
A Visualization System for Multithreaded Programming∗

Michael Bedy, Steve Carr, Xianglong Huang and Ching-Kuang Shene†

Department of Computer Science
Michigan Technological University

Houghton, MI 49931–1295
{mjbedy,carr,xlhuang,shene}@mtu.edu

1 Introduction

Almost all modern operating systems, from Windows to
Unix, support multithreaded programming. To make
sure our students can lead the trend of computer sci-
ence in the foreseeable future, we need to introduce
them to this important technology. However, we have
found through experience in teaching multithreaded
programming that the paradigm shift from sequential
to multithreaded causes students significant problems,
such as (1) multithreaded program development re-
quires a new mindset, (2) multithreaded program be-
havior is dynamic, making debugging very difficult, and
(3) proper synchronization is more difficult than antici-
pated [10, 11]. Moreover, detecting race conditions and
deadlocks is more easily said than done.

To address these challenging problems, we have de-
signed a visualization system that is capable of display-
ing vital information of a multithreaded program for
students to understand the dynamic behavior, to grasp
the inner working of popular synchronization primi-
tives, and to help pinpoint race conditions and dead-
locks. The subject of this paper is this system. In
what follows, Section 2 reviews previous work related to
ours; Section 3 provides a brief system overview; Sec-
tion 4 presents the user interface; Section 5 discusses the
thread status and history windows; Section 6 through
Section 9 cover various supported synchronization prim-
itives; and, finally, Section 10 has our conclusions.

∗This work was partially supported by the National Sci-
ence Foundation under grant DUE-9752244.

†Communicating author

2 Previous Work

There are two types of visualization systems: algorithm
animation and program behavior visualization. The for-
mer animates the execution of an algorithm, while the
latter displays the execution behavior of a program.
The visualization part can be real-time or post-mortem.
The real-time visualization generates visuals on-the-fly,
while the post-mortem visualization saves the events
and plays them back with another program.

There are no major differences between sequential and
parallel algorithm animation, since the program saves
the events in order, perhaps synchronized by a file
writing protocol. Zimmermann, et al. [15] is perhaps
the earliest paper on concurrent program animation,
while Price and Baeker [9] suggest a framework. With
Hartley’s approach [3], the user program saves its ac-
tivities to a file and then uses Stasko’s XTANGO to
playback after the program completes. Recently, Naps
and Chan [7] incorporate parallel program animation
into Multi-Pascal. One of the most well-known sys-
tem for parallel program visualization is unquestion-
ably Stasko’s PARADE [12], which is based on POLKA.
More details can be found in [4, 5, 13]. Along this line
of research, Zhao and Stasko [14] present an environ-
ment for visualizing Pthreads programs using POLKA,
and Cai [2] describes a system for OCCAM programs.
Other useful information can be found in [6, 8].

Most freely available and well-known visualization sys-
tems are post-mortem, including XTANGO, POLKA
and PARADE. The advantage of a post-mortem system
is that everything relevant to the execution of a program
has been saved and can be replayed at any time. How-
ever, its main disadvantages are: (1) only one instance
of the program execution is available, making debugging
difficult; (2) a large volume of output will be generated
which could be incomplete or even corrupted if the pro-
gram ends abnormally; and (3) the program must be
“instrumented” explicitly by adding statements or di-
rectives, which introduces an extra level of complexity

and could interfere with the original behavior of the
program.

3 System Overview

The goal of our system is to provide a tool for students
to visualize thread execution and synchronization be-
havior. Since we hope this system will be used widely,
it has to be highly portable. Moreover, to avoid the
problems of post-mortem systems, we choose the real-
time approach and use post-mortem as a backup. To
achieve maximum portability, we use EGCS, the newest
GNU compiler, for program development, and GTK for
GUI programming. STL is also used extensively. As a
result, we are able to support most popular platforms
(i.e., Windows 95/98/NT, Linux, and Sun Solaris).

