
Multithreaded Programming in an
Introduction to Operating Systems Course

Ching-Kuang Shene∗

Department of Computer Science,
Michigan Technological University,

Houghton, MI 49931–1295
Email: shene@mtu.edu

Abstract

This paper presents a way of teaching multithreaded
programming as a component in an introduction to op-
erating systems course. Topics include programming as-
signments, term projects, and experiences. This paper
also suggests future work for overcoming a bottleneck
that occurs in the current version of this course.

1 Introduction

To help our students early in approaching system ori-
ented courses and research projects, a system program-
ming course was revised to become an introduction to
operating systems course. Since there is another elec-
tive operating systems course for senior and graduate
students, this course only provides a survey of impor-
tant concepts and related programming skills. Stu-
dents enrolled in this course normally have completed
the CS1, CS2, computer organization and assembly
language, and project oriented software development
courses, and are sophomores and juniors. As a result,
this course must be elementary and informative. Tanen-
baum’s Modern Operating Systems was selected as our
text. In a 10-week quarter system, only the most im-
portant topics of the first five chapters were covered,
including a brief discussion of deadlocks.
With the continuing emergence of multithreaded com-

putation as a powerful vehicle for science and engineer-
∗This work was partially supported by the National Science

Foundation under grant CCR-9696084 (formerly CCR-9410707)
and grant DUE-9653244.

ing, we decided to take a multithreaded programming
early approach so that this skill can be used in later
courses such as GUI programming, parallel program-
ming, operating systems, computer graphics, and some
other courses in which concurrency is an important el-
ement. To this end, we have to choose a programming
system. We used Pascal-FC [2] previously, but was
not well-received. We also seriously considered SR [6].
Since its syntax and semantics are different from that
of C/C++ and since we do not have enough time to
cover another programming language, SR was rejected.
Eventually, we chose the SunOS lightweight process li-
brary, because it is a good user-level thread library with
a simple API. To further reduce students’ load, we also
adopted Berk’s simplified ST_threads [1].
The following summarizes our effort of using mul-

tithreaded programming for students’ lab work. Sec-
tion 2 details the programming assignments, Section 3
discusses a term project, and Section 4 describes some
of our findings. Section 5 suggests some future work to
improve this course. Section 6 has our conclusion.

2 Programming Assignments

After learning the process model, context switching and
process scheduling and before actually designing and
implementing their own systems, students must learn
and appreciate the merit of multithreaded programming
through several programming assignments. The pur-
pose of these assignments is mainly to motivate students
for this new programming paradigm.
There are four assignments and one term project.

Each assignment takes about one week to 10 days, while
the project requires approximately three weeks. The
first assignment serves as a warm-up (Section 2.1). The
second and the third give students chances to prac-
tice semaphores and condition variables (Section 2.2
and Section 2.3). The fourth provides an opportu-

1

nity for students to learn catching and handling signals
(Section 2.4). The term project involves implementing
a non-preemptive user-level multithreaded system that
supports locks, semaphores and mailboxes (Section 3).

2.1 Warm-Up

This warm-up assignment focuses only on forking and
joining threads, and resource sharing among threads.
The problem was matrix multiplication.
Two matrices A = [aik] and B = [bkj] of or-

ders m × p and p × n, respectively, are read into two
global two-dimensional arrays. For each entry of ma-
trix C = [cij] = A ·B, a thread is created for computing
cij =

∑p
k=1 aikbkj , where 1 ≤ i ≤ m and 1 ≤ j ≤ n.

Therefore, there are m × n threads running in parallel.
After creating all threads, the main function uses thread
join to wait until all threads are done and then displays
the result of the multiplication.
Matrix multiplication is not the only choice. Prob-

lems that require the use of shared memory without
synchronization except for joining threads can be very
good candidates (e.g., quicksort).

