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What is a Race Condition?

§ When two or more processes/threads 
access a shared data item, the computed 
result depends on the order of execution.

§ There are three elements here:

q Multiple processes/threads
q Shared data items
q Results may be different if the execution

order is altered



A Very Simple Example

Process #1
Count++;

LOAD  Count

ADD   #1

STORE Count

Process #2
Count--;

LOAD  Count

SUB   #1

STORE Count

We have no way to determine what the 
value Count may have.

Current value of Count is 10



Why is Race Condition so Difficult
to Catch?

§ Statically detecting race conditions in a 
program using multiple semaphores is 
NP-complete.

§ Thus, no efficient algorithms are available. 
We have to use our debugging skills.

§ It is virtually impossible to catch race 
conditions dynamically because the 
hardware must examine every memory 
access.



How about our students?

§ Normally, they do not realize/believe their 
programs do have race conditions.

§ They claim their programs work, because 
their programs respond to input data 
properly.

§ It takes time to convince them, because we 
have to trace their programs carefully.

§ So, we developed a series of examples to 
teach students how to catch race conditions.



Problem Statement

§ Two groups, A and B, of threads 
exchange messages.

§ Each thread in A runs a function 
T_A(), and each thread in B runs a 
function T_B().

§ Both T_A() and T_B() have an 
infinite loop and never stop.



Threads in group A

T_A()

{

while (1) {

// do something

Ex. Message

// do something

}

} 

Threads in group B

T_B()

{

while (1) {

// do something

Ex. Message

// do something

}

} 



What is Exchange Message?

§ When an instance A makes a message 
available, it can continue only if it receives 
a message from an instance of B who has 
successfully retrieves A’s message.
§ Similarly, when an instance B makes a 

message available, it can continue only if 
it receives a message from an instance of 
A who has successfully retrieves B’s 
message.
§ How about exchanging business cards?



Watch for Race Conditions

§ Suppose thread A1 presents its message 
for B to retrieve.  If A2 comes for message 
exchange before B retrieves A1’s, will A2’s 
message overwrites A1’s?
§ Suppose B has already retrieved A1’s 

message.  Is it possible that when B 
presents its message, A2 picks it up rather 
than A1?
§ Thus, the messages between A and B

must be well-protected to avoid race 
conditions.



Students’ Work

§ This problem and its variations were 
used as programming assignments, 
exam problems, and so on.

§ A significant number of students 
successfully solve this problem.

§ The next few slides show how 
students made mistakes .



First Attempt

T_A()
{
int V_a;
while (1) {
V_a = ..;
Signal(B);
Wait(A);
Buf_A = V_a;
V_a = Buf_B;

}

T_B()
{
int V_b;
while (1) {
V_b = ..;
Signal(A);
Wait(B);
Buf_B = V_b;
V_b = Buf_A;

}

Sem A = 0, B = 0;
Int Buf_A, Buf_B; I am ready

Wait for your card!



First Attempt: Problem (a)

Buf_B = V_b

V_a = Buf_B

Buf_A = V_a

Wait(B)

Signal(A)

Wait(A)

Signal(B)
Thread BThread A

Buf_B has no value, yet!

Oops, it is too late!



First Attempt: Problem (b)

Buf_A = .

Buf_A = .

Signal(A)

Buf_B = .

Wait(A)

Signal(B)

Wait(B)

Signal(A)

Wait(A)

Signal(B)

B2B1A2A1

Race Condition



What did we learn?

§ If there are shared data items, 
always protect them properly.  
Without a proper mutual exclusion, 
race conditions are likely to occur.

§ In this first attempt, both global 
variables Buf_A and Buf_B are 
shared and should be protected.



