
A Tool for Teaching Curve Design∗

Yuan Zhao, John L. Lowther and Ching-Kuang Shene†

Department of Computer Science
Michigan Technological University

Houghton, MI 49931–1295
Email: [yzhao|john|shene]@mtu.edu

1 Introduction

This paper describes a tool for teaching curve design.
This tool is a component of the software tools to be used
in a computing with geometry course [3, 4] that is being
developed under the support of National Science Foun-
dation. Curve design is important in computer graph-
ics, animation, and computer aided design. Unfortu-
nately, curve design requires very involved mathematics
even though many curve design concepts are intuitive.
As a result, it has been a challenging job for instruc-
tors teaching curves and surfaces in computer graphics,
computer aided design, and other related courses. Dur-
ing past years, there have not been very many efforts
dedicated to curve design tool development. Yen [7]
produced a well-received video program explaining im-
portant concepts of B-spline curves and surfaces and
Rockwood and Chambers [6] published a multimedia
tutorial on computer aided geometric design. The for-
mer only provides a one-way communication, while the
latter restricts users to a predefined environment with
very limited interaction for users to carry out experi-
ments. To fill this gap, our tool provides students with
a fully interactive environment in which they are free
to design, modify, and manipulate curved objects and
perform experiments without constraints.
In the following, Section 2 presents design issues, Sec-

tion 3 discusses general features, Section 4 enumerates
basic elements, Section 5 covers advanced topics, and

∗This work was partially supported by the National Science
Foundation under grant DUE-9653244. The third author was
also partially supported by the National Science Foundation under
grant CCR-9696084 (formerly CCR-9410707).

†Communicating author

Section 6 is our conclusion. Interested readers should
consult [1, 2, 5] for mathematical background details.

2 System Design Issues

2.1 Design Goal

The goal of this project is to design a tool for students
to learn fundamental curve concepts, gain hands-on ex-
perience in curve design, and acquire curve design skills
without getting into deep and involved mathematics.
We believe that once students understand the funda-
mentals they can easily follow the mathematical deriva-
tions in later courses. Moreover, instructors may also
find that this pedagogical tool could make their courses
more interesting and intuitive rather than theoretical.

2.2 Supported Activities

Our tool covers four different types of curves: Bézier, ra-
tional Bézier, B-spline and NURBS (Non-Uniform Ra-
tional B-spline). These types of curves are defined by
several parameters: a set of control points, a knot vec-
tor, and the degree of the curve. For NURBS curves,
each control point has a weight. Adjusting these pa-
rameters yields different curves. Our tool provides a
mechanism to manipulate these parameters.
In addition to displaying the curve based on given

parameters, our tool can also show important and in-
teresting properties. These include partition of unity,
the computation of basis functions, the convex hull
property, de Casteljau’s algorithm, de Boor’s algorithm,
curve subdivision, knot insertion and infinite control
points. Details can be found in Section 4 and 5.

2.3 Portability

Portability is one of our major concerns. We want to
make our tool available on as many platforms as pos-
sible. Although our tool is being developed on Silicon

1

Graphics O2’s, we do not use most of the SGI’s power-
ful tools since they may not be available on other plat-
forms. As a result, we only use C, OpenGL and GLUT.
OpenGL has become very popular recently. While not
all platforms support OpenGL, there is a popular and
freely available OpenGL clone, Mesa, that can run on
most popular platforms. GLUT is a windowing toolkit
for OpenGL available on most UNIX platforms and
Windows 95/NT and OS/2. Since all development tools
being used are on public domain, our tool is highly
portable. We have successfully tested it with Mesa and
GLUT on Sun systems. Other platforms will be tested
in the near future.

3 Curve Design Elements

3.1 User Interface

Figure 1 shows a typical interface of our tool. Students
can add and move control points on the drawing can-
vas, select the type of curves with the buttons on the
top row, and trace the curve with the vertical slider.
This vertical slider is also used for showing and modi-
fying knots. For NURBS curves, students can use the
horizontal slider for modifying the weight of a selected
control point. The coordinates of the selected point are
displayed and can be modified for finer position control.
There are other buttons for selecting frequently used
options such as displaying the de Casteljau and de Boor
control nets, convex hull and control polygon.

Figure 1: The Convex Hull and de Casteljau Control
Net of a Bézier Curve

Our tool can save the curves to a file so that a complex
design can be performed in several sessions.

