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Abstract

A common method for constructing blending Dupin cyclides for two cones having
a common inscribed sphere of radius r > 0 involves three steps: (1) computing the
(−r)-offsets of the cones so that they share a common vertex, (2) constructing a
blending cyclide for the offset cones, and (3) computing the r-offset of the cyclide.
Unfortunately, this process does not always work properly. Worse, for some half-
cones cases, none of the blending cyclides can be constructed this way. This paper
studies this problem and presents two major contributions. First, it is shown that
the offset construction is correct for the case of ε �= −r, where ε is the signed
offset value; otherwise, a procedure must be followed for properly selecting a pair
of principal circles of the blending cyclide. Second, based on Shene’s construction
in “Blending two cones with Dupin cyclides”, CAGD, Vol. 15 (1998), pp. 643–
673, a new algorithm is available for constructing all possible blending cyclides for
two half-cones. This paper also examines Allen and Dutta’s theory of pure blends,
which uses the offset construction. To help overcome the difficulties of Allen and
Dutta’s method, this paper suggests a new algorithm for constructing all possible
pure blends. Thus, Shene’s diagonal construction is better and more reliable than
the offset construction.
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1 Introduction

Two cones, C1 and C2, having a common inscribed sphere with center O and
radius r > 0, can be blended with Dupin cyclides [1–5,7]. Let the set of all
blending Dupin cyclides of C1 and C2 be denoted as C1 ⊕ C2. Thus, ⊕ is a
binary operator ⊕ : 〈C1, C2〉 �→ C1 ⊕ C2 sending a pair of cones having a
common inscribed sphere to the set of their blending Dupin cyclides. For the
purpose of blending, the offset of Ci can be defined uniquely with respect to
the center of the common inscribed sphere. Let Vi and αi be the vertex and
cone angle of Ci, respectively. Then, the ε-offset of Ci, Cε

i , is the cone with Ci’s

axis and vertex at Vi − ε
sin(αi)

→
ViO
ViO

. Thus, offsetting is a unary operator sending

a cone to its ε-offset. Moreover, the offset operator is invertible in the sense of
(C−ε)ε = C. The question in the title asks if the diagram in Figure 1 commutes.

〈C1, C2〉 ⊕−→ C1 ⊕ C2

ε ↓ ↓ ε

〈Cε
1, Cε

2〉 ⊕−→ ?

Fig. 1. Does this diagram commute (i.e., Cε
1 ⊕ Cε

2 = (C1 ⊕ C2)ε)?

The answer to this question has an important impact. Since the offset oper-
ator is invertible, the question can be rephrased as: if C1 ⊕ C2 = (Cε

1 ⊕ Cε
2)

−ε

holds. Geometrically, this expression states that to construct a blending Dupin
cyclide, one can take the following steps: (1) find an ε-offset of C1 and C2 with
which a blending Dupin cyclide can easily be found, (2) construct a blending
Dupin cyclide Z for Cε

1 and Cε
2 (i.e., Z ∈ Cε

1 ⊕ Cε
2), and (3) Z−ε is a desired

blending cyclide for C1 and C2 (i.e., Z−ε ∈ C1 ⊕ C2). This technique was sug-
gested by Sabin and used by Boehm [3], Pratt [5], and Allen and Dutta [1],
where ε is set to −r, making C−r

1 and C−r
2 to have a common vertex. Since this

technique is frequently used to show the existence of a blending cyclide, it is a
construction method, and will be referred to as the offset construction in this
paper.

Pratt [5] pointed out that the r-offsets of some blending cyclides for C−r
1 and

C−r
2 may not blend C1 and C2. This was further clarified in Shene [7], since in

general there are two families of blending cyclides if the cones do not share a
common vertex and there are four otherwise. As a result, if blending cyclides
for C−r

1 and C−r
2 are not chosen properly, offsetting will not produce valid

blending cyclides for C1 and C2. This paper revisits the offset construction and
proves that the above diagram commutes if ε �= −r.
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Recently, Allen and Dutta [1,2] used the offset construction to construct blend-
ing cyclides for half-cones. Since the offset construction may fail for full cones,
it may also fail for half-cones. In fact, it will be shown that some blending cy-
clides for two half-cones cannot be constructed using the offset technique. To
address this problem, this paper presents a modification to Shene’s construc-
tion algorithm in [7]. This new method can construct all possible blending
cyclides. Allen and Dutta [1] also looked at a special type of blends, called
pure blends. This paper will show that pure blends can be obtained easily from
the general theory for cones.

In what follows, Section 2 reviews the definition of offset for Dupin cyclides and
establishes a number of fundamental properties to be used in later sections.
Section 3 contains the main results of this paper. It starts with the definition
of a reference configuration on which all offsets of the involved surfaces (i.e.,
cones and blending cyclides) are based. This is followed by two important
technical lemmas to be used for establishing the two major theorems of this
paper: (1) the ε-offset of a blending cyclide for two cones blends the ε-offsets
of the cones if the cones do not share a common vertex, and (2) the diagram
in Figure 1 commutes if ε �= −r. These results also provide an interesting
interpretation of blending cyclide construction using offset. Section 4 shows
that the offset construction is incomplete for half-cones and suggests a new,
complete algorithm. An algorithm is complete if it can construct all possible
blending cyclides [7]. Section 5 examines Allen and Dutta’s theory for “pure
blends” which uses the offset construction, and provides a complete algorithm
for constructing all possible pure blends. Finally, Section 6 has our conclusion.

Notation: This paper uses the same notation as in [7]. The construction using
offset and the construction in [7] are referred to as the offset and diagonal
construction methods, respectively. Moreover, this paper assumes the cones
are in general positions and always have a common inscribed sphere so that a
blending cyclide can be constructed. Special cases, such as identical cone axes
and cubic cyclide blends, are ignored; however, the same line of reasoning also
applies to these special cases with minimal modifications.

