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Abstract— Teaching curve and surface design in a computer
graphics or a computer-aided design course is a challenge be-
cause of the very involved mathematics, the lack of easy-to-use
tools, and the differing abilities of students to visualize three-
dimensional objects. This paper presents the authors’ work in
teaching cross-sectional surface design using a pedagogical soft-
ware tool DesignMentor. With this tool, students have hands-on
practice and still learn surface design theory in an intuitive way.
A summary of the authors’ experiences and future directions is
also included.

I. INTRODUCTION

Teaching curve and surface design in a computer graph-
ics or a computer-aided design course is a challenge because
of the very involved mathematics, the lack of easy-to-use
tools, and the differing abilities of students to visualize three-
dimensional objects. Under the support of NSF, the authors
have developed a curve and surface design tool DesignMen-
tor to address these problems. DesignMentor provides an
interactive environment for students to explore Bézier, ra-
tional Bézier, B-spline and NURBS curves and surfaces. It
also supports cross-sectional design, a surface design tech-
nique that reduces the design of a surface to the design of a
few curves. This paper describes the capability of Design-
Mentor and its use in teaching cross-sectional techniques. In
what follows, Section II covers some background of NURBS
curves and surfaces; Section III provides a brief introduction
to our tool DesignMentor; and Section IV presents a general
review of cross-sectional design. Section V to Section IX
describe the construction of ruled surfaces, surfaces of rev-
olution, and swung, swept and skinned surfaces. Section X
discusses some of our £ndings in teaching cross-sectional de-
sign using DesignMentor; Section XI indicates possible fu-
ture enhancements of DesignMentor; and Section XII has
our conclusions.

II. BACKGROUND

This section reviews some technical aspects of NURBS
curves and surfaces, shape editing, and advanced features that

Please send correspondence to the fourth author.

are important to cross-sectional design. Details can be found
in [5].

A NURBS curve of degree p is de£ned by n + 1 control
points p0, p1, . . ., pn, with pi associated with weight wi ≥
0, and a knot vector of m + 1 knots 0 ≤ u0 ≤ u1 ≤ · · · ≤
um = 1, where the fundamental equality m = n+p+1 must
hold. The equation of this NURBS curve is

C(u) =
∑n

i=0 Ni,p(u)wipi∑n
i=0 Ni,p(u)wi

where Ni,p(u) is the ith B-spline basis function of degree p.
A NURBS surface of degree (p, q) is de£ned by a grid of

(m + 1)× (n + 1) control points pi,j , where 0 ≤ i ≤ m and
0 ≤ j ≤ n, and knot vectors 0 ≤ u0 ≤ u1 ≤ · · · ≤ ur = 1
and 0 ≤ v0 ≤ v1 · · · ≤ vs = 1. Each control point pi,j is
associated with weight wi,j ≥ 0. The fundamental equalities
must hold: r = m + p + 1 and s = n + q + 1. The equation
of this NURBS curve is

S(u, v) =

∑m
i=0

∑n
j=0 Ni,p(u)Nj,q(v)wi,jpi,j

∑m
i=0

∑n
j=0 Ni,p(u)Nj,q(v)wi,j

where Ni,p(u) and Nj,q(v) are B-spline basis functions of
degree p and q, respectively.

To modify the shape of a NURBS curve/surface, one can
change the positions of control points, the values of weights,
and the values of knots. Moving a control point causes a por-
tion of the curve or the surface to move in the same direction
(i.e., the local modi£cation scheme). Increasing (resp., de-
creasing) the value of weight wi pulls (resp., pushes) a por-
tion of the curve/surface toward (resp., away from) control
point pi. Since the effect of modifying knots is dif£cult to
predict, it is rarely used.

There are a number of fundamental algorithms in NURBS
curve/surface design. The most important one is the knot in-
sertion algorithms. Knot insertion means adding a new knot
into an existing knot vector without changing the shape of the
curve/surface. Degree elevation means increasing the degree
of a NURBS curve/surface without changing the shape of the
curve.



III. DESIGNMENTOR

We have developed a set of course materials and software
tools for a new course CS390 Introduction to Computing
with Geometry [4]. A by-product of this work is the De-
signMentor system for teaching curves and surfaces. The
DesignMentor base system consists of two subsystems, one
for curves and the other for surfaces. Both subsystems sup-
port Bézier, rational Bézier, B-spline and NURBS curves and
surfaces. Advanced features such as degree elevation, knot
insertion and subdivision are also supported. Both systems
provide users with environments for them to experiment and
explore many important concepts and skills in curve and sur-
face design and visualize the inner working of important al-
gorithms (e.g., de Casteljau’s and de Boor’s algorithms). Fig-
ure 1 is the user interface of both subsystems. The curve sub-
system on the left displays the convex hull, moving triad (i.e.,
tangent, binormal and normal vectors), and curvature sphere
of a point on a NURBS curve. Details of both subsystems can
be found in [6] and [7]

                        

Fig. 1. DesignMentor User Interface

Under DesignMentor a user can click on the screen to
create a set of control points and the de£ned curve appears
instantly. For a B-spline or NURBS curve, a degree is also
required. Then, a user can move, add or delete control points,
modify weights, and change knot values for shape editing. In
the surface case, a user can ask for a (m+1)× (n+1) planar
grid, and modify the de£ning elements (i.e., control points,
knot vectors and weights) to obtain a desired shape.

