4/4

® T hefollowing isan example:

,E : dx = tan™ (1) — tan™(0) = % =0.785398163...

1+ X°
0.75
\
0.775 — 0.7833333
p W
0.7827941 — 0.78539216 — 0.78552943
\ \ \
0.7847471 — 0.7853981 — 0.78539854 — 0.78539645
N W W "

0.7852354 — 0.7853982 — 0.7853982 — 0.7853982 — 0.7853982
53