2 Offsets

Given two positive constants a and c (c < a), the Dupin cyclide Z(a, c, µ)
(Figure 2), whose longitudinal principal circles have centers at (±a, 0, 0) and
radii µ∓ c and latitudinal principal circles have centers at (±c, 0, 0) and radii
a∓ µ, is defined by the following equation (Pratt [5]):

Z(a, b, µ) :
(
x2 + y2 + z2 − µ2 + b2

)2
= 4(ax− cµ)2 + 4b2y2 where b2 = a2 − c2(1)
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Here, µ is referred to as the offset parameter. Note that µ can be any positive,
zero or negative value.

a+µ

µ+c

µ−c

a−µ

−c c

a−a X

X

Y

Z

Fig. 2. Longitudinal and latitudinal principal circles of a Dupin cyclide

Lemma 1 (Fundamental Properties – The Quartic Case) Let Z(a, c, µ)
be the Dupin cyclide defined by µ and constants a and c (c < a). Then, the
following offset properties hold:

(1) For any µ1 and µ2, Z(a, c, µ1) and Z(a, c, µ2) are offsets of each other.
Moreover, Z(a, c, µ2) is the µ2 − µ1 offset of Z(a, c, µ1), and an offset of
a cyclide is a cyclide. Hence, the meaning of the offset parameter µ is
well-defined.

(2) The type of Z(a, c, µ) is shown in the following table, where R, SH, DH, 1S
and 2S denote ring, singly horned, doubly horned, one-singularity spindle
and two-singularity spindle, respectively.

µ < −a −a (−a,−c) −c (−c, c) c (c, a) a > a
Type 2S 1S R SH DH SH R 1S 2S

(3) The offset relation is an equivalence relation.
(4) Two Dupin cyclides Z1(a1, c1, µ1) and Z2(a2, c2, µ2) are offsets of each

other if and only if they have the same directrix conics, and if and only
if a1 = a2 and c1 = c2.

PROOF. Recall that the four principal circles uniquely determine a Dupin
cyclide. Thus, when the radii of the latitudinal principal circles change from
a − µ1 and a + µ1 to a − µ2 and a + µ2, respectively, the generated Dupin
cyclide is the envelope of a moving sphere with center on the same directrix
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ellipse of Z(a, b, µ1) and radius being µ2 − µ1 larger than that of the corre-
sponding moving sphere of Z(a, b, µ2). Therefore, Z(a, b, µ2) is a µ2−µ1 offset
of Z(a, b, µ1), and Part (1) is established. Part (2) can be obtained by observ-
ing the relationship between the radii of the two principal circles of the same
family and the distance between their centers. Part (3) is obvious.

Consider Part (4). By the definition of offsets of Dupin cyclides, if Z(a1, b1, µ1)
and Z(a2, b2, µ2) are offsets of each other, they have the same directrix conics.
If the directrix conics of Z(a1, b1, µ1) are the same as those of Z(a2, b2, µ2), then

a1 = a2 and c1 = c2 because a1 = a2 (resp., c1 =
√
a2

1 − b21 =
√
a2

2 − b22 = c2) is
the focal length of the directrix ellipse (resp., hyperbola). Finally, if a1 = a2

and c1 = c2, Z(a1, b1, µ1) and Z(a2, b2, µ2) are offsets of each other by Part
(1). Thus, Part (4) is established. ✷

3 Main Results

This section presents the main results of this paper. In what follows, Sec-
tion 3.1 precisely defines the offsets of two cones and their blending cyclides
so that the blending cyclides “shrink” as the cones “shrink”; Section 3.2 estab-
lishes two technical lemmas to be used in later sections; Section 3.3 deals with
the non-singular case which states that blending and offsetting commute (Fig-
ure 1); Section 3.4 covers the singular case and shows that the offset construc-
tion must be used with care since some blending cyclides for two offset cones
cannot be offset back for the given cones correctly; and, finally, Section 3.5
discusses an interesting interpretation of blending cyclides construction with
the offset method.

3.1 Offsets of a Blending Configuration

The concept of offsets of blending cyclides for two cones have to be defined
carefully because a blending cyclide may not “grow” when the cones it blends
“grow”. For example, if a ring cyclide blends two cones along its longitudi-
nal circles and lies outside (resp., inside) of the cones, this cyclide “shrinks”
(resp., “grows”) when the cones “grow”. Worse, it is difficult to define “shrink-
ing/growing” with respect to a doubly horned cyclide because one part of it
shrinks while the other part grows. To overcome this problem, all offsets are
defined with respect to a reference configuration.

Suppose the cones C1(V1, �1, α1) and C2(V2, �2, α2) have a common inscribed
sphere S with center O = �1 ∩ �2 and radius r > 0. The ε-offsets of C1 and C2

are computed as follows. Since S lies in the interior of both cones, it will grow

5



and shrink simultaneously with the cones. Therefore, the ε-offset of Ci is the

cone with the same axis and cone angle, and a new vertex V ′
i = Vi− ε

sin(αi)

−→
ViO
ViO

.

More precisely, the ε-offset of Ci(Vi, �i, αi) is Ci(Vi − ε
sin(αi)

−→
ViO
ViO

, �i, αi).

To properly define the ε-offset of a blending cyclide Z for C1 and C2, a reference
configuration is required. Let the two principal circles of Z on the axial plane,
the plane containing the axes of cones, be Z1 and Z2. Consider an offset of
S that is large enough to contain both Z1 and Z2. Let this sphere be the
δ-offset of S for some δ > 0 and be named as S∞. Thus, we have Sδ = S∞
and S = S−δ

∞ . It will be shown in Theorem 4 that a blending cyclide Z∞ for
C1∞ and C2∞ can be constructed such that the centers of the principal circles
(on the axial plane) of Z∞ are identical to that of Z1 and Z2. In fact, Z∞ is
an offset of Z. We shall define Z∞ to be the δ-offset of Z (Figure 3). Surfaces
S∞ = Sδ, C1∞ = Cδ

1 , C2∞ = Cδ
2 and Z∞ = Zδ are referred to as a reference

configuration which is shown in light color in Figure 3. The offsets of cones
and their blending cyclides are computed with respect to this configuration.