IV. CROSS-SECTIONAL DESIGN

Cross-sectional design reduces the design of a surface to
the design of a few curves. This is a technique frequently
used in car body and ship hull design, and in animation char-
acter construction. Many classical surfaces (e.g., ruled sur-
faces and surfaces of revolution) can easily be obtained with
this technique. At least two curves are required to complete
a cross-sectional design. The £rst is the pro£le curves, which
describe the pro£le of the desired surface. The second is the
trajectory curves. In cross-sectional design, the pro£le curves
usually move along the trajectory curves to generate a sur-
face.

Under DesignMentor, a user uses the curve subsystem for
designing pro£le and trajectory curves. Once these curves
become available, based on the type of the desired surface,
the curve subsystem generates and exports a NURBS repre-
sentation to the surface subsystem. DesignMentor supports
the construction of the following surfaces: ruled surfaces,
surfaces of revolution, swung surfaces, swept surfaces and
skinned surfaces. The following sections present an intuition-
based introduction to cross-sectional design. For mathemati-
cal details, the interested readers should consult [5], [8] and
[9].

V. RULED SURFACES

The ruled surface is the simplest one that can be con-
structed with cross-sectional design. A ruled surface requires
two NURBS curves, C1(u) and C2(u), where u ∈ [0, 1], and
the surface is the union of line segment C1(u)C2(u). More
precisely, as u moves from 0 to 1, the segment C1(u)C2(u)
generates a ruled surface.

The hyperboloid of one sheet is a ruled surface. It is created
with two circles, one of which has an angle shift. Under the
curve subsystem, a user can design two circles, rotate one of
them, and export the ruled surface (Figure 2(a)). The result is
shown in Figure 2(b).

            

(a)

            

(b)

Fig. 2. Hyperboloid of One Sheet

Figure 3 shows an interesting ruled surface de£ned by a
line segment and a NURBS curve of degree 3 twisted like a
helix. The result is a helical surface.

VI. SURFACES OF REVOLUTION

Surfaces of revolution are very popular and frequently used
as they can be easily manufactured. To generate a surface of
revolution, one needs a pro£le curve and an axis of revolution.
Under DesignMentor the pro£le curve is in the xz-plane and
the axis of revolution is the z-axis. Figure 4 shows the gen-
eration of a torus. The pro£le circle is a NURBS curve of
degree 2 in the xz-plane and the generated torus is a NURBS
surface of degree (2,2).

As long as one can design an interesting pro£le curve, a
good-looking and useful surface of revolution can be created



            

(a)

            

(b)

Fig. 3. A Helical Surface

            

(a)

            

(b)

Fig. 4. A Torus

quickly. Figure 5(a) shows a NURBS pro£le curve of degree
3, and (b) is the generated vase-like surface.

            

(a)

            

(b)

Fig. 5. A Vase

VII. SWUNG SURFACES

Swung surfaces are extensions of surfaces of revolution.
To design a swung surface, a pro£le curve in the xz-plane
and a trajectory curve in the xy-plane are required. Let the
pro£le and trajectory curves be P(u) = 〈Px(u), 0, Pz(u)〉
and T(v) = 〈Tx(v), Ty(v), 0〉. The swung surface de£ned
by P(u) and T(v) is

S(u, v) = 〈αPx(u)Tx(v), αPx(u)Ty(v), Pz(u)〉
where α is a positive scaling factor. The de£nition of S(u, v)
can be interpreted as follows. For each point on the trajectory

curve T(v), the xz-plane is rotated about the z-axis so that
it contains T(v), and the pro£le curve P(u) is scaled in the
direction of T(v). As a result, a swung surface is obtained by
swinging the pro£le curve about the z-axis and at the same
time scaled by the trajectory curve. Cross-sections parallel
to the xy-plane resemble the trajectory curve, while cross-
sections cut by a plane through the z-axis resemble the pro£le
curve. If the trajectory curve is a circle, the generated swung
surface reduces to a surface of revolution.

Figure 6 shows a swung surface as a generalization of a
surface of revolution. The pro£le curve is the same as that
of Figure 5; however, the trajectory curve is replaced with a
squarish semi-circle. This squarish semi-circle is a NURBS
curve of degree 2 with the weights of the middle two con-
trol points increased to 5, and as a result the curve is pulled
toward the two corners creating a squarish effect. The differ-
ence between Figure 5(b) and Figure 6(b) is obvious.

