Race Conditions: A Case Study

Steve Carr, Jean Mayo and Ching-Kuang Shene
Department of Computer Science
Michigan Technological University
1400 Townsend Drive
Houghton, Ml 49931-1295

Project supported by the National Science Foundation under
grant DUE-9752244 and grant DUE-9984682

What is a Race Condition?

When two or more processes/threads
access a shared data item, the computed
result depends on the order of execution.

There are three elements here:
J Multiple processes/threads
] Shared data items

] Results may be different if the execution
order is altered

A Very Simple Example

Current value of Count is 10

Process #1 Process #2
Count++; Count—--;
LOAD Count LOAD Count
ADD #1 SUB #1
STORE Count STORE Count

We have no way to determine what the
value Count may have.

Why is Race Condition so Difficult
to Catch?

= Statically detecting race conditions in a
program using multiple semaphores is
NP-complete.

* Thus, no efficient algorithms are available.
We have to use our debugging sKkills.

= |t is virtually impossible to catch race
conditions dynamically because the
hardware must examine every memory
access.

How about our students?

Normally, they do not realize/believe their
programs do have race conditions.

They claim their programs work, because
their programs respond to input data
properly.

It takes time to convince them, because we
have to trace their programs carefully.

So, we developed a series of examples to
teach students how to catch race conditions.

Problem Statement

= Two groups, A and B, of threads
exchange messages.

= Each thread in A runs a function
T A(), and each thread in B runs a

function T B().

= BothT A() and T B() have an
infinite loop and never stop.

Threads in group A

T A()
{
while (1) {
// do something
Ex. Message
// do something

Threads in group B

T_B()

{

while (1) {
// do something
Ex. Message
// do something

What is Exchange Message?

= When an instance A makes a message
available, it can continue only if it receives
a message from an instance of B who has
successfully retrieves A’s message.

= Similarly, when an instance B makes a
message available, it can continue only if
it receives a message from an instance of
A who has successfully retrieves B’s
message.

= How about exchanging business cards?

Watch for Race Conditions

= Suppose thread A, presents its message
for B to retrieve. If A,comes for message
exchange before B retrieves A,’s, will A,’s
message overwrites A,’s?

= Suppose B has already retrieved A,’s
message. lIs it possible that when B
presents its message, A, picks it up rather
than A,?

* Thus, the messages between A and B
must be well-protected to avoid race
conditions.

Students’ Work

* This problem and its variations were
used as programming assignments,
exam problems, and so on.

= A significant number of students
successfully solve this problem.

= The next few slides show how
students made mistakes .

First Attempt

Sem A =0, B=20;
Int Buf A, Buf B;

T A()
{
int V_a;
while (1) {
V.a=..;
Signal (B) ;
Wait (4) ;&
Buf A =

V_a = Buf B;

-
““““

int V b;
while (1) {

Vb=..;
-------- Signal (A7) ;

First Attempt: Problem (a)

Thread A Thread B
Signal(B)\

Wait () w_\
\~Signal (A)

Buf B has no value, yet! Yywait (B)
— \

Buf A =V_ a_| _ - Oops, it is tog late!

—
V a = B4af B
= — ‘)l/
\ Buf_=V_b

__’/

First Attempt: Problem (b)

A, A, B, B,
Signal (B) -
Wait (A) ,\
\\\\ Signal (A)
Wait (B)
Signal (N
Wait ()’ N
) Buf_B 3,
;RZ’CL Comditior = — N signal (a)
/'Buf;A = . *\
N — Buf_A/ Z

—_— e —

What did we learn?

= If there are shared data items,
always protect them properly.
Without a proper mutual exclusion,
race conditions are likely to occur.

" In this first attempt, both global
variables Buf A and Buf B are
shared and should be protected.