C2

C1

δ

C2
δ

Z2

S

C1
Z1Z2
Z1

δ

δ
δ

S

Fig. 3. A reference Configuration

By Part (2) of Lemma 1, we know that if S∞ is sufficiently large, Z∞ is a
two-singularity spindle cyclide, which can be considered as a cyclide whose
principal circles have very large radii. As a result, offsets of Z are obtained
by “shrinking” Z∞. The radii of the principal circles on the axial plane may
become negative; however, this will not cause any problem because a negative
radius only change the orientation of a circle without affecting its shape.

3.2 Two Technical Lemmas

Suppose two cones C1(V1, �1, α1) and C2(V2, �2, α2) have a common inscribed
sphere with center O = �1 ∩ �2 and radius r > 0. Let H be the axial plane. Let
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R and S be a pair of opposite vertices of the intersection quadrilateral Q of
the cones and H (i.e., Q = H∩ (C1 ∪ C2)) and let Σ be the intersection circle

of H and the common inscribed sphere (Figure 4). Thus,
←→
RS (resp., Σ) is a

diagonal (resp., inscribed circle) of quadrilateral Q. If S is at infinity,
←→
V1S and

←→
V2S are parallel to each other. Let Z be a blending Dupin cyclide constructed

at a point on
←→
RS. Let Z and H intersect in two principal circles Z1 and Z2,

with centers O1 and O2, such that Z1 (resp., Z2) is tangent to
←→
V1R and

←→
V2R

(resp.,
←→
V1S and

←→
V2S) at A and C (resp., B and D).

V

V

C

R

T

V

O

A

V

B

D

O
O

SR

1

2

1

2

1

2

’

’

Z

Z1

2

’

S’

Σ

O

C

C

R
R

A
A

’

’

O

1

ε

’

1

Z

Σ

(a) (b)

Fig. 4. The basic configuration for the general case

Consider the ε-offsets of cones C1 and C. On the axial plane H, V1, V2, R and

S move to V ′
1 , V

′
2 , R

′ and S ′, respectively (Figure 4(a)). Let the lines
←→
O1A,←→

O1C,
←→
O2B and

←→
O2D meet lines

←→
V ′

1R
′,

←→
V ′

2R
′,

←→
V ′

1S
′ and

←→
V ′

2S
′ at A′, C ′, B′ and

D′, respectively (Figure 4(b)).

Lemma 2 Given the above notation, the following propositions hold:

(1) Points O, O1, R and R′ are collinear and points O, O2, S and S ′ are

collinear (i.e., O1 and O2 lie on
←→
OR and

←→
OS, respectively);

(2) Lines
←→
RS and

←→
R′S ′ are parallel;

(3) Quadrangles V1RV2S and V ′
1R

′V ′
2S

′ are homothetic with respect to O;
(4) Points A′, B′, C ′ and D′ are cocircular.

PROOF. To prove Part (1), let X and Y be two arbitrary points on the

diagonal
←→
RS (Figure 5). The diagonal construction at X (resp., Y ) determines
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point A (resp., E) on
←→
V1R and point C (resp., F ) on

←→
V2R such that there is a

principal circle with center O1 (resp., G) tangent to
←→
V1R and

←→
V2R at A and C

(resp., E and F ), respectively. Consider triangles �ACX and �EFY . Since

the lines joining the corresponding vertices (i.e.,
←→
AE,

←→
CF and

←→
XY ) meet at

point R, by Desargues’ theorem, the intersection points of the corresponding

sides (i.e.,
←→
AC ∩ ←→

EF ,
←→
XA ∩ ←→

Y E, and
←→
XC ∩ ←→

Y F ) are collinear. Since
←→
XA

and
←→
XC are parallel to

←→
Y E and

←→
Y F by construction, their intersection points

lie on the line at infinity. As a result, the third intersection points
←→
AC ∩ ←→

EF

must also be at infinity, and hence
←→
AC and

←→
EF are parallel to each other.

Now consider �O1AC and �GEF . Since the corresponding sides are parallel
to each other, their intersection points lie on the line at infinity, by Desargues’
theorem, the lines joining their corresponding vertices meet at the same point.
Therefore, O1, G and R are collinear. Since O1 and G are arbitrarily chosen
and since the common inscribed circle is a degenerate case of a cyclide (i.e.,

identical principal circles), its center O must also lie on
←→
O1R. Consequently,

O, O1 and R are collinear.

R

A

C

X

O1

V

V

1

2E

F

Y

G

Fig. 5. O, O1 and R are collinear

After offsetting,
←→
V ′

1R
′ and

←→
V ′

2R
′ are tangent to the circles with center O1 and

radius r+ ε or r− ε depending on the position of O1 (Figure 4). Therefore, O,
O1 and R′ are collinear. As a result, O, O1, R and R′ are collinear. If S is at

infinity,
←→
V1S and

←→
V2S are parallel and Z2 and Σ have equal radii. Hence, O,

O1, S and S ′ are collinear.

Part (2) can also be proved with Desargues’ theorem. In �V1RS and �V ′
1R

′S ′

(Figure 4), since the lines joining the corresponding vertices (i.e.,
←→
V1V

′
1 ,

←→
RR′

and
←→
SS ′) meet atO, the intersection points of corresponding sides are collinear.

Since the corresponding lines
←→
V1R and

←→
V ′

1R
′, and

←→
V1S and

←→
V ′

1S
′ meet at points

at infinity, the third pair
←→
RS and

←→
R′S ′ must also meet at a point at infinity

and, hence
←→
RS and

←→
R′S ′ are parallel.

Two figures are homothetic with respect to O if and only if for any point

X on the first and its corresponding point X ′ ∈←→
OX on the second the ratio

OX/OX ′ is a constant. Thus, Part (3) is obvious since V1 and V ′
1 , V2 and V ′

2 ,
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R and R′, and S and S ′ lie on lines though O, and the corresponding sides of
V1RV2S and V ′

1R
′V ′

2S
′ are parallel.

Since circle Z1 is tangent to
←→
V1R and

←→
V2R at A and C, RA = RC (Figure 4(b)).