Second Attempt

T_A()
{ int  V_a;

While (1) {
Signal(B);
Wait(A);
Wait(Mutex);
Buf_A = V_a;

Signal(Mutex);
Signal(B);
Wait(A);
Wait(Mutex);
V_a = Buf_B;

Signal(Mutex);
}

}

T_B()
{ int  V_b;

While (1) {
Signal(A);
Wait(B);
Wait(Mutex);
Buf_B = V_b;

Signal(Mutex);
Signal(A);
Wait(B);
Wait(Mutex);
V_b = Buf_A;

Signal(Mutex);
}

}

Sem  A = B = 0;
Sem  Mutex = 1;
Int  Buf_A, Buf_B;

protection???
shake hands

offer
My card



Second Attempt: Problem

Buf_A = ..

Wait(B)

Signal(A)

Wait(A)

Signal(B)

Buf_B = ..

Buf_A = ..

Wait(B)

Signal(A)

Wait(A)

Signal(B)

BA2A1

hand shaking with
wrong person

race condition



What did we learn?

§ Improper protection is no better than no 
protection, because we have an illusion
that data are well-protected.

§ We frequently forgot that protection is 
done by a critical section, which cannot 
be divided.

§ Thus, protecting “here is my card”
followed by “may I have yours”
separately is unwise.



Third Attempt

T_A()

{ int V_a;

while (1) {

Wait(Aready);

Buf_A = ..;

Signal(Adone);

Wait(Bdone);

V_a = Buf_B;

Signal(Aready);

}

}

T_B()

{ int V_b;

while (1) {

Wait(Bready);

Buf_B = ..;

Signal(Bdone);

Wait(Adone);

V_b = Buf_A;

Signal(Bready);

}

}

Sem Aready = Bready = 1;
Sem Adone = Bdone = 0;
Int Buf_A, Buf_B;

ready to proceed
job done

here is my card
let me have

yours



Third Attempt: Problem

… = Buf_A

Buf_A = …

Wait(Aready)
** loop back **

Signal(Aready)

… = Buf_B

Wait(Adone)

Signal(Bdone)

Wait(Bdone)

Signal(Adone)

Buf_A =

Thread BThread A

ruin the original
value of Buf_A

race condition

B is a slow
thread



What did we learn?

§ Mutual exclusion for one group may not 
prevent threads in other groups from 
interacting with a thread in the group.

§ It is common that a student protects a 
shared item for one group and forgets 
other possible, unintended accesses.

§ Protection must apply uniformly to all 
threads rather than within groups.



Fourth Attempt

T_A()

{  int V_a;

while (1) {

Wait(Bready);

Buf_A = ..;

Signal(Adone);

Wait(Bdone);

V_a = Buf_B;

Signal(Aready);

}

}

T_B()

{  int V_b;

while (1) {

Wait(Aready);

Buf_B = ..;

Signal(Bdone);

Wait(Adone);

V_b = Buf_A;

Signal(Bready);

}

}

Sem  Aready = Bready = 1;
Sem  Adone = Bdone = 0;
Int  Buf_A, Buf_B;

ready to proceed
job done

I am the only A

here is my card

waiting for yours

Job done &
next B please

wait/signal
switched



Fourth Attempt: Problem

… = Buf_B

Wait(Bdone)

……

Wait(Bready)

Signal(Bready)

… = Buf_A

Wait(Adone)

Signal(Bdone)

Buf_B = …Signal(Adone)

Buf_A = …

Wait(Bready)

BA2A1

Hey, this one is for A1!!!



What did we learn?

§ We use locks for mutual exclusion.

§ The owner, the one who locked the lock, 
should unlock the lock.
§ In the above “solution,” Aready is 

acquired by a thread A but released by a 
thread B.  This is risky!

§ In this case, a pure lock is more natural 
than a binary semaphore.



A Good Attempt
How about the use of a bounded buffer?