            

(a)

            

(b)

Fig. 6. A Swung Surface

Figure 7 is another example. We use the same trajectory
curve as in the previous one; but, the pro£le curve is replaced
with an up-side-down Ω. This up-side-down Ω-curve swings
out an interesting surface.
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Fig. 7. Another Swung Surface

VIII. SWEPT SURFACES

The class of swept surfaces is a very general and powerful
class. A swept surface is generated by sliding a transformed



pro£le curve P(u) along a trajectory curve T(v). More pre-
cisely, for each v, the pro£le curve P(u) is transformed (i.e.,
rotated and scaled) and translated to T(v). Therefore, the
surface is de£ned as

S(u, v) = T(v) + M(v) · P(u)

where M(v) is the transformation matrix at v. Different v
can have a different transformation matrix M(v).

One can obtain all previously discussed surfaces by care-
fully choosing M(v). Consider a ruled surface de£ned by
curves C1(u) and C2(u). One can take C1(v) as the tra-
jectory curve and the line segment C1(0)C2(0) as the pro£le
curve. Matrix M(v) gives the af£ne transformation that maps
C1(0)C2(0) to C1(v)C2(v). Therefore, ruled surfaces are
swept surfaces.

Swung surfaces, and hence surfaces of revolution, are also
swept surfaces. Curves P(u) and T(v) are still the pro£le and
trajectory curves, respectively. Since T(v) is in the xy-plane
and makes an angle with the x-axis, transformation matrix
M(v) is the composition of a rotation about the z-axis that
rotates the xz-plane to contain T(v), and a scaling that scales
P(u) in the direction of T(v). The rotated and scaled P(u)
is M(v) ·P(u). Since M(v) ·P(u) already contains T(v), no
translation is necessary and the surface is S(u, v) = M(v) ·
P(u). Therefore, swung surfaces are also swept surfaces.

Unfortunately, S(u, v) may not have a NURBS represen-
tation for general transformation matrices. DesignMentor
only implements the case of M(v) being the identity ma-
trix. More precisely, one can only slide the pro£le curve P(u)
along the trajectory curve T(v) without rotation and scaling.

In Figure 8(a), the circle and S-curve are the pro£le and
trajectory curves, respectively. As the circle moves without
rotation and scaling along the S-curve, a tubular surface is
generated (Figure 8(b)).

            

(a)

            

(b)

Fig. 8. A Swept Tube

In Figure 9, the pro£le curve is the one used in Figure 5,
while the trajectory curve is a W-curve.

IX. SKINNED SURFACES

In many cases, an exact design is dif£cult or even impossi-
ble. Frequently, engineers design a few key curves and con-
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Fig. 9. Another Swept Surface

struct a surface that contains all of them. This technique was
referred to as lofting and was widely used in ship hull, au-
tomobile and aircraft industries. Liming even wrote a book
about the use of conics lofting [3]. The modern term of loft-
ing is skinning and the surface obtained is a skinned surface.

Given a set of n pro£le curves P1(u), P2(u), . . ., Pn(u),
there exists at least one skinned surface S(u, v) that contains
all of them. The constructed surface S(u, v) will not only
contain the pro£le curves, but also has them as isoparamet-
ric curves. More precisely, we have S(u, vi) = Pi(u) for
0 = v1 < v2 < · · · < vn = 1. Note that the order of
these pro£le curves is important because they correspond to
increasing vi’s. Switching two pro£le curves yields a differ-
ent skinned surface.

Since S(u, vi) = Pi(u), we require the surface to have the
same degree of the pro£le curves in the u-direction. If the
pro£le curves do not have the same degree, DesignMentor
will use degree elevation and knot insertion to make the knot
vectors and degrees equal. Degree 2 or 3 for the v-direction
would be suf£cient in practice. Thus, DesignMentor con-
structs skinned surfaces of degree (p, 2), where p is the degree
of the pro£le curves.

Figure 10(a) shows a series of identical circles placed in a
L-shape and Figure 10(b) is the constructed skinned surface.
The constructed surface can be considered as a surface that
approximates the surface of sweeping a circle. It is an “ap-
proximation” rather than an actual sweeping because the sur-
face is constructed based on a number of discrete key pro£le
curves.

Skinning can be used to construct very complex surfaces
(Figure 11). A set of pro£le curves are placed at locations that
approximately describe the shape of a car. The constructed
skinned surface follows the shape speci£ed by the given pro-
£le curves.