Since Z is a blending cyclide, A, B, C and D lie on a circle with center
O and radius OA = OC [7]. Therefore, �ORA ∼= �ORC. Consequently,
� OAR = � OCR and � OAA′ = 90◦ − � OAR = 90◦ − � OCR = � OCC ′. This
implies �OAA′ ∼= �OCC ′ since AA′ = CC ′ = |ε| and OA = OC. Hence,
OA′ = OC ′. Because of symmetry, OA′ = OB′. As a result, the distances from
O to A′, B′, C ′ and D′ are all equal and these four points are cocircular. ✷

This lemma has two immediate implications. First, the centers of the principal

circles on the axial plane must be on
←→
OR and

←→
OS (Part (1)). Therefore, circles

whose centers are in the regions not containing
←→
OR and

←→
OS cannot be used

as principal circles. The diagonal construction never places principal circles in

these areas. Second, as ε approaches −r,
←→
RS moves parallelly toward O and

contains O when ε = −r (Part (2)).

Lemma 3 Let Z1 and Z2 be two blending Dupin cyclides constructed from the
same diagonal for cones C1 and C2. Then, the line of centers of the principal
circles of Z1 is parallel to that of Z2.

PROOF. See Figure 4(a). Let Z1 and Z2 be the principal circles, with centers
O1 and O2 respectively, of blending Dupin cyclide Z1. Let Z1 and Z2 be tangent

to cone C2 at C and D, respectively. Then,
←→
O1C and

←→
O2D meet at a point T

on C2’s axis.

Let Ō1 and Ō2 be the centers of principal circles of Z2 and let T̄ be constructed
in a similar way as T . Thus, T̄ lies on C2’s axis. Note that Ō1, Ō2 and T̄ are not
shown in Figure 4(a); however, this should not impose any problem. Consider

�O1O2T and �Ō1Ō2T̄ . Since Ō1 and Ō2 lie on
←→
OO1 and

←→
OO2 (Part (1) of

Lemma 2), and since T and T̄ lie on C2’s axis which passes through O, the

center of the common inscribed sphere, we have
←→

O1Ō1,
←→

O2Ō2 and
←→
T T̄ meeting

at O. By Desargues’ theorem, the intersection points
←→
O1T ∩

←→
Ō1T̄ ,

←→
O2T ∩

←→
Ō2T̄

and
←→

O1O2 ∩
←→

Ō1Ō2 are collinear. Since
←→
O1T is parallel to

←→
Ō1T̄ and

←→
O2T is

parallel to
←→
Ō2T̄ ,

←→
O1O2 and

←→
Ō1Ō2 are also parallel to each other. ✷
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3.3 The Non-Singular Case

This section deals with the non-singular case, where ε �= −r and r is the radius
of the common inscribed sphere of the given cones. We shall first prove that the
offset of a blending cyclide blends the offsets of the cones (Theorem 4). Then,
this fact is used to prove that the diagram in Figure 1 commutes (Theorem 5).

Theorem 4 Suppose cones C1 and C2 have a common inscribed sphere with
radius r and distinct vertices. If cyclide Z blends cones C1 and C2, then the
ε-offset of Z (ε �= r) blends the ε-offsets of C1 and C2.

PROOF. Let Z blend C1 and C2. This proof consists of three steps. The first
step constructs a blending cyclide Z̄ for Cε

1 and Cε
2 from Z; the second step

proves that Z̄ is an offset of Z; and the third step shows that Z is indeed the
ε-offset of Z̄. We shall use Figure 4 throughout this proof, where the solid and
dashed lines represent the given surfaces and their offsets, respectively, R and

S are two opposite diagonal vertices, and
←→
RS is a diagonal. Note that if C1

and C2 share a common vertex, R and S do not exist and this proof fails.

Step (1). Let Z1 and Z2 be the principal circles of Z on the axial plane. Let

Z1 (resp., Z2) be tangent to
←→
V1R and

←→
V2R (resp.,

←→
V1S and

←→
V2S) at A and C

(resp., B and D). Let the lines
←→
O1A,

←→
O1C,

←→
O2B and

←→
O2D meet the ε-offsets

of
←→
V1R,

←→
V2R,

←→
V1S and

←→
V2S at A′, C ′, B′ and D′, respectively. Since it is not

difficult to see V ′
1A

′ = V ′
1B

′, there is a circle tangent to
←→
V ′

1R
′ and

←→
V ′

1S
′ at A′

and B′, respectively. Similarly, there is a circle tangent to
←→
V ′

2R
′ and

←→
V ′

2S
′ at

C ′ and D′, respectively. Since R′A′ = R′C ′ and S ′B′ = S ′D′, there is a circle

(with center O1) tangent to
←→
V ′

1R
′ and

←→
V ′

2R
′ at A′ and C ′, and a circle (with

center O2) tangent to
←→
V ′

1S
′ and

←→
V ′

2S
′ at B′ and D′. By Part (4) of Lemma 2,

A′, B′, C ′ and D′ lie on a circle with center O. By the Specification Lemma
for quartic cyclides in [7], there exists a Dupin cyclide Z̄ that blends the offset
cones.

Step (2). We shall prove that Z̄ is an offset of Z. Note that the principal
circles of Z̄ and Z have the same centers O1 and O2, and are on the axial

plane. If
←→
O1O2 and the midpoint of O1O2 are chosen to be the x-axis and the

coordinate origin, we have a1 = a2 or c1 = c2 depending upon the type of
the principal circles (i.e., longitudinal or latitudinal), where a1 and c1 (resp.,
a2 and c2) are the a and c parameters of Z (resp., Z̄) in Equation (1) and
Figure 2. In Figure 4(a), since the principal circles are longitudinal circles, we
have a1 = a2. In what follows, we shall prove c1 = c2. The proof of a1 = a2

given c1 = c2 is similar.