This system is a stand-alone program, and communi-
cates with user programs by message passing. A stu-
dent writes his/her multithreaded program in C/C++
and uses our class library for thread and synchroniza-
tion operations [1]. All “instrumentations” are implic-
itly built into the class library and can be turned on or
off. As a program runs, it activates the visualization
system, and both are run in separate address spaces so
that they will not interfere each other.

The visualization system supports thread creation, ter-
mination, and join. It also provides visual effects
for popular synchronization primitives. These include
mutex locks, semaphores, barriers, reader-priority and
writer-priority reader-writer locks, and Hoare type and
Mesa type monitors. Additionally, this system displays
the status of a thread (i.e., running, joining, waiting,
and terminated), the running history of every thread,
and source program with the line involved in a synchro-
nization call highlighted. In this way, a student can
easily grasp a global picture of his/her running threads.

4 The User Interface

When the system starts, it displays the Main Window
(Figure 1(a)). The lower-left corner has buttons for ac-
tivating the History Window and Thread Status Window.
The upper-right corner has buttons for selecting the in-
formation to be displayed in the large display area.

The lower-right corner of the Main Window has a slide
and three buttons: Step, Start and Pause (Figure 1(b)).
Initially, the system suspends the execution of the run-
ning program. To run the program, click on Start; to
step through the execution, click on Step; and to pause
the execution, click on Pause. This system does not step
through the execution of the instructions. Instead, it
steps through the synchronization primitive calls. Thus,
clicking on Step brings the execution to the next syn-

(a) (b)

Figure 1: The Main Window and Slide

chronization call. A user can use the slide to set the
“delay” time for changing the “execution” speed.

5 Thread Status and History

Clicking on the Thread Status button activates the
Thread Status Window (Figure 2(a)) to display the sta-
tus of each thread. The status of each thread is updated
on-the-fly. Figure 2(a) shows a snapshot of the execu-
tion of the smokers problem. Thread Agent is wait-
ing for the table; threads Smoker 1 and Smoker 2 are
blocked, waiting for ingredients; Smoker 0 is running
(smoking); and the main thread Main is waiting for the
completion of all four threads (joining).

(a)

(b)

Figure 2: Thread Status and History

The History Window displays the running history of each
thread (Figure 2(b)). The “history” of a thread is rep-
resented by a color bar running from left to right. A
different color indicates a different status of a thread.
Tags such as JN, SW and SP shown on the top of each
bar indicate what has happened to a particular thread.
For example, after the agent and smoker threads are cre-
ated, the main thread enters the joining status. Hence,
a joining tag JN is displayed. Clicking on a tag acti-
vates the Source Window, which displays the program
with the line containing the corresponding synchroniza-

tion primitive call highlighted. Clicking on tag JN in
Figure 2(b) yields Figure 3, where the line containing
the join call is highlighted.

Figure 3: The Source Window

6 Semaphores and Mutex Locks

Clicking on the Semaphore button displays semaphore
information in the display area of the Main Window.
Figure 4(a) shows all semaphores being used in the
smokers program. Each semaphore occupies one line,
and each line contains a semaphore name, its value,
and the number of waiting threads. In the smoker
program, thread Agent waits on semaphore Complete
until the ingredients on the table are taken by a
smoker, adds new ingredients on the table, and signals
a smoker’s semaphore (i.e., SemSmoker 0, SemSmoker 1
or SemSmoker 2) for the corresponding smoker to pick
up the ingredients. In Figure 4(a), the counter of
semaphore SemSmoker 2 is zero with one thread wait-
ing. Clicking on the line containing the semaphore ac-
tivates a Semaphore Window (Figure 4(b)). In the fig-
ure the counter of semaphore SemSmoker 2 is zero and
thread Smoker 2 is waiting.

(a) (b)

Figure 4: Semaphore Wait Windows

Associated with each semaphore, there are two tags in
the History Window (Figure 2(b)): SP for semaphore
post (or signal) and SW for semaphore wait. To look
for the last call to semaphore wait, activate the History
Window and click on the right-most SW tag of thread
Smoker 2. The result is shown in Figure 5.