Second Attempt
Sem A =B = 0;
Sem Mutex = 1;
Int Buf A, Buf B;

T A() T B() protection???
int v a; shake hands int V b;
While (1) { J Whil 1)
‘ Signal (B) ; \ igna ;
i : Wai)
Wait (Mutex) ; ait (Mutex) ;
Buf A =V _a; Buf B =V b;
Signal (Mutex) ; Signal (Mutex)|;
Signal (B) ; gnal (A) ;
Wait (A) ; Wait(B) ; v
Wait (Mutex) ; Wait (Mutex) ;
V_a = Buf B; offer V_ b = Buf A;
Signal (Mutex) ; Signal (Mutex) ;

My cqrd
} }

Second Attempt: Problem

A, A, B
Signal (B) N\

Wait (A) Fl-=—=-=-=-==- -
. : Signal (A)

raee R LI ™Mwait (B)
JBuf & = ") il -
e”’.. Buf B = ..
“‘1‘ S:Lgr‘fé;l‘. (B), hand shaking with
Wait (pI)“ \|- - rorgperson
v“z. :._\:&S ignal (A) :
e, | [Wait (B) :

What did we learn?

* Improper protection is no better than no
protection, because we have an illusion
that data are well-protected.

" We frequently forgot that protection is
done by a critical section, which cannot
be divided.

* Thus, protecting “here is my card”
followed by “may I have yours”
separately is unwise.

Third Attempt

Sem Aready =

Job done ——» sem Adone =

Bready = 1; €— ready to proceed
Bdone = 0;

Int Buf A, Buf B;

T;A()
{ int V_a;
while (1) {
Wait (Aready) ;

ha?bsmW‘ﬂm"-Signal(Adone);I
let me have | I

yours | Wait (Bdone); |

V. a = Buf_B;
Signal (Aready) ;

T_B()

{ int V_b;
while (1) {

Wait (Bready) ;
Buf B = ..;
Signal (Bdone) ;
Wait (Adone) ;
V;b = Buf;A;

Signal (Bready) ;

Third Attempt: Problem

Thread A Thread B

{
| e
Hh
:1’
II

Wait (Bdone) \
ruin the original \ Signal (Bdone)

valuepf Buf_A \ *Wait(Adone)
. = Buf B\ ?
Signal (Aread}\)\ I B is a slow
*% Joop back ** \\ | thread
Wait (Aready) \ |
“_‘_-_Ll;_l_._..
o|Buf A = . M
.""---._..---““ Odm s
race condition »= Buf A !

What did we learn?

* Mutual exclusion for one group may not
prevent threads in other groups from
interacting with a thread in the group.

= Itis common that a student protects a
shared item for one group and forgets
other possible, unintended accesses.

* Protection must apply uniformly to all
threads rather than within groups.

Fourth Attempt

Sem Aready = Bready = 1;<4— ready to proceed
job done —— Sem Adone = Bdone = 0;
Int Buf A, Buf B;

T A() wait/signal B()
{ int v.a; Switched " p¢ v b,
while (1) { while (1) {
I am the only A—»Wait (Bready) Wait (Aready) ;
Buf A = .. Buf B = ..;
here is my card —%sjignal (Adgne) ; Signal (Bdone) ;
waiting for yours—» Wait (Bdong) ; Wait (Adone) ;

V_a = Buf B;

Job done & Signal (Areidy) ;
next B please tgna eacyl -
} }

} }

V_ b = Buf A;
Signal (Bready) ;

Fourth Attempt: Problem

A,

A,

B

Wait (Bready)

Buf_A = ..

Buf_B = ..

Signal (Adone) -§~§--\~‘ﬁ“

Signal (Bdone)

Wait (Adone)

. = Buf_A

Signal (Bready)
Wait(Bre;S;;‘

Hey, this one is for

Al ., ., .,

Wait (Rdone)

. = Buf B :
 Buf

>

L g .
LT A

What did we learn?

= We use locks for mutual exclusion.
= The owner, the one who locked the lock,
should unlock the lock.

* In the above “solution,” Aready is

acquired by a thread A but released by a
thread B. This is risky!

