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Abstract— Multithreading is a powerful programming
paradigm that has become very popular in recent years. The
authors have developed a set of course materials and soft-
ware tools for effectively teaching multithreaded programming
(MTP). One important component of the authors’ system is a
very simple user-level kernel for instructors to teach MTP with-
out getting into system details, and for the students to add ex-
tensions. This paper presents the design and implementation
of this kernel as well as its use in the classroom. This mini-
mal user-level kernel employs a £rst-come-£rst-served schedul-
ing policy, and permits a user to create and join threads, and
use mutex locks. With this kernel, students are able to imple-
ment semaphores, barriers, reader-writer locks, mail-boxes and
condition variables. This approach has two advantages: (1) stu-
dents can easily learn the basics and internal of a kernel that
supports MTP, and (2) conventional debuggers can be used for
debugging purposes, because the kernel is a user-level program.

I. INTRODUCTION

Multithreading is a powerful programming paradigm that
is becoming very popular. Most operating systems already
support this capability and the POSIX standard includes
a multithreaded extension called Pthreads. This power-
ful programming paradigm has been incorporated into our
CS270 Introduction to Operating Systems course for
three years [9]. In this course we have found that teaching
multithreaded programming (MTP) is in general dif£cult be-
cause it requires a paradigm shift from sequential program-
ming. Thread synchronization always causes problems. To
address the problems associated with the paradigm shift to
MTP, we are developing, with the support of the NSF, a set
of course materials and software tools for effectively teaching
MTP [10].

This paper focuses on the design of a portable user-level
kernel that supports MTP. Section II and Section III present
the system architecture and design objectives, respectively.
Section IV discusses important system data structures, Sec-
tion V focuses on the implementation of context switching
as a set of coroutines, and Section VI describes the set of
low-level functions of the kernel. Section VII covers sup-
ported synchronization primitives, and Section VIII presents
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some experience in teaching MTP with an older system and
experience with the bene£t of using the new kernel. Finally,
Section IX has our conclusions.

II. SYSTEM ARCHITECTURE

Our system consists of two major subsystems: a set of
classes that hides as much system detail as possible and a
visual subsystem that provides the user with a visualization
environment to see what is happening during user-program
execution (Figure 1). A user program creates threads with
the class wrappers; but it does not deal directly with the vi-
sual subsystem. Instead, the visual subsystem is activated by
the class wrappers implicitly and runs in a separate address
space to minimize the interference among programs. The
class wrappers and visual subsystem communicate with each
other by sending messages. Below the class wrappers and the
visual subsystem is a layer of synchronization primitives that
includes mutex locks, semaphores, mailboxes, reader-writer
locks, barriers, condition variables and monitors.
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Fig. 1. System Architecture

One of our major goals is to design a portable system so
that it can be widely distributed and used in a set of diverse
environments. As a result, our system can sit on top of Solaris
threads, Pthreads or Win32. Since many instructors feel that
providing students with a set of working code for a user-level
thread system helps the students understand the concepts and
implementation, we have also implemented a user-level ker-
nel that supports MTP. See the shaded part of Figure 1. The
user-level kernel is the subject of this paper.



III. DESIGN OBJECTIVES

Since the user-level kernel is built not only for support-
ing our system but also for providing a working example to
students, we single out two important design factors: sim-
plicity and no assembly language. Simplicity is in general
easier than not using assembly language because a minimal
kernel can be implemented in about 200 lines. Unfortunately,
portability is extremely dif£cult due to the differences among
compilers and operating systems (e.g., run-time stack man-
agement). After examining a number of systems which only
use C/C++ ([1], [5], [6], [7] and [8]), we have found that none
of them is truly portable. Hence, we have decided to keep
the use of assembly language to a minimum level, prefer-
ably to a level of only a few instructions for implementing the
most critical part (i.e., establishing environments). To further
simplify this kernel, we have chosen a non-preemptive and
£rst-come-£rst-served scheduling policy. Mutex locks are in-
cluded as examples.