3.2 Control Points

Students can create a set of control points, insert a con-
trol point after or before a selected one, and select, move

and delete control points. The curve being designed is
rendered on-the-fly as control points are manipulated.
For a B-spline or NURBS curve, students must also
specify curve’s degree before the curve can be rendered.
For NURBS curves, since weights can be any real

number, an exponential scale is used. More precisely,
a value t representing a position on the slider is trans-
formed by a function of type exp(t). In this way, a
weight can quickly be made very large and have a finer
control when t is small. Our tool supports infinite con-
trol points which have weights of zero. An infinite con-
trol point becomes a direction vector and when it is
moved, the corresponding curve segment is pushed or
pulled in that direction. Infinite control points provide
a simpler way for constructing commonly seen curves
and surfaces such as circles, spheres and surfaces of rev-
olution (e.g., tori).

3.3 Knot Sequence

There is a special relation among the three defining pa-
rameters of a B-spline or NURBS curve: m = n+p+1,
where m is the number of knots, n the number of control
points, and p the degree of the curve. Our tool allows
students to specify a set of control points and the de-
gree of the curve. After this, students can modify the
default uniform knots, and make some of them multiple
ones. Students can request to have the curve clamped
(i.e., both ends being tangent to the control polygon)
or make the curve a closed one. They can also use knot
insertion to insert knots and degree elevation to increase
the curve’s degree (Section 5).

3.4 Multiple Curve Segments

Students can work on multiple curves for complex design
tasks such as font and surface profile design. They can
subdivide an existing curve into several segments and
change their shapes (Section 5.2). Or, they can create a
new curve and join it with existing ones to form a more
complex curve.

4 Basic Topics

4.1 Tracing the Curve

For a Bézier curve defined by n + 1 control points p0,
p1, . . ., pn, the point on the curve that corresponds to
u is defined to be

p(u) =
n∑

i=0

Bn,i(u)pi, u ∈ [0, 1]

2

where the Bézier basis function is defined as follows:

Bn,i(u) =
n!

i!(n − 1)!
ui(1− u)n−1

As u moves, point p(u) traces out the curve. To better
show this effect, our tool displays a curve and uses a
special mark that follows the curve (Figure 1 and 4).
For B-spline and NURBS curves, knots (i.e., u0 ≤

u1 ≤ · · · ≤ um) are restricted to [0, 1]. The point on the
curve that corresponds to u is

p(u) =
1∑n

i=0 wiNi,p(u)

n∑
i=0

wiNi,p(u)pi, u ∈ [0, 1]

where wi is the weight of control point pi and Ni,p(u) is
the B-spline basis function defined recursively as follows:

Ni,0(u) =

1 u ∈ [ui, ui+1)

0 otherwise

Ni,p(u) =
u − ui

ui+p − ui
Ni,p−1(u) +

ui+p+1 − u

ui+p+1 − ui+1
Ni+1,p−1(u)

For B-spline curves, all weights, wi, are equal to 1.
For a NURBS curve, increasing the value of wi forces

the curve to approach control point pi. If wi is set to
infinity, the curve passes through pi. The left NURBS
curve in Figure 2 has all wi = 1 while the right one
increases w6 to 10.

Figure 2: The Effect of Changing Weights

4.2 Partition of Unity

The sum of all coefficients of control points is 1. If the
weights are non-negative, all coefficients are in [0, 1]. As
a result, interval [0, 1] is “partitioned” by these coeffi-
cients. Note that the way of partitioning [0, 1] depends
on the value of u. Partition of unity can be considered
as a weighted average of the control points and provides
a way of modifying the shape of a curve.
For Bézier curves, partitions always follow a fixed pat-

tern, since Bn,i(u) is fixed once u is given. For B-spline

curves, the partition for a particular u depends on the
knot vector and basis functions Ni,p(u). For NURBS
curves, the partition also depends on weights.
Our tool can display the coefficients and partition of

unity on-the-fly in a separate window as the values of
u, knots and weights are changing (Figure 3). Each
coefficient is shown with a different color along with a
vertical bar showing the actual partition.

(a) Partition of Unity of a Bézier Curve

(b) Partition of Unity of a B-spline Curve

Figure 3: Partition of Unity

4.3 Convex Hull Property

A direct consequence of the partition of unity property
is that the curve lies in the convex hull of certain defin-
ing control points. For NURBS curves, this holds only
for non-negative weights.
Different types of curves require different ways for

showing the convex hull. For Bézier curves, the convex
hull is defined by the control points and can be displayed
once the control points are available (Figure 1). For
B-spline and NURBS curves, part of the curve lies in
the convex hull defined by those control points whose
corresponding basis functions are non-zero (Figure 4).
Furthermore, as u moves in [0, 1], the convex hull that
corresponds to non-zero basis functions at u will also
change. Our tool can show the change of convex hull.

