
Teaching Surface Design Made Easy∗

Yan Zhou, Yuan Zhao, John L. Lowther and Ching-Kuang Shene†

Department of Computer Science
Michigan Technological University

Houghton, MI 49931–1295
Email: [yzhou|yzhao|john|shene]@mtu.edu

1 Introduction

All popular computer graphics textbooks have chapters
on curves and surfaces [1, 5, 6, 7]. Teaching these chap-
ters could be one of the most challenging tasks in a
computer graphics course because of the involved math-
ematics and the difficulty of visualizing the anticipated
effects of the theoretical results. We certainly can skip
these chapters and only rely on the polyhedron world,
because Gouraud’s or Phong’s shading algorithms could
make polyhedra objects appear as realistic curvilinear
ones. Unfortunately, real world applications such as
ship hull and car body design are usually curvilinear
and may only be approximated using polyhedron mod-
els. Thus, to address this problem and to make teaching
surface design easier, we have designed a pedagogical
tool as part of our NSF supported project [8]. One of
our goals is to provide the students with an interactive
environment which is used to visualize, experiment and
verify important and fundamental concepts and algo-
rithms.
While there are good textbooks on curve and surface

design [3, 4, 9], we can only find two pedagogical aids.
Yen’s video program [11] only provides one way infor-
mation flow. Rockwood and Chambers [10] describe a
multimedia tutorial on computer aided geometric design
which runs on Windows. It is basically a tutorial that
introduces concepts using some animation but lacks a

∗This work was partially supported by the National Science
Foundation under grant DUE-9653244. The fourth author was
also partially supported by the National Science Foundation under
grant DUE-9752244 and CCR-9696084 (formerly CCR-9410707).

†Communicating author

fully interactive environment. Moreover, its surface ca-
pability is limited. To remedy this situation, we pre-
sented a curve design system last year [12]. The surface
system presented here works with our curve system to
provide a reasonably complete support to many basic
concepts in surface design.
In what follows, Section 2 addresses the system de-

sign issues, Section 3 introduces the user interface, Sec-
tion 4 discusses basic features, Section 5 presents some
advanced techniques, Section 6 focuses on cross-section
design, and, finally, Section 7 has our conclusion.

2 System Issues

The goal of this system is to provide a software tool for
students to learn and understand the fundamentals of
surface design. Hence, its emphasis is to help students
to visualize, experiment and verify important elements
in surface design. Currently, this system supports all
commonly seen surface types, including Bézier, ratio-
nal Bézier, B-spline and NURBS (Non-Uniform Ratio-
nal B-Spline) surfaces. It can also display algebraic
surfaces using Bloomenthal’s implicit surface polygo-
nizer [2]. The details can be found in [3, 4, 9] and will
not be repeated here.
Since we hope this system can be distributed widely,

it has to be highly portable. We chose OpenGL for
graphics programming and GLUT (OpenGL Utility
Toolkit) for the system interface. Both are available
on virtually every platform, including Unix, Linux and
Windows 95/NT. If OpenGL is not available, then a free
OpenGL clone, Mesa, can be used. We have successfully
tested our systems using Mesa on SunOS, Solaris, and
Linux. Windows 95 and NT versions are planned but
not available yet. However, users should keep in mind
that without a hardware OpenGL accelerator, response
time could be slow. A Pentium 200MHz machine usu-
ally delivers satisfactory performance if geometric trans-
formations are not used frequently.

1

3 The User Interface

Our system uses of five major windows, the drawing win-
dow, tracing window, control point window, partition of
unity window and control panel. There are other win-
dows; but, they are less important to this paper. All
windows are grouped together and shown in Figure 1.