Skinning can also be used to approximate very complex
swept surfaces. As mentioned earlier, if transformation ma-
trix M(v) is complex, the resulting swept surface may not
have a NURBS representation. To approximate a complex
swept surface, DesignMentor allows a user to create a num-
ber of instances of the pro£le curve, and place them along
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Fig. 10. A Skinned Tube
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Fig. 11. A Complex Skinned Surface

the trajectory curve. Then, a user can pick an instance and
transform it with translation, rotation and scaling. After £ne
tuning all instance curves, DesignMentor uses skinning to
construct a skinned surface. If instance curves describe the
desired shape well, the constructed skinned surface would be
very close to the true swept surface.

X. EXPERIENCE

DesignMentor has been used twice in our course CS390
Introduction to Computing with Geometry for juniors. The
goal of this course is to provide our students with a compre-
hensive and yet elementary introduction to the use of com-
puters in solving geometric problems. All discussions are
based on an intuitive approach. In a ten-week quarter, we
were able to cover the representations of and operations on
solids, curves and surfaces. With the help of DesignMentor,
students can quickly learn the advanced geometric algorithms
such as knot insertion, degree elevation and subdivision. We
never derive any formulæ, however. Students are given im-
portant formulæ and asked to work out a number of simple
examples, and use DesignMentor to verify the effect, be-
cause we believe that in a course for juniors it is perhaps not
worth spending time in investigating the mathematical depth
and elegance.

One of our £ndings is that students like our non-
mathematical approach and realize that even mathemati-
cal discussions can be minimized, it cannot be completely

avoided. The gap between their mathematical background
and the understanding of curve and surface design is closed
by working out simple examples and using DesignMentor to
explore and experiment.

Cross-sectional design is normally discussed with minimal
mathematics by de£ning and explaining a particular surface
type using an intuitive approach with examples. Then, stu-
dents are asked to use DesignMentor (we teach our course
in a computer equipped classroom) to do hands-on design ex-
amples. This learning-by-doing and hands-on approach has
been very effective, because in less than 1.5 hours all stu-
dents claim they know what cross-sectional design is and are
con£dent about what they have learned. Some students even
mention (in their attitudinal survey) that they do not have
problems in understanding and doing cross-sectional design,
even though they may have trouble in designing NURBS sur-
faces from scratch. Based on this observation, we believe
that cross-sectional design can be taught in a computer graph-
ics and/or computer-aided design course after students have
learned about curves. In so doing, students will be able to
quickly learn and create good-looking surfaces and be pre-
pared for more complicated discussions of other types of sur-
faces.

XI. FUTURE DIRECTIONS

The cross-sectional design component sits on top of De-
signMentor. Other components for supporting our course
are under development. These include regular and irregu-
lar mesh interpolation and approximation, which is very fre-
quently used in animation character construction, multi-sided
surface patch design for smoothing sharp corners (of the in-
tersections of walls), triangular patch design, and surface in-
terrogation techniques that can help engineers and students
to identify irregular areas of a surface (e.g., sudden curvature
change). But, the most important component would be the
support of the blossoming principle. With blossoms, one can
treat Bézier, rational Bézier, B-spline and NURBS under a
single elegant and simple theory, which, we believe, would
bene£t many students and engineers.

Since curve and surface design is about three-dimensional
objects construction, the ability of visualizing and/or recog-
nizing three-dimensional objects is crucial to student’s suc-
cess. It is well-known that not all students posses this abil-
ity and that there are differences in genders ([1] and [2]).
We have also observed this in our class that some students
is weaker in converting two-dimensional images on screen to
three-dimensional objects. While training can improve this
situation, we would prefer to address this problem from the
very beginning. We plan to develop a component for dis-
playing stereographics images and embark a new approach
using virtual reality. In this way, students will be able to
sense, touch and manipulate three-dimensional objects di-
rectly. Moreover, they will be able to step into the virtual



world to actually see and learn geometric properties of curves
and surfaces.

XII. CONCLUSIONS

We have presented an overview of the cross-sectional de-
sign capabilities of DesignMentor, and experience of using
it in a new course CS390 Introduction to Computing with
Geometry. We also point out possible future development
for enhancing DesignMentor.

The DesignMentor base system that supports cross-
sectional design is currently available to the public for free.
Interested readers can £nd all related information at the fol-
lowing URL:

http://www.cs.mtu.edu/˜shene/NSF-2/index.html

This page contains links to a set of online course notes of our
course, the manuals of DesignMentor, and a download page
for retrieving DesignMentor. Currently, DesignMentor can
run on SGI, SunOS, Solaris, Linux and Windows 95/98/NT
platforms. It is written in C and OpenGL and uses GLUT for
windowing operations. For those platforms that do not have
of£cial OpenGL support (i.e., SunOS and Linux), a public
domain OpenGL compatible system Mesa is used. This page
also contains the recent work of the Geometric Computing
Group, which include papers, workshop, posters and theses.
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