T_A()

{  int  V_a;

while (1) {

PUT(V_a, Buf_A);

GET(V_a, Buf_B);

}

}

T_B()

{  int  V_b;

while (1) {

PUT(V_b, Buf_B);

GET(V_b, Buf_A);

}

}

int Buf_A, Buf_B; Buffer variables

GET

PUT

GET

PUTPUT

BA2A1



A Good Attempt
Protection still makes sense

T_A()

{  int  V_a;

while (1) {

Wait(Mutex);

PUT(V_a, Buf_A);

GET(V_a, Buf_B);

Signal(Mutex);

}

}

T_B()

{  int  V_b;

while (1) {

Wait(Mutex);

PUT(V_b, Buf_B);

GET(V_b, Buf_A);

Signal(Mutex);

}

}

Sem Mutex = 1;
int Buf_A, Buf_B;

System will lock up when A or B enters its critical section.

critical sections



A Good Attempt: Make It Right

T_A()

{  int  V_a;

while (1) {

Wait(Amutex);

PUT(V_a, Buf_A);

GET(V_a, Buf_B);

Signal(Amutex);

}

}

T_B()

{  int  V_b;

while (1) {

Wait(Bmutex);

PUT(V_b, Buf_B);

GET(V_b, Buf_A);

Signal(Bmutex);

}

}

Sem Amutex = Bmutex = 1;
int Buf_A, Buf_B;

This solution works, even though each group has Its 
own protection.  The PUT and GET make a difference.

no more than
one thread can
be here



A Good Attempt: Symmetric

T_A()
{  int V_a;
while (1) {
Wait(Amutex);
Wait(NotFul_A);
Buf_A = V_a;
Signal(NotEmp_A);

Wait(NotEmp_B); 
V_a = Buf_B;
Signal(NotFul_B);

Signal(Amutex);
}

}

T_B()

{  int V_b;

while (1) {

Wait(Bmutex);

Wait(NotFul_B);

Buf_B = V_b;

Signal(NotEmp_B);

Wait(NotEmp_A); 

V_b = Buf_A;

Signal(NotFul_A);

Signal(Bmutex);

}

}

Sem Amutex = Bmutex = 1;  
Sem NotFul_A=NotFul_B=1; Sem NotEmp_A=NotEmp_B=0;
int Buf_A, Buf_B;

PUT PUT

GET GET



A Good Attempt: Another Version

T_A()
{  int V_a;
while (1) {
Wait(Amutex);
PUT(V_a, Buf_A);
GET(V_a, Buf_B);

Signal(Amutex);
}

}

T_B()
{  int V_b, T;
while (1) {
Wait(Bmutex);
GET(T, Buf_A);
PUT(V_b, Buf_B);

Signal(Bmutex);
}

}

Sem  Amutex = Bmutex = 1;
int  Buf_A, Buf_B;

no more than one thread
can be here

Note that the PUTs and GETs also 
provide mutual exclusion.



A Good Attempt: Non-Symmetric

T_A()
{  int V_a;
while (1) {
Wait(NotFull);
Shared = V_a;
Signal(NotEmp_A);

Wait(NotEmp_B);
V_a = Shared;

Signal(NotFull);
}

}

T_B()
{  int V_b, T;
while (1) {

Wait(NotEmp_A);
T = Shared;
Shared = V_b;

Signal(NotEmp_B);

}
}

Sem NotFull = 1, NotEmp_A = NotEmp_B = 0;
int Shared;

this is a lock

no B can be here
without A’s Signal



What did we learn?

§ Understand the solutions to the classical 
synchronization problems, because they 
are useful.
§ The problem in hand could be a variation 

of some classical problems.
§ Combine, apply and/or simplify the 

classical solutions.
§ Thus, classical problems are not toy 

problems!  They have their meaning.



Conclusions

§ Detecting race conditions is difficult as it is an 
NP-hard problem.

§ Detecting race conditions is also difficult to teach 
as there is no theory.  It is heuristic.

§ Incorrect mutual exclusion is no better than no 
mutual exclusion.

§ Use solutions to classical problems as models.

§ The examples have been classroom tested, and are 
useful, helpful and well-received.