2.2 Semaphores

Since this is an introductory course, discussing some
typical uses of semaphores first for students to incor-
porate into their programs could be better than only
presenting classical problems. In the past, we discussed
the following ways of using semaphores: locks, coun-
ters, notifications, and rendezvous. Semaphores used
in this assignment are all counting semaphores imple-
mented with condition variables.
This assignment asks students to implement a special

type of rendezvous. There are two groups of threads, say
A and B. To establish a rendezvous, it takes one thread
from A and two threads from B. A correct solution
looks like the following:

Thread in A

wait(A);

wait(B);

wait(B);

signal(A);

signal(done);

signal(done);

Thread in B

signal(B);

wait(done);

where B and done are initialized to 0 and A is initialized
to 1. Semaphore A makes a thread the only one wait-
ing for a rendezvous; semaphore B is used to wait for
a signal from a thread in B; and semaphore done indi-
cates a rendezvous has occurred. Note that removing
the wait(A)-signal(A) pair can cause deadlocks.

Students were also asked to consider a special ren-
dezvous with message exchange. More precisely, when

two threads, one from each group, come to a rendezvous
point, they should exchange their IDs.
About 19% of students submitted correct solutions,

while about 15% of all solutions were almost correct
except that deadlocks may occur because wait(A)-
signal(A) was missing. Other solutions were not com-
plete because of race conditions, incorrectly formed crit-
ical sections, using unnecessary counters without mu-
tual exclusion, and other mistakes.

2.3 Condition Variables

This assignment involves the use of condition variables
and monitors. In class, the Mesa style and Hoare style
of signaling a condition variable were covered. The im-
plementation of semaphores used in the previous assign-
ment was described to students, illustrating the differ-
ences between the Mesa style and Hoare style. Then,
students were asked to write two programs using mon-
itors. The first is the well-known readers-and-writers
problem and the second is the river-crossing problem.
In the river cross-crossing problem, vehicles arrive at

both ends of a bridge that can only hold three vehi-
cles along the same direction at any time. Students
were asked to write a monitor with entry procedures
Arrival() and Departure(). Arrival() passes the di-
rection of the calling vehicle to the monitor. Returning
from this procedure is postponed until the situation is
safe (i.e., there are less than three vehicles on the bridge
along the same direction). Departure() is called after
a vehicle completes its river-crossing.
Since monitors are more structured than semaphores,

more than 46% of our students submitted correct solu-
tions. Since counters can be used in a monitor without
worrying about race conditions, some students can even
rewrite the second assignment using a monitor in a very
short amount of time.

2.4 Handling Signals

This assignment is about catching signals SIGINT and
SIGALRM by installing signal handlers and using func-
tions setjmp() and longjmp(). This program is actu-
ally a naive scheduler in which a user function is “called”
rather than resumed from where it was suspended.
Five simple functions, serving as “user programs”,

were provided to students to be included into their pro-
grams. The alarm clock function alarm() is used to set
time quantum values. Once signal SIGALRM occurs, this
program should catch and process it, and call next func-
tion. If SIGINT is caught due to a Ctrl-C, a mini-shell is
activated to accept user commands such as exiting the
program, exiting the mini-shell, killing a function, sus-
pending a function, reactivating a suspended functions,

2

and setting a new time quantum value.
The capability of jumping between a signal handler

and a function gives students a sense of interrupt han-
dlers. More importantly, one can use setjmp() and
longjmp() to build coroutines, which will be used in
the term project for implementing a scheduler. With-
out using any multithreaded library, we were able to
demonstrate to students a general principle of creating
a set of coroutines, which is similar to the use of function
Yield() available in many multithreaded systems.
This is an easy problem and about 79% of students

came up correct solutions.

3 Term Project

The last three weeks were reserved for a term project
which involved implementing a non-preemptive user-
level multithreaded system with synchronization mech-
anisms locks, semaphores and mailboxes. More than
17% of our students submitted correct solutions; only
10% received a score less than 75%.