4.4 De Casteljau’s Algorithm

De Casteljau’s algorithm provides a beautiful geomet-
ric treatment to computing a point on a Bézier curve.
Given a set of n + 1 control points p0

0, p0
1, . . ., p0

n and
u ∈ [0, 1], de Casteljau’s algorithm successively com-
putes a set of polylines until a polyline degenerates to
a point, which is the point p(u) on the curve. Start-
ing with polyline p0

0p
0
1 · · ·p0

n, a point pj
i on segment

3

pj−1
i−1p

j−1
i is computed such that the ratio of the length

of pj−1
i−1p

j
i and the length of pj−1

i−1p
j−1
i is u:

pj
i = (1− u)pj−1

i−1 + upj−1
i (1)

This procedure generates n more polylines: p0
0p

0
1 · · ·p0

n,
p1

1p
1
2 · · ·p1

n, p2
2p

2
3 · · ·p2

n, . . ., pk
kp

k
k+1 · · ·pk

n, . . ., and
pn

n = p(u). Our tool can show all of these polylines
(i.e., de Casteljau control net) and the computation of
p(u). The step-by-step computation of P(u) is similar
to the triangular scheme of finite difference computation
in numerical methods. Figure 1 shows a de Casteljau
control net of a Bézier curve of degree 5 at u = 0.5.

4.5 De Boor’s Algorithm

De Boor’s algorithm for B-spline and NURBS curves
is a generalization of de Casteljau’s algorithm. Both
algorithms have a similar computation scheme. Given
a set of control points p0

0, p0
1, p0

2, . . ., p0
n, the degree

of the curve p, and a point u ∈ [uk, uk+1), since only
Nk−p,p(u), Nk−p+1,p(u), . . ., Nk,p(u) are non-zero, p(u)
is computed using p0

k−p, p
0
k−p+1, . . ., p0

k. Like Equation
(1), de Boor’s algorithm computes intermediate points
with the following:

pj
i (u) = (1− αj

i)p
j−1
i−1 (u) + αj

ip
j−1
i (u) (2)

where αj
i is defined as follows:

αj
i =

u − ui

ui+p−j+1 − ui

Computation starts with polyline p0
k−pp

0
k−p+1 . . .p0

k

and uses Equation (2) to generate a sequence of poly-
lines p1

k−p+1p
1
k−1+2 . . .p1

k, p2
k−p+2p

2
k−1+3 . . .p2

k, . . .,
until a polyline degenerates to a point, which is the
point p(u) on the curve. These polylines form a de
Boor control net. If u is a knot of multiplicity r, the
last point is pp−r

k ; otherwise, the last point is pp
k.

De Boor’s algorithm can be applied to NURBS
curves. Let p̂i = wipi, where p̂i is a four-dimensional
point. Then, applying de Boor’s algorithm to these
new points yield p̂p−r

k , which is still a four-dimensional
point. Finally, converting it back to three dimensions
with p(u) = p̂p−r

k /wp−r
k yields the result.

Our tool can display the de Boor control net on-the-
fly. Figure 4 shows the convex hull and de Boor control
net of a clamped B-spline curve of degree 4, 10 control
points, four internal knots at 0.22, 0.42 (multiplicity 2),
0.6 and 0.75, and u = 0.88. Since u is in the last knot
span and the number of non-zero basis functions is 5,
the convex hull is defined by p5 to p9 with which the
de Boor control net is computed.

Figure 4: The Convex Hull and de Boor Control Net of
a B-spline Curve

5 Advanced Topics

5.1 Degree Elevation

Degree elevation can increase the degree of the curve
without changing its shape. It is an important technique
for achieving higher control flexibility. For a Bézier
curve defined by p0, p1, . . ., pn, the following new set
of control points q0 = p0, q1, . . ., qn and qn+1 = pn

defines the same curve and increases the degree of the
curve by 1:

qi =
(

i

n + 1

)
pi−1 +

(
1− i

n + 1

)
pi, 1 ≤ i ≤ n

Our tool allows students to increase the degree of a curve
and observe an important fact that as the degree in-
creases the control polyline moves closer to the curve
and has the latter as a limit case.

