
1

Part III

Synchronization
Deadlocks and Livelocks

Fall 2015

You think you know when you learn,

are more sure when you can write,

even more when you can teach,

but certain when you can program.

Alan J. Perlis

2

System Model: 1/2

 System resources are used in the following way:

Request: If a process makes a request (i.e.,

semaphore wait or monitor acquire) to use a

system resource which cannot be granted

immediately, then the requesting process blocks

until it can acquire the resource successfully.

Use: The process operates on the resource (i.e.,

in critical section).

Release: The process releases the resource

(i.e., semaphore signal or monitor release).

3

System Model: 2/2

Semaphore C[5] = 1;

C[i].wait();

C[(i+1)%5].wait();

C[(i+1)%5].signal();

C[i].signal();

has 2 chops and eats

outer critical section

left chop locked

right chop locked

inner critical section

request

release

use

4

Deadlock: Definition

 A set of processes is in a deadlock state when

every process in the set is waiting for an event

that can only be caused by another process in the

same set.

 The key here is that processes are all in the

waiting state.

5

Deadlock Necessary Conditions

 If a deadlock occurs, then each of the

following four conditions must hold.

Mutual Exclusion: At least one resource

must be held in a non-sharable way.

Hold and Wait: A process must be holding a

resource and waiting for another.

No Preemption: Resource cannot be

preempted.

Circular Waiting: P1 waits for P2, P2 waits

for P3, …, Pn-1 waits for Pn, and Pn waits for P1.

6

Deadlock Necessary Conditions

 Note that the conditions are necessary.

 This means if a deadlock occurs ALL

conditions are met.

 Since p q is equivalent to q p,

where q means not all conditions are

met and p means no deadlock, as long

as one of the four conditions fails there

will be no deadlock.

7

Deadlock Prevention: 1/7

 Deadlock Prevention means making sure
deadlocks never occur.

 To this end, if we are able to make sure at least
one of the four conditions fails, there will be no
deadlock.

8

Deadlock Prevention: 2/7

Mutual Exclusion

 Mutual Exclusion: Some sharable resources

must be accessed exclusively, which means we

cannot deny the mutual exclusion condition.

The use of these five chopsticks

must be mutually exclusive

9

Deadlock Prevention: 3/7

Hold and Wait
 Hold and Wait: A process holds some resources

and requests for other resources.

Each philosopher holds his left chop

and waits for his right

hold

wait

10

Deadlock Prevention: 4/7

Hold and Wait
 Solution: Make sure no process can hold some

resources and then request for other resources.

 Two strategies are possible (the monitor solution to
the philosophers problem):

A process must acquire all resources before it runs.

When a process requests for resources, it must hold
none (i.e., returning resources before requesting for
more).

 Resource utilization may be low, since many
resources will be held and unused for a long time.

 Starvation is possible. A process that needs some
popular resources my have to wait indefinitely.

11

Deadlock Prevention: 5/7

Hold and Wait
weirdo

#4

If weirdo is faster than #1, #1 cannot eat

 and the weirdo or #4 can eat but not both.

If weirdo is slower than #1, #4 can eat

Since there is no hold and wait,

 there is no deadlock.

#1

empty chair

#4

In this case, #4 has no right neighbor

 and can take his right chop.

Since there is no hold and wait,

 there is no deadlock.

#1

The monitor solution with THINKING-HUNGRY-EATING states forces a

philosopher to have both chops before eating. Hence, no hold-and-wait.

12

Deadlock Prevention: 6/7

No Preemption

 This means resources being held by a process
cannot be taken away (i.e., no preemption).

 To negate this no preemption condition, a
process may deallocate all resources it holds so
that the other processes can use.

 This is sometimes not doable. For example,
while philosopher i is eating, his neighbors
cannot take i’s chops away forcing i to stop
eating.

 Moreover, some resources cannot be reproduced
cheaply (e.g., printer).

13

Deadlock Prevention: 7/7

Circular Waiting
 Circular Waiting: P1 waits for P2, P2 waits

for P3, …, Pn-1 waits for Pn, and Pn waits for P1.

The weirdo, 4-chair, and monitor

 solutions all avoid circular waiting

 and there is no deadlock.

Resources can be ordered in a

 hierarchical way.

A process must acquire resources

 in this particular order.

As a result, no deadlock can happen.

Prove this yourself.

14

Livelock: 1/3

 Livelock: If two or more processes continually
repeat the same interaction in response to
changes in the other processes without doing any
useful work.

 These processes are not in the waiting state,
and they are running concurrently.

 This is different from a deadlock because in a
deadlock all processes are in the waiting state.

15

Livelock: 2/3
MutexLock Mutex1, Mutex2;

Mutex1.Lock(); // lock Mutex1

while (Mutex2.isLocked()) { // loop until Mutex2 is open

 Mutex1.Unlock(); // release Mutex1 (yield)

 // wait for a while // wait for a while

 Mutex1.Lock(); // reacquire Mutex1

} // OK, Mutex2 is open

Mutex2.Lock(); // lock Mutex2. have both

Mutex2.Lock();

while (Mutex1.isLocked()) {

 Mutex2.Unlock();

 // wait for a while

 Mutex2.Lock();

}

Mutex1.Lock();

Both processes try to acquire two locks and they yield to each other

16

Livelock: 3/3

 Process 1 locks Mutex1 first. If Mutex2 is not
locked, process 1 acquires it. Otherwise, process
1 yields Mutex1, waits for a while (for process 2
to take Mutex1 and finish its task), reacquires
Mutex1, and checks again Mutex2 is open.

 Process 2 does this sequence the same way with
the role of Mutex1 and Mutex2 switched.

 To avoid this type of livelock, order the
locking sequence in a hierarchical
way (i.e., both lock Mutex1 first followed by
Mutex2). Thus, only one process can lock both
locks successfully.

17

The End