3.1 Project Materials

Materials provided to students included the following:
(1) a handout describing the project, (2) a copy of a
correct system in object format as a reference, (3) a
copy of source code of the system with all required el-
ements removed, and (4) a set of examples illustrat-
ing the use of this system. The required elements of
this project consist of implementing a non-preemptive
scheduler; a queue class and its accompanying opera-
tions; a lock class with member functions lock() and
unlock(); a semaphore class with member functions
wait() and signal(); a mailbox class with member
functions send() and receive(); and, a mechanism for
managing stack space. In fact, the lock class was given
to students as an implementation example.

3.2 Stack Space Management

Since an executable has only one stack and since each
thread requires a separate stack for its local environ-
ment, a stack area must be found before a thread can
be started. We used a scheme proposed by Kofoed [7]. A
large enough block is reserved for main() before starting
any thread. For each thread, the remaining stack space
is searched for a large enough block with the first-fit
algorithm. The allocated and freed blocks are chained
together in address order and a freed area occupied by
a completed thread is merged with its adjacent holes.
This is a challenging exercise and requires the use of

setjmp() and longjmp() to jump back-and-forth be-
tween the stack management and thread management

functions. Therefore, part of this stack allocation func-
tion was provided to students with the first-fit and merg-
ing adjacent holes algorithms removed. Since this term
project started after memory management was covered,
asking students to implement the first-fit and merging
adjacent holes algorithms seemed reasonable.

3.3 The Non-preemptive Scheduler

Implementing the scheduler and various queue activities
requires the use of functions setjmp() and longjmp()
to mimic context switching.
The system has one ready queue and each of the syn-

chronization mechanisms has its own waiting queue. A
thread is appended to one of these queues only if it
must wait according to the corresponding synchroniza-
tion protocol. If a thread must be removed from a
queue, the first of the queue is taken and appended
to the ready queue. All threads have equal priority
and all queues are FIFO. When a thread is suspended,
setjmp() is used to save its environment into a jump
buffer in that thread’s control block. Moving a thread
from ready to running is simply implemented by exe-
cuting a longjmp() to its saved jump buffer.

3.4 Example Programs

Several example programs were provided to students to
illustrate the use of this system. Students can run these
programs with the correct implementation to get a feel-
ing of what a correct system should look like. These
programs include: (1) a program illustrating the use of
semaphores to enforce an alternating execution of two
threads, (2) a solution to the bounded buffer problem
using mailboxes, (3) various solutions to the dining-
philosophers problem using semaphores, and (4) a par-
allel sorting program using mailboxes.
The last problem requires some elaboration. Thread

Ti sends integer messages to thread Ti+1 with mailbox
Bi+1 (1 ≤ i < n). A generator thread sends n integers
to mailbox B1 for thread T1 to retrieve. Thread Ti keeps
the first received number, say Ki, and waits for other
integers from Bi. If the incoming one is larger than Ki,
it is sent to Ti+1; otherwise, Ti sends out Ki and keeps
the incoming one. After all integers have been sent, the
generator sends the END message. After receiving the
END message, K1, K2, . . ., Kn are in sorted order.

3.5 Programming Problems

Using their implementations, students are required to
solve two problems: (1) the smokers problem and (2)
the parallel exchange sort. The smokers problem is
well-known and can be found in most operating systems

3

textbooks. However, we only asked students to solve a
restricted version in which each smoker is required to
take both ingredients provided by the agent from the
counter at the same time.
The parallel exchange sort must be solved with mail-

boxes. Let there be 2n input integers given in a shared
array, say a[]. Thread Ti (0 ≤ i < n) retrieves a[2i]
and a[2i + 1], and iterates n times. For each iteration,
Ti performs the following five steps once: (1) compares
the numbers in hand, (2) sends the smaller one to Ti−1

and the larger one to Ti+1, (3) waits for a number pi−1

from Ti−1 and a number pi+1 from Ti+1, (4) if pi−1 is
larger than Ti’s smaller number, then uses pi−1 to re-
place the smaller number, and (5) if pi+1 is smaller than
Ti’s larger number, then uses pi+1 to replace its larger
number. After n iterations, Ti puts the smaller and the
larger numbers back to a[2i] and a[2i+ 1], respectively.
There are other good and interesting problems us-

ing mailboxes such as parallel sieve, n-queens, and fire
squadrons. They may be used in the future.