IV. DATA STRUCTURES

Each thread is controlled by a thread control block which
records the thread identi£er, the status of the thread (i.e.,
RUNNING, READY, SUSPENDED, JOINING, WAITING
and TERMINATED), stack size and so on. There is only
one thread in the RUNNING state at nay particular moment
in time. Ready-to-run threads are in the ready queue (Fig-
ure 2). Suspended threads are in the suspended queue, while
threads that are waiting on semaphores and other synchro-
nization primitives are in one of the waiting queues. Threads
waiting for the completion of a thread will be chained into
that thread’s joining queue. When the thread to be joined
terminates, all threads in its joining queue are moved to the
ready queue.
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Fig. 2. System Data Structures

V. CONTEXT SWITCHING

This section describes a possible way of simulating mul-
titasking with coroutines, maintaining stack allocation, and
performing context switching with two ANSI C library func-
tions setjmp() and longjmp().

A. Coroutines

Coroutines provide the execution model that we need to
perform multithreading. When re-entering a coroutine, the
execution starts at the instruction following the previous exit
point. In Figure 3, when entering coroutine B from coroutine
A the £rst time, the execution starts at the £rst instruction of
B and exits at c. When re-entering B, execution starts at the
instruction following c.
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Fig. 3. Subroutines and Coroutines

All threads in this system form a big coroutine struc-
ture. The entry/exit points of threads are the places where
rescheduling is necessary. More precisely, When a thread
enters the waiting state, requests a join, executes a yield, or
terminates, its execution is interrupted and the scheduler dis-
patches the control to another thread. When a thread becomes
eligible to run again (i.e., re-enter), the scheduler starts the
execution at the next instruction of the interrupted (i.e., exit)
point.

B. Setjmp() and longjmp()

Switching between threads is done with a pair of ANSI
C library functions setjmp() and longjmp(). Both ac-
cess a jump buffer of type jmp_buf. Function setjmp()
takes a jump buffer argument, saves the current environment
(i.e., context) into this jump buffer, and returns 0. Function
longjmp() takes two arguments, a jump buffer and an inte-
ger, and transfers the execution back to the location recorded
in the jump buffer, restores the environment, and forces the
corresponding setjmp() to return the second argument of
longjmp().

jmp_buf JBUF;
..........

if (setjmp(JBUF) == 0)
Block 1

else
Block 2

..........
longjmp(JBUF,1);

The call to setjmp() in the if statement saves the cur-
rent environment into jump buffer JBUF and returns 0. After
setting up JBUF, the program executes statements in Block
1, followed by other statements and perhaps function calls.



When the call to longjmp() is executed, as long as the en-
vironment saved in jump buffer JBUF is still valid, the ex-
ecution is brought back to the call to setjmp() in the if
statement and forces setjmp() to return the value of the
second argument of longjmp(). In the above example, the
execution ¤ow goes back to setjmp() and forces it to re-
turn 1. As a result, statements in Block 2 are executed. Note
that setjmp() and longjmp() do not have to be in the
same function and hence this type of transferring of control is
usually referred to as a non-local goto.

C. Managing Contexts

Unfortunately, there is a problem. Executing longjmp()
could unwind the stack pointer. More precisely, suppose
function A() sets up a jump buffer JBUF with setjmp()
and then calls function B(). Note that before B() is called,
its stack frame does not exist and as a result JBUF does not
include any information about B()’s stack frame. If B()
executes a longjmp() sending the control back to where
JBUF indicates, the stack frame of B() may be lost. Thus,
executing a longjmp() back to B() could become impos-
sible. To overcome this problem, we need to maintain the
stack allocation information (i.e., the stack and stack frame
pointers), which can frequently be done with only a few as-
sembly language instructions. Therefore, different platforms
and even different operating systems on the same platform
require a different set of instructions. Currently, this part is
based on Steve Crane’s REX system [4] and supports SunOS,
Sun Solaris, SGI, Linux, and Windows 95/98/NT. In fact, this
is the only non-portable part of our system and is used only in
thread creation. Each platform/system has its own assembly
language £le which contains less than 10 assembly instruc-
tions.