Since mutex lock is a binary semaphore, the content
and format of a Mutex Lock Window are identical to

Figure 5: The Source Window for Semaphore

those of a Semaphore Window. However, a lock/unlock
icon replaces the semaphore value, and the owner of the
lock is shown when the lock is locked. The two tags for
mutex locks are MW for mutex wait and MU mutex unlock.

7 Monitors

Clicking on the Monitor button displays monitor in-
formation. Each monitor occupies one line, and each
line displays the monitor’s name, the number of threads
waiting inside (i.e., inactive) the monitor, the number
of threads waiting to enter the monitor, and the running
(i.e., active) thread in the monitor. Clicking on a line
brings up a Monitor Window which provides all of the
detailed information of that monitor (Figure 6). This
window has four components: (1) the top-row shows the
active thread, (2) each box with black frame represents
a condition variable and contains all threads that are
currently blocked on it, (3) the box with green frame
lists all inactive threads (e.g., threads released from a
condition variable but not yet running – re-entering),
and (4) the left-side of the window lists all threads that
are waiting to enter the monitor. This system supports
two monitor types: the Hoare type – the signaler yields,
and the Mesa type – the signaled threads yields. The
type of the monitor is part of the window title.

Figure 6: The Monitor Window

Tags for monitors include MB - monitor begins, ME -
monitor ends, and CW - condition variable wait. Moni-
tor begin and monitor end indicate that threads enter
and leave the monitor, respectively. Figure 7(a) shows
a snapshot of the execution of the dining philosophers
problem. Clicking on a CW brings up the Source Window
showing the line that contains the corresponding call to
condition variable WaitChopStick (Figure 7(b)).

(a)

(b)

Figure 7: Monitor History and Source Windows

8 Reader-Writer Locks

A reader-writer lock, RW lock for short, is another way
to prevent more than one thread from modifying shared
data at the same time; however, unlike a mutex lock, it
allows concurrent reading and exclusive writing. Click-
ing on the RWLock button displays RW lock informa-
tion. Each RW lock uses one line, and each line contains
the RW lock name, the numbers of waiting and reading
readers, the number of waiting writers, and the active
writer. Clicking on a line brings up the correspond-
ing Reader-Writer Lock Window (Figure 8(a)). This sys-
tem supports two types of RW lock: reader-priority and
writer-priority. The former allows a writer to write only
if there is no waiting readers, while the latter permits
the writer to write after all current readers finish read-
ing. The reader-priority type is simple; but, writers
may starve. The type of the RW lock is shown as part
of the window title. The Reader-Writer Lock Window
has three sub-windows, showing the waiting and read-
ing readers, and waiting writers. The thread name of
the writing writer is displayed near the bottom if there
is one; otherwise, “. . .” is shown. To the left of the win-
dow, a green sphere means no writer is writing, while a
red sphere indicates the lock is owned by a writer.

There are six RW lock tags: RW - reader wait, RO - reader
own (reading), RR - reader release, WW - writer wait, WO
- writer own (writing), and WR - writer release. Fig-
ure 8(b) is a snapshot of the History Window with vari-
ous tags. With RW locks, solving both versions of the
readers-writers problem becomes an obvious task.

9 Barriers

A barrier is a way to keep the members of a group
of threads together. A barrier has a capacity value.
Threads calling a barrier primitive are blocked until its
capacity is reached. Then, all threads are released at the
same time. This system also supports barriers. Click-
ing on the Barrier button displays barrier information.

(a)

(b)

Figure 8: The Reader-Writer Lock and History Windows

Each barrier occupies one line in the display area, and
each line contains a barrier name, its capacity, and the
number of threads waiting in the barrier (Figure 9(a)).

(a) (b)

Figure 9: The Main and Barrier Windows

Clicking on a line brings up the corresponding Barrier
Window (Figure 9(b)). Each Barrier Window contains
two rows of spheres, the waiting row and leaving row.
The number of spheres on each row is equal to the capac-
ity of the barrier. If a thread calls this barrier, its name
is shown with a red sphere on the waiting row; when
it is released, the sphere on the waiting (resp., leaving)
row becomes gray (resp., green). Once a thread leaves
the barrier, its corresponding sphere on the leaving row
changes back to gray. In the figure. three threads
Elf6, Elf0 and Elf3 are in the barrier ToyFinish (Fig-
ure 9(a)). The next thread calling this barrier will re-
lease all threads.