3.6 Possible Improvements

This term project is not very realistic, because the
scheduler is non-preemptive and is not self-scheduling
(i.e., the system requires a driver statement that repeat-
edly activates the next thread in the ready queue [7]).
However, it is platform independent since it is com-
pletely written in C/C++ without any UNIX system
calls. Moreover, it is simple and deterministic and stu-
dents can easily trace their programs with a debugger.
There are four possible improvements without adding
too much burden to students.

First, making the scheduler priority driven is easy;
however, starvation may become a major problem. On
the other hand, students could add aging to the sched-
uler and practice other scheduling polices. Second, a
more flexible stack allocation scheme is possible. All
thread control blocks and stack areas can be dynami-
cally allocated; but, some assembly language is required
making the system machine dependent. This does not
complicate the system very much as has been shown in
REX [4] and several public domain implementations of
Pthreads. REX is particularly interesting, because it is
small and clean and may serve as a model if this change
must be made. For a MS-DOS environment, English [5]
has a simple and interesting system, with source code
available. Third, by modifying the thread initializa-
tion part and the scheduler, this system is capable of
self-scheduling and is more natural. Fourth, with the
help of semaphores, it is possible to implement condition
variables and a MONITOR base class for users to derive
their own monitor classes. Moreover, students can try
and compare the effects of Mesa style and Hoare style.

Converting the non-preemptive scheduler to a pre-
emptive one is difficult, since context switching and sig-
nal handlers become too involved to be done in three
weeks. Hence, we will keep using a non-preemptive
scheduler in the near future.

4 Experiences

In our two-year experience, the most important finding
is that many students just directly apply sequential pro-
gramming skills to multithreaded programming. Since
the behavior of a multithreaded program is dynamic and
the same bug may not appear every time the program
is run, students did have a hard time in learning multi-
threaded programming, especially those who were used
to sitting in front of the computers immediately after
receiving the assignment and employing the trial-and-
error approach. The resulting programs were bulky and
more complicated than necessary. Worse, this approach
can easily introduce race conditions and deadlocks into
programs. We encouraged our students to design and
think the program flow and interaction among threads
carefully before start coding programs. In addition to
this, we also found several other problems as follows.
Student programs frequently have race conditions. It

is difficult to convince them that the existence of a par-
ticular race condition may cause serious problems, since
in their mind they have “tested” their programs and re-
ceived correct answers. It is also difficult to pinpoint
race conditions, since in many cases sharing a variable
does not cause any problem. Therefore, it is believed
that there remained unspotted race conditions in stu-
dent programs. This definitely would have a bad im-
pact, since students could get the impression that their
programs are “correct.”
To avoid race conditions, some students created large

critical sections, serializing their programs. A typical
example is that almost all important statements of a
thread are enclosed in a large critical section, thereby
forcing the threads to execute one after the other.
While the above two are beginner problems, using ex-

plicit counters rather than the built-in one of a count-
ing semaphore could be universal. Many students in
this course and some in an elective operating systems
course for senior and graduate students had the same
tendency. For example, in the rendezvous assignment
discussed in Section 2.2, many students used a counter
to count the number of threads in B arrived for a ren-
dezvous rather than using two wait()s. This not only
increases the complexity of the program, but also makes
it inefficient. The more explicit counters are used, the
more semaphores are required to establish mutual ex-
clusion. Consequently, a program can be very inefficient

4

due to frequently locking and unlocking counters.
Deadlocks did not occur in students’ programs fre-

quently. This is perhaps because obvious deadlocks can
easily be detected and subtle deadlocks are rare in these
simple programs and are difficult to uncover. In the
semaphore assignment, deadlocks did appear in several
programs as pointed out earlier.