10



The directrix conic on the axial plane is a hyperbola with foci O1 and O2. Since
the sphere with center T and radius TC = TD is tangent to the principal cir-
cles Z1 and Z2 of cyclide Z, T lies on Z’s directrix hyperbola. Similarly, since
the sphere with center T and radius TC ′ = TD′ is tangent to the principal
circles of Z̄, T also lies on Z̄’s directrix hyperbola. Since both directrix hyper-
bolas have the same foci and a common point T , they must be identical, 2 and

both directrix hyperbolas intersect the x-axis (i.e.,
←→
O1O2) at the same point

(i.e., c1 = c2). By Part (4) of Lemma 1, Z and Z̄ are offsets of each other.

Step (3). Finally, we shall show Z = Z̄ε. Suppose the reference cones C1∞ and
C2∞ are the δ-offsets of C1 and C2 (i.e., Ci = C−δ

i∞ and Cε
i = C−δ+ε

i∞ ). Following
the construction in Step (1), we can construct a blending cyclide Z∞ for
C1∞ and C2∞ from Z, C1 and C2. Since Cε

i is the (−δ + ε)-offset of Ci∞, Z
is also the (−δ + ε)-offset of Z∞ (i.e., Z = Z−δ+ε

∞ ). Since Ci is the (−δ)-
offset of Ci∞, Z̄ is the (−δ)-offset of Z∞ (i.e., Z̄ = Z−δ

∞ ), and, as a result,
Z = Z−δ+ε

∞ = (Z−δ
∞ )ε = Z̄ε. ✷

The main result of this paper is a direct and easy consequence of the above
theorem.

Theorem 5 (The Non-Singular Case) Suppose cones C1 and C2 have a
common inscribed sphere with radius r and distinct vertices. If ε �= −r, then
Cε

1 ⊕ Cε
2 = (C1 ⊕ C2)

ε holds and the main diagram commutes.

PROOF. Let Z be a blending cyclide for Cε
1 and Cε

2. By Theorem 4, since Z
blends Cε

1 and Cε
2, Z̄ = Z−ε blends C1 = (Cε

1)
−ε and C2 = (Cε

2)
−ε. Therefore,

we have Z = Z̄ε, and Z is the ε-offset of a blending cyclide for C1 and C2.
Consequently, Cε

1 ⊕ Cε
2 ⊂ (C1 ⊕ C2)

ε.

Let Z be the ε-offset of a blending cyclide for C1 and C2. Since Z ∈ (C1 ⊕C2)
ε,

there exists a blending cyclide Z̄ for C1 and C2 such that Z = Z̄ε holds. Since
Z̄ blends C1 and C2, by Theorem 4, Z̄ε blends Cε

1 and Cε
2. Therefore, Z blends

Cε
1 and Cε

2 and Z ∈ Cε
1 ⊕ Cε

2. Consequently, (C1 ⊕ C2)
ε ⊂ Cε

1 ⊕ Cε
2. ✷

3.4 The Singular Case

Since C1 ⊕C2 has two families of blending cyclides and C−r
1 ⊕C−r

2 has four [7],
(C1 ⊕C2)

−r is a proper subset of C−r
1 ⊕C−r

2 . More precisely, there are blending

2 A central conic with foci (±f, 0) has a form of x2/c2 ± y2/(f2 − c2) = 1, which
is parameterized by c. Thus, this one-parameter family has only one member that
contains a given point.
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cyclides for C−r
1 and C−r

2 whose r-offsets do not blend C1 and C2. Figure 6 is an
example, where C−r

1 and C−r
2 are blended with a Dupin cyclide whose principal

circles are shown in solid lines. As C−r
2 is offset back to C2, the two principal

circles are also offset as shown in dashed lines. While the new circles still define
a Dupin cyclide that is tangent to C2, it is not tangent to C1 and hence does
not blend C1 and C2. Therefore, (C1 ⊕ C2)

−r is a proper subset of C−r
1 ⊕ C−r

2

and the offset construction in general does not work properly. Consequently,
the main diagram does not commute when the offset value is −r.

**
**

*
*
*

A B

C
D

C

D

’

’

V

V

1

2

O
S

R

Fig. 6. An example showing C−r
1 ⊕ C−r

2 �= (C1 ⊕ C2)−r

Theorem 6 (The Singular Case) Suppose cones C1 and C2 have a common
inscribed sphere with radius r and distinct vertices. Then, (C1⊕C2)

−r ⊂ C−r
1 ⊕

C−r
2 .

The failure of the offset construction is due to the fact that the centers of the
principal circles of the cyclide that blends C−r

1 and C−r
2 are not on

←→
OR and

←→
OS

(Lemma 2). To construct a blending cyclide whose offset will also blend the

given cones,
←→
OR and

←→
OS must be constructed first. Then, one must choose a

principal circle with center on
←→
OR and construct the corresponding principal

circle with center on
←→
OS. While this construction is correct, it is not as clean

as the diagonal construction and cannot distinguish the two possible families
of blending cyclides.

Pratt [5] observed the same problem in the example. Allen and Dutta [1]
used the offset construction for developing a theory of “pure blends” for half-
cones; however, as will be shown in Section 4.1, this construction is incomplete.
Section 4.2 suggests a remedy to this problem.
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3.5 An Interesting Interpretation

As shown in previous sections, the center O of the common inscribed sphere,

lines
←→
OR and

←→
OS, and the centers O1 and O2 of the principal circles re-

main fixed throughout the offset process. Moreover, quadrangles V1RV2S and
V ′

1R
′V ′

2S
′ are homothetic to each other, and many results are proved using De-

sargues’ theorem. These facts suggest a very interesting interpretation among
offset configurations.

Let the axial plane be the xy-coordinate plane with origin at O. Using the
intersection circle C of the axial plane and the common inscribed sphere as
the base circle, one can construct a cone with cone angle 45◦ and vertex

V = (0, 0,−r) (i.e., C(V, ←→
OV , 45◦)), where r is the radius of the common

inscribed sphere. The vertex V and the lines
←→
V1R,

←→
V1S,

←→
V2R and

←→
V2S define

four planes that are tangent to cone C. Let these four planes be PV1R, PV1S,
PV2R and PV2S, respectively. Since PV1R and PV2R both contain V and R, their

intersection line
←→
V R lies on the plane determined by V , R and O. Therefore,

the line through O1 and perpendicular to the axial plane meets
←→
V R at a point

V1Z . It is not difficult to see that the cone with vertex V1Z and base circle Z1

has a cone angle 45◦. Thus, we have a cone C1Z(V1Z ,
←→
V1ZO1, 45

◦) defined on

Z1. Similarly, there is a cone C2Z(V2Z ,
←→
V2ZO2, 45

◦) defined on Z2. Note that
C1Z (resp., C2Z) is tangent to planes PV1R and PV2R (resp., PV1S and PV2S).