* In this case, a pure lock is more natural
than a binary semaphore.

A Good Attempt

How about the use of a bounded buffer?
int Buf A, Buf B ¢— Buffer variables

T_A() T_B()
{ int V_a; { int V Db;
while (1) { while (1) {
PUT (V_a, Buf Aa); PUT (V_b, Buf B);
GET (V_a, Buf B); GET (V_b, Buf A);
} }
} }
A, A, B
PUT —) PUT

A Good Attempt

Protection still makes sense

Sem Mutex = 1;
int Buf A, Buf B;

critical sections

T A()
{ int V_a;
while (1) {
Wait (Mutex) ;

PUT (V_a, Buf A);
GET (V_a, Buf B);

Signal (Mutex) ; Signal (Mutex) ;

} }

System will lock up when A or B enters its critical section.

A Good Attempt: Make It Right

Sem Amutex = Bmutex = 1;
int Buf A, Buf B;

T A() no more than T B()
{ int V a; onethreadcan { int V b;
while (1) { behere while (1) {

Wait (Amutex) ; Wait (Bmutex) ;
PUT (V_a, Buf_A) ; PUT (V_b, Buf_B) ;
GET(V_a, Buf B); ><GET (V._b, Buf A);

Signal (Amutex) ; Signal (Bmutex) ;

} }

This solution works, even though each group has Its
own protection. The PUT and GET make a difference.

A Good Attempt: Symmetric

Sem Amutex = Bmutex = 1;
Sem NotFul A=NotFul B=1l; Sem NotEmp A=NotEmp B=0;
int Buf A, Buf B;

T_A() T B ()
{ 1int V_a; { int V b;
while (1) { while (1) ({
Wait (Amutex) ; PUT Wait (Bmutex) ; PUT

Wait (NotFul_A) ; Wait (NotFul B);
Buf A =V_a; Buf B =V b;

Signal (NotEmp A) j}.\ |- _Signal (NotEmp B) ;

Wait (NOtEmp B); | / PlWait (NotEmp B3) ;
V_a = Buf B; V_b = Buf_A;
Signal (NotFul B) ! Signal (NotFul_A);

Signal (Amutex); GET Signal (Bmutex) ; GET

A Good Attempt: Another Version

Sem Amutex = Bmutex = 1;
int Buf;A Buf_B

T A() T B()
{ 1int V_a; { int V. b, T;
while (1) { while (1) {

Wait (Amutex) ; Wait (Bmutex) ;
PUT(V;a, Buf;A); GET (T, Buf;A);
GET(V;a, Buf_B); PUT(V;b, Buf_B);

Signal (Amutex) ; Signal (Bmutex) ;

} no more than one thread }
} can be here }

Note that the PUTs and GETSs also
provide mutual exclusion.

A Good Attempt: Non-Symmetric

Sem NotFull = 1, NotEmp A = NotEmp B = 0;

int Shared;
Si 1
T_A() this is a lock T_B() tgna
{ 1int V_a; { int V. b, T;
while (1) { while (1) {

“___>Wait(NotFull);
Shared = V_a;
Signal (NotEmp A); —» Wait (NotEmp A);
T = Shared;
Shared = V_b;
Wait (NotEmp B) ; < "Signal (NotEmp B) ;
V_a = Shared;
<4——Signal (NotFull) ;
} }

What did we learn?

* Understand the solutions to the classical
synchronization problems, because they
are useful.

* The problem in hand could be a variation
of some classical problems.

* Combine, apply and/or simplify the
classical solutions.

" Thus, classical problems are not toy
problems! They have their meaning.

Conclusions

Detecting race conditions is difficult as it is an
NP-hard problem.

Detecting race conditions is also difficult to teach
as there is no theory. Itis heuristic.

Incorrect mutual exclusion is no better than no
mutual exclusion.

Use solutions to classical problems as models.

The examples have been classroom tested, and are
useful, helpful and well-received.