5 Future Work

As pointed out in Section 4, detecting potential race
conditions and deadlocks is difficult and there are no
good public pedagogical tools dedicated to this purpose.
To help our students learn multithreaded program-

ming effectively, we intend to design some pedagogical
tools. This is not an easy job, since statically detecting
race conditions and deadlocks are NP-complete and NP-
hard, respectively [9, 8]. On-the-fly detection of dead-
locks is a textbook topic; but, on-the-fly detection of
race conditions is infeasible. Postmortem detection is
a possibility; but, it could be too late because the user
program has already been involved in some problems.
Animating the execution of a multithreaded program

is very helpful. There has been some progress in the
past few years [3, 10, 11]. Animation can be real-time or
postmortem. The main drawback of a postmortem sys-
tem is that it generates large amount of output, usually
several megabytes. Moreover, since the animation sys-
tem also needs some extra synchronization mechanisms
(e.g., locking the output file and/or other resources that
are shared by the system and threads), a user program
will compete with the system to gain access to these
shared resources and therefore may be interfered by this
extra synchronization. As a result, the behavior of the
animated user program could be considerably different
from that of the original.
In summary, pedagogical tools that can detect dead-

locks on-the-fly, and potential race conditions and dead-
locks statically are powerful aids for students. Animat-
ing the behavior of a program along with the activities
of various synchronization mechanisms would also help
to reducing the bottleneck of shifting from sequential
programming to multithreaded programming.

6 Conclusion

In this paper, we have presented a possible way of in-
troducing multithreaded programming in an introduc-
tion to operating systems course. We have described
four programming assignments and a term project. We
also discussed some findings of teaching multithreaded
programming and the need of pedagogical tools. In gen-
eral, this was a successful course which can be improved.

We believe that combining a good textbook, reasonable
and representative assignments and term projects, and
pedagogical tools will improve the teaching of multi-
threaded programming. Based on the above discussion,
we also believe that we have had a good start and are
in the right direction.

References

[1] Toby S. Berk, A Simple Student Environment for
Lightweight Process Concurrent Programming un-
der SunOS, ACM Twenty-Seventh SIGCSE Tech-
nical Symposium on Computer Science Education,
Philadelphia, February 15–18, 1996, pp. 165–169.

[2] Alan Burns and Geoff Davies, Concurrent Program-
ming, Addison-Wesley, 1993.

[3] Wentong Cai, Wendy J. Milne and Stephen J.
Turner, Graphical Views of the Behavior of Parallel
Programs, Journal of Parallel and Distributed Com-
puting, Vol. 18 (1993), pp. 223–230.

[4] Stephen Crane, The REX Lightweight Process Li-
brary, March 7, 1996. Available by anonymous ftp
from dse.doc.ic.ac.uk in directory /pub/rex.

[5] John English, Multithreading in C++, ACM SIG-
PLAN Notices, Vol. 30 (1995), No. 4, pp. 21–28.

[6] Stephen J. Hartley, Operating Systems Program-
ming, Oxford University Press, 1995.

[7] Stig Kofoed, Portable Multitasking in C++, Dr.
Dobb’s Journal, No. 226 (Nov), 1995, pp. 70-78.

[8] Stephen P. Masticola, Static Infinite Wait Anomaly
Detection in Polynomial Time, LCSR-TR-114, Lab-
oratory for Computer Science Research, Rutgers
University, 1990.

[9] Robert H. B. Netzer and Barton P. Miller, On the
Complexity of Event Ordering for Shared-Memory
Parallel Program Executions, International Confer-
ence on Parallel Processing, August 1990, pp. II93–
II97.

[10] John T. Stasko, The PARADE Environment for Vi-
sualizing Parallel Program Executions: A Progress
Report, Technical Report GIT-GVU-95-03, College
of Computing, George Institute of Technology, 1995.

[11] Qiang A. Zhao and John T. Stasko, Visualizing
the Execution of Threads-based Parallel Programs,
Technical Report GIT-GVU-95-01, College of Com-
puting, Georgia Institute of Technology, January
1995.

5