The best solution to the above mentioned problem is to al-
locate a separate stack for each thread. More precisely, when
creating a thread, the user must indicate the stack size for
running the thread and all functions called under this thread.
This stack space should not be in the traditional £rst-in-last-
out space, because it can be unwound in function call/return
sequence. In this kernel, to create a thread, a stack space is
allocated from the heap and the stack pointer is set to the be-
ginning of this area. After setting up the stack pointer, the
function that runs as a thread is called and as a result its stack
space will be in the newly allocated area and all subsequent
function calls will have their stack frames there. Since this
space is allocated from the heap, it can only be freed explic-
itly. Therefore, as long as a function does not return, any
jump buffer set up within that function will have a correct
context. Since setting and saving the stack pointer cannot be
performed directly with a high-level language, assembly lan-
guage subroutines or inline assembly language instructions
are required.

D. Thread Scheduler

Since this kernel uses a non-preemptive scheduling policy,
its scheduler is quite simple. Before a thread relinquishes
the control of CPU, it calls setjmp() to store the current
environment into a jump buffer, which is part of its thread
control block, and calls the thread scheduler:

/* before switching out */
if (setjmp(&(Running->Context)) == 0) {

move control block to the ready Q;
THREAD_SCHEDULER(); /* the scheduler */

}
/* switched back */

The running thread’s control block is pointed by
Running. The call to setjmp() saves the current environ-
ment into the Context member of the running thread’s con-
trol block. This control block is moved to the ready queue fol-
lowed by a call to the scheduler. The scheduler never returns.
Instead, it uses longjmp() to send control to other threads.
A simpli£ed scheduler is implemented as follows. It runs the
£rst thread in the ready queue by executing a longjmp()
to its Context member. Thus, the control ¤ow goes back
to that thread’s setjmp() call (see below), and executes the
statement following the if statement.

move the first in ready Q to running;
longjmp(Running->Context, 1);

VI. LOW-LEVEL FUNCTIONS

In addition to the scheduler discussed in Section V, there
are queue manipulating functions. All of these functions are
static so that they are invisible to the user. The most im-
portant user callable functions are the following four:

• THREAD_SYS_INIT(): This function must be called
before calling any other thread related functions. It ini-
tializes the coroutine structure.

• THREAD_CREATE(): This function takes a pointer to
a function and a pointer to a data item, allocates a stack
area from the heap, and runs the function with the given
argument. If creation is successful, it returns the identi-
£er of the newly created thread. The new thread will be
put into the ready queue.

• THREAD_EXIT(): This function terminates the calling
thread and cleans up stack frames on heap. If this thread
has any joining threads, all of them will be moved to the
ready queue.

• THREAD_JOIN(): This function takes a thread identi-
£er and puts the calling thread into the joining queue of
the indicated thread. If the thread to be joined does not
exist, this function returns.

There are three more low-level functions:
• THREAD_YIELD(): This function moves the calling

thread to the ready queue and allows another thread to
run. Thus, a context switching occurs.



• THREAD_SUSPEND(): This function takes a thread
identi£er and suspends the execution of the correspond-
ing thread (i.e., moves that thread to the suspended
queue).

• THREAD_CONTINUE(): This function takes a thread
identi£er and moves the corresponding thread from the
suspended queue to the ready queue.

With THREAD_SUSPEND() and THREAD_CONTINUE(),
a user can build his/her own scheduler.

The following is a simple example that prints “Ping -
Pong - Ping - Pong - . . .” or “Pong - Ping - Pong - Ping -
. . .” depending on the £rst run thread. There are two func-
tions Ping() and Pong() to be run as two threads. After
printing “Ping -” or “Pong -”, THREAD_YIELD() is called,
yielding the CPU to the other thread. Thus, an alternating
execution is implemented.

void Ping(void *ptr)
{

int i;
for (i = 1; i <= 5; i++) {

printf("Ping - ");
THREAD_YIELD();

}
THREAD_EXIT();

}

void Pong(void *ptr)
{

int i;
for (i = 1; i <= 5; i++) {

printf("Pong - ");
THREAD_YIELD();

}
THREAD_EXIT();

}

To create these two threads, THREAD_CREATE() is
called twice with the function names. It returns the identi£er
of the created thread so that a join can be performed. While
the two threads are executing, the main program is blocked by
the £rst join. The main program becomes ready-to-run when
both threads terminate.