Consider plane Pε whose equation is z = ε in the coordinate system established

earlier. Let V ′
1 = Pε∩

←→
V V1, V

′
2 = Pε∩

←→
V V2, R

′ = Pε∩
←→
V R and S ′ = Pε∩

←→
V S, and

let
←→
V ′

1R
′= Pε ∩PV1R,

←→
V ′

1S
′= Pε ∩PV1S,

←→
V ′

2R
′= Pε ∩PV2R and

←→
V ′

2S
′= Pε ∩PV2S.

The intersection circle C ′ = Pε ∩ C is the ε-offset of C and tangent to
←→
V ′

1R
′,

←→
V ′

1S
′,

←→
V ′

2R
′ and

←→
V ′

2S
′. Plane Pε also intersects C1Z and C2Z in two circles Z ′

1 and
Z ′

2, respectively. Thus, the vertical projections (onto the axial plane) of circles

C ′, Z ′
1 and Z ′

2, and lines
←→
V ′

1R
′,

←→
V ′

1S
′,

←→
V ′

2R
′ and

←→
V ′

2S
′ constitute the ε-offset of

the original configuration. More precisely, the ε-offset is no more than a set

of level curves of the cones and planes. As ε approaches −r, diagonal
←→
R′S ′,

the “offset” of
←→
RS, moves parallelly toward O, and eventually passes through

O when ε = −r. Hence, all possible ε-offsets of the given cones and blending
cyclides can be obtained from the intersections, or level curves, of a plane and
the above constructed configuration.
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4 A Theory for Half-Cones

A complete theory of blending with Dupin cyclides for axial natural quadric
surfaces (i.e., cylinders and cones) is presented in [4,6,7]. Recently, Allen and
Dutta presented a theory for half-cones [1,2] using the offset construction.
As discussed in Section 3.4, the offset construction has to be used with care
because not all blending cyclides for two cones with a common vertex can be
offset without problems. In fact, it is even worse for half-cones because some
blending cyclides cannot be constructed this way. This section presents an
analysis of the offset construction for half-cones. More precisely, we shall show
that the offset construction is incomplete and none of the blending cyclides of
a particular configuration can be constructed (Section 4.1). This is followed
by a correct and complete construction algorithm (Section 4.2).

4.1 The Offset Construction is Incomplete

Suppose two half-cones "C1(V1, "�1, α1) and "C2(V2, "�2, α2) are blended with a cy-
clide. Let the radius and center of the common inscribed sphere of the con-
taining cones be r > 0 and O. Let one of the two principal circles have center

X and be tangent to
→

V1R and
→

V2R at A and C, respectively, where R is one
of the four vertices of the intersection quadrilateral (Figure 7). If the angle

between
→
OX and

→
V1R is greater than 90◦, the perpendicular foot from X to

→
V1R lies in V1E, where E is the perpendicular foot from O to

→
V1R. Hence,

the (−r)-offset of this principal circle cannot be tangent to the offset of
→

V1R
(dashed rays in Figure 7). As a result, this principal circle cannot be obtained,
using the offset construction, from any principal circle that is tangent to the

offset of "C1 and "C2. On the other hand, if the angle between
→
OX and

→
V2R is

less than 90◦, the perpendicular foot C from X to
→

V2R is not in V2F , where

F is the perpendicular foot from O to
→

V2R, and its extension will intersect

the (−r)-offset of
→

V2R. Consequently, the (−r)-offset of this principal circle is

tangent to the (−r)-offset of
→

V2R. This idea is summarized in the following
proposition:

Proposition 7 Let X be the center of a principal circle, O the center of the
common inscribed sphere, and R a diagonal vertex such that X, O and R are
collinear. Then, the (−r)-offset of this principal circle is tangent to the offset

cones if and only if the angle between
→
OX and

→
V1R and the angle between

→
OX

and
→

V2R are both acute.
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Fig. 7. Characterization of the constructibility of the offset construction
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Fig. 8. An analysis of the constructibility of the offset construction

Now we can use the above proposition to analyze the incompleteness of the
offset construction. Figure 8(a) shows a configuration of two half-cones. It is

clear that
→
OR makes acute angles with both

→
V1R and

→
V2R. Thus, this principal

circle can be constructed from its (−r)-offset which is tangent to the (−r)-

offsets or
−→
V1R and

−→
V2R. However, since

→
RO makes non-acute angles with both

→
V1R and

→
V2R, the (−r)-offsets of those principal circles whose centers are on

←→
RS − →

OR are not tangent to the offset cones, and, as a result, principal circles

with centers on
←→
RS − →

OR cannot be constructed with the offset construction.
Consequently, the offset construction does not construct all possible blending
cyclides.

Figure 8(b) is another example. Since
→
OR makes non-acute angles with both

→
V1R and

→
V2R, the indicated principal circle with center O1 cannot be con-

structed. Unfortunately, this configuration is commonly used in cyclide blend-
ing. Moreover, those blending cyclides that can be constructed (with centers

on
←→
OR − →

OR) are singular.

Figure 8(c) shows an extreme case. Since
→
OS makes an acute angle with

→
V2S

and a non-acute angle with
→
V1S, any principal circle whose center is on

→
OS
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cannot be constructed. Since the opposite direction of
→
OS makes an acute

angle with
→
V1S and a non-acute angle with

→
V2S, any principal circle whose

center is on
←→
OS − →

OS cannot be constructed either. Hence, none of the

principal circles whose centers are on
←→
OS can be constructed, and consequently

no blending cyclide can be constructed with the offset construction. That is,
the offset construction fails completely for this case, and an existence proof
based on the offset construction is likely to be incorrect.