10 Conclusions

We have presented the important features of our thread
visualization system. Combined with our class li-
brary [1], students will not only learn multithreaded

programming easily, but also vividly see the dynamic
behavior of a running multithreaded program and the
interaction of synchronization primitives. We plan to
continue to expand this system to include deadlock
detection and multiprocess programming, and support
parallel and distributed programming visualization in
the future. Our system will be available to the public
after it becomes stabilized. The interested reader can
find more about our work, including course material and
future software announcements, at the following site:

http://www.cs.mtu.edu/~shene/NSF-3/index.html

References

[1] Bedy, M. J., Carr, S., Huang X and Shene, C.-K.,
A Class Library for Multithreaded Programming,
1999, submitted for publication.

[2] Cai, W., Milne, W. J. and Turner, S. J., Graphical
Views of the Behavior of Parallel Programs, Jour-
nal of Parallel and Distributed Computing, Vol. 18
(1993), pp. 223–230.

[3] Hartley, S. J., Animating Operating Systems
Algorithms with XTANGO, ACM Twenty-Fifth
SIGCSE Technical Symposium on Computer Sci-
ence Education, 1994, pp. 344–348.

[4] Kraemer, E., Visualizing Concurrent Programs,
in Software Visualization, edited by John Stasko,
John Domingue, Marc H. Brown and Blaine A.
Price, MIT Press, 1998, pp. 237–256.

[5] Kraemer E. and Stasko, J. T., The Visualization of
Parallel Systems: An Overview, Journal of Paral-
lel and Distributed Computing, Vol. 18 (1993), pp.
105–117.

[6] Miller, B. P., What to Draw? When to Draw?
An Essay on Parallel Program Visualization, Jour-
nal of Parallel and Distributed Computing, Vol. 18
(1993), pp. 265–269.

[7] Naps, T. L. and Chan, E. E., Using Visualization
to Teach Parallel Algorithms, Thirtieth SIGCSE
Technical Symposium on Computer Science Edu-
cation, 1999, pp. 232–236.

[8] Pancake, C. M., Visualization Techniques for Par-
allel Debugging and Performance-Tuning Tools,
Parallel Computing: Paradigm and Applications,
edited by A. Y. Zomay, International Thomson
Computer Press, 1996, pp. 376–393.

[9] Price, B. M. and Baecker, R. M., The Automatic
Animation of Concurrent Programs, Proceedings
of the First International Workshop on Computer-
Human Interface, 1991, pp. 128–137.

[10] Shene, C.-K., Multithreaded Programming in an
Introduction to Operating Systems Course, ACM
Twenty-Ninth SIGCSE Technical Symposium on
Computer Science Education, 1998, pp. 242–246.

[11] Shene, C.-K. and Carr, S., The Design of a Mul-
tithreaded Programming Course and Its Accompa-
nying Software Tools, The Journal of Computing
in Small Colleges, Vol. 14 (1998), No. 1, pp. 12–24.

[12] Stasko, J. T., The PARADE Environment for Vi-
sualizing Parallel Program Executions: A Progress
Report, Technical Report GIT-GVU-95-03, Col-
lege of Computing, Georgia Institute of Technol-
ogy, 1995.

[13] Stasko, J. T. and Kraemer, E., A Methodology
for Building Application-Specific Visualizations of
Parallel Programs, Journal of Parallel and Dis-
tributed Computing, Vol. 18 (1993), pp. 258–264.

[14] Zhao, Q. A. and Stasko, J. T., Visualizing the Exe-
cution of Threads-based Parallel Programs, Techni-
cal Report GIT-GVU-95-01, College of Computing,
George Institute of Technology, January 1995.

[15] Zimmermann, M., Perrenoud, F. and Schiper, A.
Understanding Concurrent Programming Through
Program Animation, ACM Nineteenth SIGCSE
Technical Symposium on Computer Science Edu-
cation, 1988, pp. 27–31.