Figure 1: The User Interface

In the figure, the background is the drawing window.
The top row of this window provides several menu items
for the user to perform various tasks such as loading and
saving a scene, defining a surface, selecting the method
for displaying the surfaces in various styles, and per-
forming advanced surface design tasks. On the bottom
there are two slides for the user to translate and rotate
the selected surface and to perform scene zooming.
The top left smaller window is the control panel used

to change the colors of various displayable components
(i.e., background color, surface color and so on). The
window in the middle is the tracing window. The large
square at the center of this window is the domain of the
surface (i.e., [0, 1]×[0, 1]). A small disk, the position in-
dicator, is shown in this square indicating a point (u, v)
in the domain. As the position indicator moves in the
domain, its corresponding point S(u, v) moves on the
surface. The horizontal and vertical directions of this
square are the u- and v-direction. The values of knots
and their multiplicities are also shown. The little win-
dow below the tracing window is the partition of unity
window in which the coefficient of the selected control
point is shown.
The window at the right is the control point win-

dow. After the user selects a control point with the
right mouse button, this window appears automatically.
Then, the user can drag a small disk in one of the three
subwindows to change the position of the selected con-
trol point. These subwindows are used for changing the
coordinates in the xy-, xz- and yz-plane. The bottom
part of the control point window has a slide for the user
to modify the weight of the selected control point, if the
current surface type is rational Bézier or NURBS.

4 Basic Features

4.1 Moving Control Points

The user must tell the system (1) the number of rows
and the number of columns, (2) the degrees in the u-
and v-directions, and (3) the type of the surface (i.e.,
Bézier, rational Bézier, B-spline and NURBS). Then,
the system generates a set of planar control points which
defines a flat surface (Figure 2(a)). Control points can
be moved in all directions until its shape is satisfied
(Figure 2(b)). The user can ask the system to display
the control points, control net, IDs of control points
and other information. The generated surface can be
translated and rotated, shaded or left as a wireframe.
The scene can also be zoomed in and out to fit the
surface in the drawing window.

(a)

(b)

Figure 2: Shaping a Surface

4.2 Changing Weights

To modify the shape of a NURBS surface, in addition
to moving its control points, one can also change the
weights of the control points. In general, increasing
(resp., decreasing) the weight of a selected control point
pulls (resp., pushes) the surface toward (resp., away
from) that control point.

(a)

(b)

(c)

Figure 3: Modifying Weights

Figure 3(a) is a degree (3, 3) NURBS surface defined
by a 5 × 5 control point grid with all weights being
1s. This is actually a B-spline surface. Suppose control
point P22 is selected, which is the one at the peak of
the control net. If w22 is increased to 5, the resulting

surface is shown in (b). It is clear that the surface is
pulled toward P22. If w22 is decreased to 0.3, we have
the result in (c) in which the surface is pushed away from
P22. While in real applications weights are positive,
our system supports negative weights. However, in this
case, the convex hull property no longer holds. If the
weight of a control point is zero, this control point does
not affect the generation of the surface.

4.3 De Boor’s Algorithm

De Boor’s algorithm provides a simple and easily under-
stood way for computing a point S(u, v) on the surface
and is a fundamental algorithm in NURBS theory. In
fact, de Boor’s algorithm for surfaces is a multiple appli-
cation of de Boor’s curve algorithm. Suppose the rows of
control points correspond to the u-direction. Since each
row defines a NURBS curve in u, applying de Boor’s
algorithm to row i at u yields a point Pi(u) on the
NURBS curve. As a result, we have a set of new control
points P1(u), . . ., Pm(u), which in turn defines a new
NURBS curve. Applying de Boor’s algorithm to this set
of new control points at v yields a point and this is the
point S(u, v) on the NURBS surface.

Figure 4: De Boor’s Algorithm

Our system can display all intermediate calculations
of de Boor’s algorithm. Figure 4 is an example, where
(u, v) = (0.3, 0.6). In the figure, control points on row
i (i.e., Pi,0, Pi,1, . . ., Pi,4) define a new point. These
points, in turn, are used to compute the corresponding
point on the surface. The point on the surface is shown
as a small red sphere.

5 Advanced Algorithms

5.1 Knots and Knot Curves

A knot vector is required for each of the u- and v-
direction. For a fixed knot, say ui, S(ui, v) is a curve on
the surface S(u, v). This is called a knot curve. Thus,

for all knots in the u- and v-direction, a knot curve can
be drawn on the surface. All knot curves are isopara-
metric curves because they are defined by fixing one
of the two parameters. Figure 5(a) shows a NURBS
surface with its knot curves. The knot vector in both
directions is 0*4, 0.5, 1*4. Figure 5(b) shows another
NURBS surface whose knot vector in the u-direction is
0*4, 0.5, 0.75, 1*4 and the knot vector in the v-direction
is the same as that of (a). Therefore, we see two knot
curves in the u-direction.