THREAD_ID id1, id2;

THREAD_SYS_INIT();
id1 = THREAD_CREATE(Ping, NULL, ...);
id2 = THREAD_CREATE(Pong, NULL, ...);
THREAD_JOIN(id1);
THREAD_JOIN(id2);

Note that even though our kernel uses a non-preemptive
scheduling policy, one should not assume that the created
threads will run immediately and that the threads will run
in the order of creation. This is why we should not assume
whether the output is “Ping - Pong - . . .” or “Pong - Ping -
. . .”

VII. SYNCHRONIZATION PRIMITIVES

In theory, all popular synchronization primitives (i.e.,
semaphores, message queues and monitors) are equivalent to
each other, and mutex locks can be used for implementing
semaphores [11]. Because our system has an education slant,
we choose to implement and build all other primitives on top
of mutex locks and semaphores. This is certainly not the most
ef£cient method, but it shows students how the textbook the-
ory works.

A. Mutex Locks

Each mutex lock has an owner (i.e., the identi£er of a
thread), and a waiting queue. There are three functions,
MUTEX_INIT() for initialization, and MUTEX_LOCK()
and MUTEX_UNLOCK() for locking and unlocking a mutex
lock. Note that a thread cannot recursively acquire the same
lock without £rst unlocking it.

int MUTEX_LOCK(LOCK_t lock)
{

if (lock has an owner) { /* busy */
if (the owner is this thread)

return OWNER_ERROR;
if (setjmp(&(Running->Context)) == 0) {

move this thread to the waiting Q;
THREAD_SCHEDULER();

}
}
else

set the owner to this thread;
}

int MUTEX_UNLOCK(LOCK_t lock)
{

if (not the owner)
return NOT_OWNER;

set the owner to NOBODY;
if (at least one thread waiting) {

move one thread to the ready Q;
set the lock owner to this thread;

}
}

MUTEX_LOCK() receives a lock. If the lock is owned
by some thread, the calling thread is moved to the waiting
queue of the lock. Otherwise, the calling thread becomes the
owner. MUTEX_UNLOCK() also receives a lock. If the call-
ing thread is not the owner, the unlock request is rejected.
Otherwise, the owner is set to NOBODY. Finally, if there is
any thread in the waiting queue of this lock, one of them is
released. The use of ownership is important because the lock
can be protected from being unlocked accidently or intention-
ally by non-owners and because it is required in implement-
ing condition variables.

B. Semaphores and Other Primitives

Although mutex locks are binary semaphores and can be
used to implement general counting semaphores, this kernel



implements semaphores by replacing the lock ownership with
a counter [11]. Once semaphores are ready, one can imple-
ment message queues, condition variables, monitors, reader-
writer locks, and barriers. Most textbooks discuss moni-
tor implementations and the reader priority version of the
reader-writer lock [11]. The writer priority lock can be im-
plemented using semaphores and is only a little more compli-
cated ([2] and [3]). Barriers can easily be implemented using
semaphores or condition variables.

A barrier has a £xed capacity, say n, and is associated
with two functions: BARRIER_INIT() for initialization
and BARRIER_WAIT() for waiting on a barrier. When
a thread executes a BARRIER_WAIT(), if the number of
threads waiting on that barrier is less than n − 1, the call-
ing thread is blocked on the barrier; otherwise, all waiting
threads, including the calling thread, are released. This is a
very useful primitive in multithreaded and parallel program-
ming. The following is a simpli£ed implementation using
semaphores:

int BARRIER_WAIT(BARRIER_t barrier)
{

int i;

SEMAPHORE_WAIT(Enter_Barrier);
Counter++;
if (Count == maximum count) {

for (i = 1; i < maximum count; i++)
SEMAPHORE_SIGNAL(Exit_Barrier);

Counter = 0;
SEMAPHORE_SIGNAL(Enter_Barrier);

]
else {

SEMAPHORE_SIGNAL(Enter_Barrier);
SEMAPHORE_WAIT(Exit_Barrier);

}
}

A barrier has a counter Counter whose initial value
is zero, and two semaphores Enter_Barrier and
Exit_Barrier with initial values 1 and 0. Semaphore
Enter_Barrier implements a critical section so that an
entering thread can work on the internal data exclusively.
If the counter is not full, the calling thread and other
threads who called BARRIER_WAIT() earlier are blocked
on semaphore Exit_Barrier. If the counter is full,
the calling thread releases all waiting threads on semaphore
Exit_Barrier and resets the counter.