4.2 A Correct Construction Algorithm

With a minor modification, the diagonal construction can be used for half-
cones. Since a blending cyclide of two half-cones is also a blending cyclide of
the two containing cones, to construct blending cyclides for half-cones, one
only needs to properly add some restrictions to the algorithm for cones. Given
two half-cones "C1(V1, "�1, α1) and "C2(V2, "�2, α2), we first extend them to two
cones C1(V1, �1, α1) and C2(V2, �2, α2). These two cones must have a common
inscribed sphere to have a blending cyclide. The axial plane intersects the
cones, half-cones, and the common inscribed sphere in two pairs of intersecting
lines with intersection points V1 and V2, two pairs of rays with base points V1

and V2, and a circle (Figure 9). The two pairs of intersection lines form a
complete quadrilateral with three pairs of opposite vertices, V1 and V2, R and
S, and R′ and S ′. Let the center of the common inscribed sphere be O. In
what follows, we shall only consider the general case in which the axes of the
cones do not coincide and none of R, S, R′ and S ′ is at infinity.

V

R

S

SO

E

F

E

F

R’

’

’

’

1

V2

Fig. 9. A construction algorithm for half-cones

Since a blending cyclide is constructed by dropping perpendicular lines to

the axes of the cones from a point on a diagonal, say
←→
RS, if the constructed

cyclide blends the half-cones, the line perpendicular to the axes of the cones
must intersect the axis rays of the given half-cones. Construct a line through

V1 and perpendicular to �1, meeting diagonal
←→
RS at E (Figure 9), which
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subdivides
←→
RS into two rays in opposite directions with base point E. Note

that only one of these two rays makes an acute angle with "�1. It is clear that
from any point on this ray one can construct a line perpendicular to "�1. This
idea can be incorporated into the diagonal construction to yield an algorithm
for half-cones as follows:

• Input: two half-cones "C1(V1, "�1, α1) and "C2(V2, "�2, α2)

• Output: a series of blending cyclides for "C1 and "C2 if they exist
• Algorithm:
(1) Extend the half-cones to full cones C1(V1, �1, α1) and C2(V2, �2, α2), and

compute the two diagonals
←→
RS and

←→
R′S ′, where R and S, and R′ and S ′

are two pairs of opposite vertices.

(2) Let the line through V1 and perpendicular to �1 meet
←→
RS and

←→
R′S ′ at E

and E ′, respectively.

(3) Let the line through V2 and perpendicular to �2 meet
←→
RS and

←→
R′S ′ at F

and F ′, respectively.

(4) If the angle between "�1 (resp., "�2) and
→
RS is acute, let "eE (resp., "eF ) be

the ray with base point E (resp., F ) in the direction of
→
RS. Otherwise, "eE

(resp., "eF ) is the ray with base point E (resp, F ) in the direction of
→
SR.

(5) Do the same for E ′ and F ′, yielding rays "eE′ and "eF ′ , respectively.
(6) If "eE ∩"eF is empty, no blending cyclide can be constructed from diagonal

←→
RS. Otherwise, from any point in "eE ∩"eF ⊂←→

RS a blending cyclide for the
half-cones "C1 and "C2 can be constructed.

(7) Do the same for "eE′ and "eF ′ for diagonal
←→
R′S ′

Figure 9 illustrates two examples. Since "eE and "eF do not intersect, no blending
cyclide can be constructed. On the other hand, since "eE′ is a subset of "eF ′ ,
a blending cyclide can be constructed from any point in "eE′ . The correctness
and completeness proofs are easy and hence are omitted. A complete analysis

of the types of the constructed cyclides can be found in [7]. In general,
←→
RS

can be subdivided into five intervals with four points. Each of these division
points corresponds to a singly horned or a one-singularity spindle cyclide. All
points in the same interval correspond to cyclides of the same type, and of
these five intervals two correspond to ring cyclides. In fact, points that are
close to either R or S and are in the exterior of both half-cones correspond to
ring cyclides.
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5 On Allen-Dutta’s Theory

This section re-examines Allen and Dutta’s theory of “pure” cyclide blends for
half-cones. We shall show that this type of pure blends is a small part of the
general theory for cones and can be obtained quite easily (Section 5.1). Since
the offset construction, which is also used by Allen and Dutta for constructing
pure cyclide blends, is incomplete (Section 4.1), a modified algorithm that
uses the diagonal method is given in Section 5.2.

5.1 Pure Cyclide Blends

In [1,2], Allen and Dutta defined a pure cyclide blend for two half-cones to be a
non-singular (i.e., ring) cyclide satisfying three conditions: (1) the intersection
curve is nonempty and closed, (2) the cyclide is tangent to each half-cone along
a latitudinal circle, and (3) the intersection curve must wrap around the axis
of each half-cone being blended. Since a necessary and sufficient condition for
two axial quadrics, with intersecting axes, to have a blending Dupin cyclide is
that they intersect in planar curves [4,6,7], the intersection curve in conditions
(1) and (3) must be an ellipse. In [7], it is also proved that if the line of vertices
lies in the interior of both cones, any blending cyclide is tangent to the given
cones along latitudinal circles. For the half-cones case, this is equivalent to the
vertex of a half-cone being in the interior of the other. Consequently, we have
the following:

Definition 8 (Pure Cyclide Blend) A blending Dupin cyclide for two half-
cones is a pure blend if and only if the half-cones intersect in an ellipse and
the vertex of one half-cone lies in the interior of the other.

Allen-Dutta’s theory can be considered as a special case of the general theory
of cyclide blending. By properly specializing the general results, a theory that
is capable of constructing all possible pure cyclide blends can be obtained
easily. In fact, an numeration of all possible relative positions of the half-cones
and common inscribed sphere will suffice. In what follows, we assume that the
containing cones of the given half-cones have a common inscribed sphere, and
will base our discussion on the axial plane.