(a)

(b)

Figure 5: Knot Curves and Knot Insertion

Our system allows the user to drag a knot. Changing
a knot affects the shape of the surface. However, since
there is no satisfactory relationship between the change
of the knots and the change of the shape of the resulting
surface, it is not recommended to change the shape of
a NURBS surface by modifying knots.

5.2 Knot Insertion

The idea of knot insertion is to insert a new knot into
an existing knot vector while keeping the shape of the
surface unchanged. The same knot can be inserted mul-
tiple times, making it a knot of multiplicity larger than
1. Figure 5(b) is obtained by inserting a new knot 0.75
into the u-direction of the surface in (a). Note that the
shapes of the surfaces are the same.
Our system allows the user to drag the position in-

dicator (u, v) in the tracing window and to insert a
new knot into the knot vector of the u- or v-direction.
For example, if the position indicator has coordinate
(0.35, 0.7) and the user inserts a new knot in the v-
direction, then the knot vector in the v-direction will
have a new knot at 0.7.

5.3 Degree Elevation

Degree elevation is the technique of increasing the de-
gree of a curve or a surface without changing its shape.
The number of control points is also increased. Degree
elevation and knot insertion are important to curve and
surface design, since in many applications (e.g., cross-
section design) two curves are required to be compatible.
Two curves are compatible if they have the same degree,

the same knot vector and the same number of control
points. Thus, degree elevation can bring two curves to
the same degree, while knot insertion can combine two
different knot vectors into a common one. Both tech-
niques do not change the shape of the curve. Our system
can increase the degree of a NURBS surface by one in
the selected direction.

5.4 Surface Subdivision

Surface subdivision allows the user to subdivide a
NURBS surface into subpatches so that he/she could
concentrate on some subpatches that require further
work while keep the other “good” subpatches un-
changed. Each subpatch is a NURBS surface and has
its own knot vector and control points. But, the degree
of each such patch is the same as the original. When the
user moves the control points of a subpatch, continuity
along patch boundaries could be destroyed. Our sys-
tem allows the user to specify if this level of continuity
should be preserved along patch boundaries.
Figure 6(a) is the original surface, (b) is obtained by

subdividing the original along the isoparametric curve
of u = 0.75, and (c) is obtained by subdividing the left
subpatch in (b) along the isoparametric curve v = 0.5.
In our system, these new patches do not have their own
domains. Instead, they share the original domain so
that when the position indicator in the tracing window
moves into the domain of a subpatch, that subpatch is
activated and becomes the current patch (Figure 6(d)).

(a)

(b)

(c)

(d)

Figure 6: Surface Subdivision

6 Cross-Section Design

Cross-section design is a commonly used surface design
technique. In general, cross-section design requires one

or more profile curves that define the surface profile,
and a trajectory curve that describes the way of moving
and perhaps scaling of the profile curves to generate the
surface. In this way, the design of surfaces reduces to the
design of curves. The cross-section design module of our
system supports ruled surfaces, surfaces of revolution,
swung surfaces, swept surfaces and skinned surfaces.
This system is designed to be used with our curve

system [12]. The user chooses cross-section design in
the surface system, which forks a new process to run
the curve system. Then, the user designs profile and
trajectory curves and generates the desired surface with
the curve system. All data (i.e., control points, degrees
and knot vectors) are transfered to the surface system,
which will, in turn, display the resulting surface. Due
to page limits, we only discuss ruled surfaces, surfaces
of revolution and skinned surfaces.

6.1 Ruled Surfaces

The simplest surface that can be obtained with cross-
section design is a ruled surface. A ruled surface re-
quires two compatible NURBS curves, and is generated
by connecting the corresponding points with a line seg-
ment. As u moves from 0 to 1, the locus of this segment
generates a ruled surface. Figure 7(a) shows two circles
with the bottom one rotated by an angle and (b) shows
the generated ruled surface which is a hyperboloid of
one sheet.