5.2 Curve Subdivision

Curve subdivision is a handy technique in curve design
which permits a user to subdivide a curve into segments
and only work on those unsatisfactory ones without af-
fecting the others. For a Bézier curve, a user can choose
a u ∈ [0, 1] and subdivide the curve at p(u) into two
segments, each of which is a Bézier curve of the same
degree with a new set of control points. One important
fact is that after subdivision the two curve segments are
tangent to each other at a joining control point. Thus,
while the control points of each segment can be moved
freely and the degree of each segment can be further in-
creased, the joining control point and its two neighbors
must be collinear to maintain tangential continuity.
Curve subdivision for Bézier curves is a byproduct of

de Casteljau’s algorithm. Given u, using de Casteljau’s
algorithm, a control net is generated and points p0

0, p
1
1,

4

. . ., pn
n define the first segment and pn

n, pn−1
n , . . ., p0

n

define the second.
Our tool allows students to choose a u ∈ [0, 1] to

perform a subdivision for a Bézier curve. After subdivi-
sion, each curve segment is reparameterized so that the
domain is always [0, 1]. Students can select the the seg-
ment they wish to work on. In the current version, stu-
dents must maintain the collinearity condition at join-
ing control points. In future versions, we plan to add an
option so that all three collinear points are moved and
rotated as a single unit. Figure 5 shows a subdivision at
u = 0.5 of the Bézier curve in Figure 1 and the convex
hull of its left segment. Subdivision for B-spline and
NURBS curves will be available soon.

Figure 5: A Subdivided Bézier Curve

5.3 Knot Insertion

Knot insertion is a powerful tool in the study of B-spline
and NURBS curves and has many applications. Its basic
idea is to insert additional knots for finer shape control
without affecting the current shape of the curve. Be-
cause of m = n+p+1, inserting one knot requires the ad-
dition of one more control point. Suppose u ∈ [uk, uk+1)
initially has multiplicity s and is to be inserted r times,
r + s ≤ p, where p is the degree of the B-spline or
NURBS curves. The ith new control point in the jth
insertion step, qr

i , is computed recursively:

qj
i = (1− αj

i)q
j−1
i−1 + αj

iq
j−1
i

where αj
i is

αj
i =

1 i ≤ k − p + r − 1
(u − ui)/(ui+p−j+1 − ui) k − p + r ≤ i ≤ k − s
1 i ≥ k − s + 1

Please notice the similarity of the above equation and
Equation (2). In fact, de Boor’s algorithm is imple-
mented with repeated knot insertions.

In addition to find p(u) on a curve, knot insertion can
also be used in computing the derivatives and subdivi-
sions of curves. Our tool allows students to insert knots
one at a time. In future versions, students can insert
several knots simultaneously.

6 Conclusion

In this paper, we have described important features of
our tool for curve design to be used in an NSF sup-
ported course and in computer graphics and other re-
lated courses. Although we have tried our best to in-
corporate many important concepts and techniques into
our tool, as of this writing, some of them are still in test-
ing stage, while some advanced topics remain on our
to-do list (e.g., knot refinement and knot removal). Fi-
nally, one of the most important concepts that has not
yet been considered is blossoming, since it is rather ab-
stract although very useful. It will be available in the
final version.

References

[1] Gerald Farin, NURB Curves and Surfaces, A K
Peters, 1995.

[2] Gerald Farin, Curves and Surfaces for CAGD: A
Practical Guide, forth edition, Academic Press,
1997.

[3] John L. Lowther and Ching-Kuang Shene, Geo-
metric Computing in the Undergraduate Computer
Science Curricula, The Journal of Computing in
Small Colleges, Vol. 13 (1997), No. 2 (November),
pp. 50–61.

[4] John L. Lowther, Ching-Kuang Shene and Yuan
Zhao, Computing with Geometry as an Un-
dergraduate Course, August 1997. Available at
http://www.cs.mtu.edu/~shene/edu/education.html.

[5] Les Piegl and Wayne Tiller, The NURBS Book,
Springer-Verlag, 1995.

[6] Alyn Rockwood and Peter Chambers, Interactive
Curves and Surfaces: A Multimedia Tutorial on
CAGD, Morgan Kaufmann, 1996.

[7] Jonathan Yen, Knotty: A B-Spline Visualization
Program, Part I and II, Morgan Kaufmann, San
Francisco, 1993.

5