The intersection of the axial plane and the two full cones is a complete quadri-
lateral with two four-side regions, one bounded while the other unbounded.
The intersection circle of the common inscribed sphere and the axial plane
is an inscribed circle of the quadrilateral. This inscribed circle can be in the
bounded or the unbounded area as shown in Figure 10 and Figure 11, respec-
tively. The vertices of the given cones are opposite vertices of the quadrilateral.
Thus, there are three possibilities for placing the vertices of the cones. Each
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cone has two half-cones, and once a pair of opposite vertices are fixed to be the
cones’ vertices, there are four half-cones. Therefore, there are 2× 3× 4 = 24
different configurations of the given half-cones. Figure 10 (resp., Figure 11)
illustrates the configurations where the inscribed circles are in the bounded
(resp., unbounded) region. Note that due to symmetry, each pair of the sec-
ond and third configurations in Figure 10(b), Figure 10(c), Figure 11(b), and
Figure 11(c) are equivalent. Consequently, there are only 20 different configu-
rations.

(a)

(b)

(c)

Fig. 10. The inscribed circle lies in the bounded region

(a)

(b)

(c)

Fig. 11. The inscribed circle lies in the unbounded region
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Of these 20 configurations, only the following seven have an ellipse in the
intersection of the given half-cones: (1) the first and second of Figure 10(a),
(2) the first of Figure 10(b), (3) the first of Figure 10(c), (4) the first and second
of Figure 11(a), and (5) the first of Figure 11(b). Note that these figures are
not required for determining if a particular intersection contains an ellipse, and
the use of diagrams here is for the sake of simplicity. Shene and Johnstone [9]
has a fast algorithm for determining the types of the intersection conics of
two cones. Of these seven, only the configurations in (1), (2), and (4) satisfy
the definition of a pure cyclide blending (Definition 8). Thus, Allen-Dutta’s
theory of pure cyclide blending only covers 25% of the general cases.

The existence of a common inscribed sphere for cones carries over to half-cones
naturally. Of the above mentioned five configurations, only the first configu-
rations of Figure 10(a) and Figure 10(b), and the second of Figure 11(a) have
intersecting axis rays. The half-cones of these three configurations all contain
the common inscribed sphere and the common inscribed sphere criterion in [1]
is established.

Allen and Dutta [2] also discussed a common inscribed sphere criterion for
blending half-cones. Note that, in this case, blending cyclides are not restricted
to be “pure”. To have a common inscribed sphere, the axis rays of the half-
cones must intersect. The first configurations in Figure 10, the second con-
figuration in Figure 11(a), and the first configurations of Figure 11(b) and
(c) satisfy this requirement. Therefore, each of these six configurations has a
common inscribed sphere. Note that there are only two cases (i.e., the third
configurations in Figure 10(a) and Figure 11(a)) in which one half-cone con-
tains the other, and in both cases the axis rays do not intersect. As a result,
the second condition of Allen-Dutta’s result is redundant (Theorem 5.1 of [2]).
Note also that this common inscribed sphere criterion only accounts for 30%
of the general cases. Hence, the power of common inscribed sphere for half-
cones is quit limited. Moreover, the existence of a pure blend cannot be tested
using the common inscribed sphere criterion (e.g., the second configuration of
Figure 10(a) and the first configuration of Figure 11(a)).

5.2 The Construction of Pure Cyclide Blends

As shown in Section 4.1, the offset construction does not deliver all possi-
ble blending cyclides. Since Section 4.2 has already presented a construction
algorithm for correctly constructing blending cyclides using the diagonal con-
struction, what remains is to determine the given half-cones intersect in an
ellipse. This is easy as shown below.

Suppose two half-cones intersect in an ellipse on the diagonal
←→
RS. It is easy
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Fig. 12. The two possible positions of the inscribed circle relations

to verify that if the inscribed circle lies in the bounded region (Figure 12(a)),
V1R − V1S = V2R − V2S holds; otherwise, V1R − V1S = −(V2R − V2S) holds
(Figure 12(b)). Conversely, if one of these two relations holds, it can be shown
that the quadrilateral has an inscribed circle and that the half-cones have pla-

nar intersection [6,8]. Hence, by selecting a point on
←→
RS, using the algorithm

presented in Section 4.2 one can construct a blending cyclide.

To construct a “pure” blending cyclide, one has to address two requirements:
(1) one cone contains the vertex of the other, and (2) the cyclide must be of
the ring type. Condition (1) is easy to test. However, condition (2) may not be
satisfied at all as discussed in Section 4.1 and in particular in Figure 8, which
is the second configuration of Figure 10(a). Based on this finding, Allen and
Dutta’s algorithm can be replaced with the following simplified version:

input: Two half-cones "C1(V1, "�1, α1) and "C2(V2, "�2, α2);
Output: A series of pure blending cyclides;
Algorithm:

if the axis rays are not coplanar then
there is no blending cyclide

else if none of the cones contains the vertex of the other then
there is no pure blend (Definition 8)

else
begin

compute a pair of finite opposite vertices R and S;
if R or S does not exist then

the half-cones do not intersect in an ellipse
else if abs(V1R− V1S) �= abs(V2R− V2S) then

the half-cones do not intersect in an ellipse
else

apply the algorithm in Section 4.2
end
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6 Conclusion

This paper has successfully established the fact that the offset of a blending
cyclide for two cones also blends the offsets of the latter if the cones do not
share a common vertex. Otherwise, this result holds only if a blending cy-
clide for the offset cones is chosen carefully. This paper includes an interesting
interpretation from which all possible offset blending configurations can be ob-
tained as level curves of a simple configuration involving three cones and four
planes. We also re-examine the use of the offset construction for half-cones.
It is shown that the offset construction is incomplete in general, and none of
the possible blending cyclides can be constructed in a particular case. As a
final contribution, this paper looks at Allen and Dutta’s theory of construct-
ing “pure blends” for half-cones using the offset construction. Our findings
include: (1) the results for “pure blends” only account for a small part of the
general theory for cones and can be obtained easily and quickly, and (2) Allen
and Dutta’s construction is incomplete since it shares the same difficulties of
the offset construction. To address this problem, this paper also suggests a
correct and complete construction algorithm. Based on these evidences, one
can conclude that the diagonal construction in [7] is better and more reliable
than the offset construction.
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