(a)

(b)

Figure 7: A Hyperboloid of One Sheet

6.2 Surface of Revolution

A surface of revolution is generated by revolving a pro-
file curve about an axis. In our system, the axis of
revolution is always the z-axis. Figure 8(a) is a NURBS
profile curve defined by 11 control points, degree 3, and
a knot vector of 15 uniformly spaced knots with both
ends “clamped” so that the curve is tangent to the first
and the last leg of the control polygon. Figure 8(b) is
the generated surface of revolution.

(a)

(b)

Figure 8: A Surface of Revolution

6.3 Skinned Surface

Cross-section design has a very important application
in car body design. Designers create a series of key
curves; but they do not know the surface and want to
find one that can contain all of these key curves. Hope-
fully, the resulting surface will follow their design. The
given curves are compatible profile curves and the re-
sulting surface is a skinned surface. In fact, the skinned
surface “interpolates” the profile curves. In Figure 9,
(a) shows four degree 3 NURBS curves to be used as
profile curves, and (b) is the generated skinned surface.

(a)

(b)

Figure 9: A Skinned Surface

7 Conclusion

We have presented important features of our surface
design tool. This tool has been used in our Introduc-
tion to Computing with Geometry course in the Win-
ter of 1998 and will be used again in the coming win-
ter. Both the curve and surface systems are available
at http://www.cs.mtu.edu/~shene. Also available are
a set of online course notes, online user guides of both
systems and other course materials. Although we have
tried our best to incorporate many features into our
tools, there are other important topics and powerful al-
gorithms not included. These include blossoming prin-
ciple, triangular patches, more sophisticated surface in-
terpolation schemes, wavelets, surface tessellation and
others. We hope that these could be added in the fu-

ture so that our systems will not only provide elemen-
tary pedagogical aids, but also serve as learning envi-
ronments for advanced courses such as computer aided
design, geometric modeling, advanced computer graph-
ics and visualization.

References

[1] Edward Angel, Interactive Computer Graphics:
A Top-down Approach with OpenGL, Addison-
Wesley, 1997.

[2] Jules Bloomenthal, An Implicit Surface Polygo-
nizer, in Graphics Gems IV, edited by Paul S.
Heckbert, Academic Press, 1994, pp. 324–349.

[3] Gerald Farin, NURB Curves and Surfaces, A K
Peters, 1995.

[4] Gerald Farin, Curves and Surfaces for CAGD: A
Practical Guide, forth edition, Academic Press,
1997.

[5] James D. Foley, Andries van Dam, Steven K. Feiner
and John F. Hughes, Computer Graphics: Princi-
ples and Practice, second edition, Addison-Wesley,
1990.

[6] James D. Foley, Andries van Dam, Steven K.
Feiner, John F. Hughes and Richard L. Phillips, In-
troduction to Computer Graphics, Addison-Wesley,
1994.

[7] Donald Hearn and M. Pauline Baker, Computer
Graphics, second edition, Prentice Hall, 1994.

[8] John L. Lowther and Ching-Kuang Shene, Geo-
metric Computing in the Undergraduate Computer
Science Curricula, The Journal of Computing in
Small Colleges, Vol. 13 (1997), No. 2 (November),
pp. 50–61.

[9] Les Piegl and Wayne Tiller, The NURBS Book,
Springer-Verlag, 1995.

[10] Alyn Rockwood and Peter Chambers, Interactive
Curves and Surfaces: A Multimedia Tutorial on
CAGD, Morgan Kaufmann, 1996.

[11] Jonathan Yen, Knotty: A B-Spline Visualization
Program, Part I and II, Morgan Kaufmann, 1993.

[12] Yuan Zhao, John Lowther and Ching-Kuang
Shene, A Tool for Teaching Curve Design, The
Proceedings of the Twenty-ninth SIGCSE Techni-
cal Symposium on Computer Science Education,
February 25 - March 1, 1998, Atlanta, Georgia,
1998, pp. 97–101.