VIII. PREVIOUS EXPERIENCE

In the past three years, we used Sun’s lightweight process
library and then switched to Solaris threads in an introduction
to operating systems course for juniors (sophomore 23.5%,
junior 60.3%, senior 10.3% and other 5.9%). In a ten-week
quarter, students learn all the basics of MTP using Solaris
threads, which include thread creation and join, semaphores,

condition variables, simulating monitors, mailboxes, signal
handling, and coroutines, with one programming assignment
for each topic. Then, in a two-week mini-project, students
are asked to £ll in some important components (e.g., stack
space management, and scheduling policies such as priority
and multilevel queues) of a user-level kernel and expand it
with other synchronization primitives (i.e., semaphores, bar-
riers and mailboxes). Details can be found in [9]. A version
of Kofoed’s work [7] has been used quite successfully un-
til we tried to port it to different platforms. The system is
not completely portable. To overcome this problem and other
dif£culties, we proposed to address all of these issues once
for all under the support of an NSF grant [10]. The design
discussed in previous sections will ful£ll our course need and
£t well into our NSF project.

Replacing the original kernel with this new one will
not introduce problems to the programming assignments
and the two-week mini-project for the following reasons.
First, the low-level functions mimic Solaris thread functions
closely. Except for THREAD_SYS_INIT(), all the other
six functions have their Solaris thread counterparts. In fact,
THREAD_SYS_INIT() is unnecessary. It is included be-
cause the creation of a coroutine structure and initial stack
space management can be separated from the other parts so
that students can easily identify each important task. Second,
the original Kofoed version is very tricky in stack frame allo-
cation, although a complete understanding of its inner work-
ing is not necessary. The new system will simplify this step
greatly. Third, in the previous version, stack space is allo-
cated recursively and use a £rst-£t scheme to manage unused
space. This is the major portability problem because it fails
under a number of compilers and systems. With the new ker-
nel, the solution to portability is more complex but would
work on most platforms with minimal effort. Moreover, this
kernel is a more structured version than that of Kofoed by in-
cluding explicit thread yield, suspend, and continue function
calls. Fourth, this new kernel is tightly integrated into our
system. As a result, instructors can skip the low-level details
and only use class wrappers. This would have an obvious
bene£t as the visual system can be used to help cope with
the paradigm shift smoothly. Or, after covering all the higher
level constructs, instructors can dig into the low-level kernel
and disclose the implementation details. This is what we have
been doing for three years.

IX. CONCLUSIONS

We have brie¤y presented the design and critical elements
of our user-level kernel that supports MTP. User level MTP
has a clear advantage in that context switching costs less and
is easy to implement, although all threads will be suspended
if the containing process suspends because the underlying op-
erating system only recognizes the containing process rather



than treating all threads as independent and schedulable en-
tities. This kernel is only a small part of our overall design
as shown in Figure 1. However, due to its simplicity, it can
be used separately to show the details of context switching,
scheduling, and the implementation of various synchroniza-
tion primitives. Whether it is used to serve as the base of
our class wrappers and visual system or used as an individ-
ual component, it will provide instructors and students with
a simple and well-designed working example of a minimal
MTP kernel.

We are working on extensions to our kernel, class wrap-
pers, and visual system. We expect to support multiprocess
programming, Unix System V type interprocess communica-
tions (i.e., shared memory, semaphores and message queues),
and sockets under a single uniform class-based interface. Ex-
tensions such as network and distributed programming and
MPI programming are underway. The £nal product and its
user manual will be free to the public. A base system that
only supports threads, its class wrappers, and visual system
will be released in the near future at the following URL:

http://www.cs.mtu.edu/˜shene/NSF-3/index.html

Related course online notes and programming assignments
and mini-project are available at

http://www.csl.mtu.edu/cs270/www/Home.html
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